• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
18
0
0

Teljes szövegt

(1)

volume 7, issue 3, article 92, 2006.

Received 13 September, 2005;

accepted 03 June, 2006.

Communicated by:S.S. Dragomir

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

APPROXIMATION OF B-CONTINUOUS ANDB-DIFFERENTIABLE FUNCTIONS BY GBS OPERATORS OF BERNSTEIN

BIVARIATE POLYNOMIALS

OVIDIU T. POP AND MIRCEA FARCA ¸S

Vest University "Vasile Goldi¸s" of Arad Branch of Satu Mare 26 Mihai Viteazu Street

Satu Mare 440030, Romania.

EMail:ovidiutiberiu@yahoo.com National College "Mihai Eminescu"

5 Mihai Eminescu Street Satu Mare 440014, Romania.

EMail:mirceafarcas2005@yahoo.com

c

2000Victoria University ISSN (electronic): 1443-5756 272-05

(2)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

Abstract

In this paper we give an approximation ofB-continuous andB-differentiable functions by GBS operators of Bernstein bivariate polynomials.

2000 Mathematics Subject Classification:41A10, 41A25, 41A35, 41A36, 41A63.

Key words: Linear positive operators, Bernstein bivariate polynomials, GBS opera- tors,B-differentiable functions, approximation ofB-differentiable func- tions by GBS operators, mixed modulus of smoothness.

Contents

1 Preliminaries . . . 3 2 Main Results . . . 6

References

(3)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

http://jipam.vu.edu.au

1. Preliminaries

In this section, we recall some results which we will use in this article.

In the following, let X and Y be compact real intervals. A function f : X×Y →Ris called aB-continuous (Bögel-continuous) function in(x0, y0)∈ X×Y if

(x,y)→(xlim0,y0)∆f((x, y),(x0, y0)) = 0.

Here

∆f((x, y),(x0, y0)) =f(x, y)−f(x0, y)−f(x, y0) +f(x0, y0) denotes a so-called mixed difference off.

A functionf :X×Y →Ris called aB-differentiable (Bögel-differentiable) function in(x0, y0)∈X×Y if it exists and if the limit is finite:

(x,y)→(xlim0,y0)

∆f((x, y),(x0, y0)) (x−x0)(y−y0) .

The limit is named the B-differential off in the point(x0, y0) and is denoted byDBf(x0, y0).

The definitions ofB-continuity and B-differentiability were introduced by K. Bögel in the papers [5] and [6].

The functionf :X×Y →RisB-bounded onX×Y if there existsK >0 such that

|∆f((x, y),(s, t))| ≤K for any(x, y),(s, t)∈X×Y.

(4)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

We shall use the function setsB(X×Y) =

f : X×Y → R|f bounded onX×Y with the usual sup-normk · k,Bb(X×Y) =

f :X×Y →R|f B-bounded onX ×Y and we setkfkB = sup

(x,y),(s,t)∈X×Y

|∆f((x, y),(s, t))|, where

f ∈Bb(X×Y), Cb(X×Y) =

f :X×Y →R|f B−continuous onX×Y , and Db(X×Y) =

f :X×Y →R|f B−differentiable onX×Y . Letf ∈ Bb(X ×Y). The functionωmixed(f;·,·) : [0,∞)×[0,∞) → R, defined by

(1.1) ωmixed(f;δ1, δ2) = sup{|∆f((x, y),(s, t))|:|x−s| ≤δ1,|y−t| ≤δ2} for any(δ1, δ2)∈[0,∞)×[0,∞)is called the mixed modulus of smoothness.

For related topics, see [1], [2], [3] and [10].

LetL:Cb(X×Y)→B(X×Y)be a linear positive operator. The operator U L :Cb(X ×Y)→ B(X×Y)defined for any functionf ∈Cb(X×Y)and any(x, y)∈X×Y by

(1.2) (U Lf)(x, y) = (L(f(·, y) +f(x,∗)−f(·,∗))) (x, y)

is called the GBS operator ("Generalized Boolean Sum" operator) associated to the operatorL, where "·" and "∗" stand for the first and second variable.

Let the functions eij : X ×Y → R, (eij)(x, y) = xiyj for any (x, y) ∈ X×Y, wherei, j ∈N. The following theorem is proved in [1].

(5)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

http://jipam.vu.edu.au

Theorem 1.1. LetL :Cb(X ×Y)→B(X×Y)be a linear positive operator andU L:Cb(X×Y)→B(X×Y)the associated GBS operator. Then for any f ∈Cb(X×Y), any(x, y)∈(X×Y)and anyδ1, δ2 >0, we have

(1.3) |f(x, y)−(U Lf)(x, y)| ≤ |f(x, y)| |1−(Le00)(x, y)|

+

(Le00)(x, y) +δ1−1p

(L(· −x)2) (x, y) +δ2−1p

(L(∗ −y)2) (x, y) +δ1−1δ−12 p

(L(· −x)2(∗ −y)2) (x, y)

ωmixed(f;δ1, δ2).

In the following, we need the following theorem for estimating the rate of the convergence of theB-differentiable functions (see [11]).

Theorem 1.2. LetL :Cb(X ×Y)→B(X×Y)be a linear positive operator and U L : Cb(X ×Y) → B(X ×Y)the associated GBS operator. Then for any f ∈ Db(X ×Y) withDBf ∈ B(X ×Y), any(x, y) ∈ X ×Y and any δ1, δ2 >0, we have

|f(x, y)−(U Lf)(x, y)|

(1.4)

≤ |f(x, y)||1−(Le00)(x, y)|+3kDBfkp

(L(· −x)2(∗ −y)2) (x, y) +

p(L(· −x)2(∗ −y)2)(x, y) +δ−11 p

(L(· −x)4(∗ −y)2)(x, y) +δ−12 p

(L(· −x)2(∗ −y)4)(x, y) +δ−11 δ2−1 L(· −x)2(∗ −y)2

(x, y)

ωmixed(DBf;δ1, δ2).

(6)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

2. Main Results

Let the sets∆2 ={(x, y)∈R×R|x, y ≥0, x+y≤1}andF(∆2) = {f|f :

2 →R}. Form a non zero natural number, let the operatorsBm : F(∆2)→ F(∆2), defined for any functionf ∈ F(∆2)by

(2.1) (Bmf)(x, y) = X

k,j=0 k+j≤m

pm,k,j(x, y)f k

m, j m

for any(x, y)∈∆2, where

(2.2) pm,k,j(x, y) = m!

k!j!(m−k−j)!xkyj(1−x−y)m−k−j. The operators are named Bernstein bivariate polynomials (see [8]).

Lemma 2.1. The operators(Bm)m≥1 are linear and positive onF(∆2).

Proof. The proof follows immediately.

Forma non zero natural number, let the GBS operator of Bernstein bivariate polynomialsU Bm (see [1]),U Bm :Cb(∆2)→B(∆2)defined for any function f ∈Cb(∆2)and any(x, y)∈∆2 by

(U Bmf)(x, y) (2.3)

= (Bm(f(x,∗) +f(·, y)−f(·,∗))) (x, y)

= X

k,j=0 k+j≤m

pm,k,j(x, y)

f

x, j m

+f

k m, y

−f k

m, j m

.

(7)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

http://jipam.vu.edu.au

Lemma 2.2. The operators(Bm)m≥1 verify for any(x, y)∈∆2 the following:

(Bme00)(x, y) = 1;

(2.4)

Bm(· −x)2

(x, y) = x(1−x)

m ;

(2.5)

Bm(∗ −y)2

(x, y) = y(1−y)

m ;

(2.6)

(2.7) Bm(· −x)2(∗ −y)2 (x, y)

= 3(m−2)

m3 x2y2−m−2

m3 (x2y+xy2) + m−1 m3 xy;

(2.8) Bm(· −x)4(∗ −y)2 (x, y)

=−5(3m2−26m+ 24)

m5 x4y2+6(3m2−26m+ 24) m5 x3y2

− 6(m2−7m+ 6)

m5 x3y− 3m2−41m+ 42 m5 x2y2 + 3m2−26m+ 24

m5 x4y+3m2 −17m+ 14 m5 x2y

− m−2

m5 xy2+m−1 m5 xy and

(2.9) Bm(· −x)2(∗ −y)4 (x, y)

=−5(m2−26m+ 24)

m5 x2y4+ 6(3m2−26m+ 24) m5 x2y3

(8)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

− 6(m2−7m+ 6)

m5 xy3− 3m2−41m+ 42 m5 x2y2 + 3m2−26m+ 24

m5 xy4+3m2 −17m+ 14 m5 xy2

− m−2

m5 x2y+m−1 m5 xy for any non zero natural numberm.

Proof. Let(x, y)∈∆2andmbe a non zero natural number. We have (Bme00)(x, y) = X

k,j=0 k+j≤m

m!

k!j!(m−k−j)!xkyj(1−x−y)m−k−j

= (x+y+ 1−x−y)m = 1, so (2.4) holds,

(Bme10)(x, y) = X

k,j=0 k+j≤m

m!

k!j!(m−k−j)!xkyj(1−x−y)m−k−j k m

=x X

k=1,j=0 k+j≤m

(m−1)!

(k−1)!j!(m−k−j)!xk−1yj(1−x−y)m−k−j

=x, it results that

(2.10) (Bme10)(x, y) =x

(9)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

http://jipam.vu.edu.au

and similarly

(2.11) (Bme01)(x, y) =y.

In the same way, using the formulas k2 =k(k−1) +k,

k3 =k(k−1)(k−2) + 3k(k−1) +k,

k4 =k(k−1)(k−2)(k−3) + 6k(k−1)(k−2) + 7k(k−1) +k, we obtain

(Bme20)(x, y) = m−1

m x2 + 1 mx, (2.12)

(Bme30)(x, y) = (m−1)(m−2)

m2 x3+3(m−1)

m2 x2+ 1 m2 x, (2.13)

(2.14) (Bme40)(x, y) = (m−1)(m−2)(m−3)

m3 x4

+6(m−1)(m−2)

m3 x3+7(m−1)

m3 x2+ 1 m3x and similarly the relations(Bme02)(x, y),(Bme03)(x, y),(Bme04)(x, y).

We have (Bme11)(x, y)

= m−1

m y X

k=0,j=1 k+j≤m

(m−1)!

k!(j−1)!(m−k−j)!xkyj−1(1−x−y)m−k−j k m−1

= m−1

m y(Bm−1e10)(x, y),

(10)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

(Bme21)(x, y)

=

m−1 m

2

y X

k=0,j=1 k+j≤m

(m−1)!

k!(j−1)!(m−k−j)!xkyj−1(1−x−y)mkj k

m−1 2

=

m−1 m

2

y(Bm−1e20)(x, y),

and in the same way, we write (Bme31)(x, y), (Bme41)(x, y), (Bme32)(x, y), (Bme42)(x, y). Taking (2.12) - (2.14) into account, we obtain

(Bme11)(x, y) = m−1 m xy, (2.15)

(Bme21)(x, y) = (m−1)(m−2)

m2 x2y+ m−1 m2 xy, (2.16)

(2.17) (Bme31)(x, y) = (m−1)(m−2)(m−3) m3 x3y +3(m−1)(m−2)

m3 x2y+ m−1 m3 xy,

(2.18) (Bme41)(x, y) = (m−1)(m−2)(m−3)(m−4)

m4 x4y

+6(m−1)(m−2)(m−3)

m4 x3y

+ 7(m−1)(m−2)

m4 x2y+ m−1 m4 xy,

(11)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

http://jipam.vu.edu.au

(2.19) (Bme22)(x, y) = (m−1)(m−2)(m−3) m3 x2y2 +(m−1)(m−2)

m3 (x2y+xy2) + m−1 m3 xy,

(2.20) (Bme32)(x, y) = (m−1)(m−2)(m−3)(m−4)

m4 x3y2

+ (m−1)(m−2)(m−3)

m4 x3y+3(m−1)(m−2)(m−3) m4 x2y2 +3(m−1)(m−2)

m4 x2y+ (m−1)(m−2)

m4 xy2+ m−1 m4 xy,

(Bme42)(x, y) (2.21)

= (m−1)(m−2)(m−3)(m−4)(m−5)

m5 x4y2

+ (m−1)(m−2)(m−3)(m−4)

m5 x4y

+ 6(m−1)(m−2)(m−3)(m−4)

m5 x3y2

+ 6(m−1)(m−2)(m−3)

m5 x3y

+ 7(m−1)(m−2)(m−3) m5 x2y2 + 7(m−1)(m−2)

m5 x2y+(m−1)(m−2)

m5 xy2+m−1 m5 xy

(12)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

and similarly the relations (Bme12)(x, y), (Bme13)(x, y), (Bme14)(x, y), (Bme23)(x, y),(Bme24)(x, y).

Now, we have

(Bm(· −x)2)(x, y) = (Bme20)(x, y)−2x(Bme10)(x, y) +x2(Bme02)(x, y), (Bm(·−x)2(∗−y)2)(x, y) = (Bme22)(x, y)−2y(Bme21)(x, y)+y2(Bme20)(x, y)

−2x(Bme12)(x, y) + 4xy(Bme11)(x, y)−2xy2(Bme10)(x, y) +x2(Bme02)(x, y)−2x2y(Bme01)(x, y) +x2y2(Bme00)(x, y), (Bm(· −x)4(∗ −y)2)(x, y)

= (Bme40)(x, y)−2y(Bme41)(x, y) +y2(Bme40)(x, y)

−4x(Bme32)(x, y) + 8xy(Bme31)(x, y)−4xy2(Bme30)(x, y) + 6x2(Bme22)(x, y)−12x2y(Bme21)(x, y) + 6x2y2(Bme20)(x, y)

−4x3(Bme12)(x, y) + 8x3y(Bme11)(x, y)−4x3y2(Bme10)(x, y) +x4(Bme02)(x, y)−2x4y(Bme01)(x, y) +x4y2(Bme00)(x, y) and taking (2.9) – (2.21) into account, we obtain (2.5), (2.7) and (2.8). Similarly we obtain (2.9).

Lemma 2.3. The operators(Bm)m≥1 verify for any(x, y) ∈ ∆2 the following inequalities:

(Bm(· −x)2)(x, y)≤ 1 4m, (2.22)

(Bm(∗ −y)2)(x, y)≤ 1 4m, (2.23)

(13)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

http://jipam.vu.edu.au

for any non zero natural numberm,

(2.24) Bm(· −x)2(∗ −y)2

(x, y)≤ 9 4m2 , for any natural numberm,m≥2,

Bm(· −x)4(∗ −y)2

(x, y)≤ 9 m3, (2.25)

Bm(· −x)2(∗ −y)4

(x, y)≤ 9 m3, (2.26)

for any natural numberm,m≥8.

Proof. Becausex(1−x)≤ 14 for anyx∈[0,1], (2.22) and (2.23) results.

From (2.7), we have

Bm(· −x)2(∗ −y)2 (x, y)

= 2(m−2)

m3 x2y2+ m−2

m3 x(1−x)y(1−y) + 1 m3 xy

≤ 2(m−2)

m3 + m−2 16m3 + 1

m3

= 33m−50 16m3 , from where (2.24) results.

(14)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

From (2.8), we have Bm(· −x)4(∗ −y)2

(x, y)

= 6(3m2−26m+ 24)

m5 x3y2(1−x) + 3m2−26m+ 24

m5 x4y(y+ 1)

− 6(m2−7m+ 6)

m5 x3y+ 3m2−17m+ 14

m5 x2y(1−y) +24m−28

m5 x2y2+m−2

m5 xy(1−y) +xy.

But

3m2−26m+ 24

m5 x4y(y+ 1)≤23m2−26m+ 24 m5 x2y

= 6m2−42m+ 36

m5 x2y− 10m−12 m5 x2y

≤ 6m2−42m+ 36

m5 x2y− 10m−12 m5 x3y2 and then, from the inequalities above, we obtain

(2.27) Bm(· −x)4(∗ −y)2 (x, y)

≤ 6(3m2−26m+ 24)

m5 x3y2(1−x) + 6m2−42m+ 36

m5 x2y(1−y) + 3m2−17m+ 14

m5 x2y(1−y) + 10m−12

m5 x2y2(1−y) +14m−16

m5 x2y2+m−2

m5 xy(1−y) +xy.

(15)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

http://jipam.vu.edu.au

Becausex(1−x)≤ 14,y(1−y)≤ 14,xy≤1for anyx, y ∈[0,1], from (2.27) we have

Bm(· −x)4(∗ −y)2 (x, y)

≤ 6(3m2−26m+ 24)

4m5 + 6m2−42m+ 36 4m5 + 3m2−17m+ 14

4m5 +10m−12

4m5 + 14m−16

m5 +m−2 4m5 + 1

= 27m2−148m+ 170

m5 ,

from where (2.25) results.

Theorem 2.4. Let the function f ∈ Cb(∆2). Then, for any (x, y) ∈ ∆2, any natural numberm,m≥2, we have

(2.28) |f(x, y)−(U Bmf)(x, y)|

1 +δ1−1 1 2√

m +δ−12 1 2√

m +δ−11 δ2−1 3 2m

ωmixed(f;δ1, δ2) for anyδ1,δ2 >0and

(2.29) |f(x, y)−(U Bmf)(x, y)| ≤ 7 2ωmixed

f; 1

√m, 1

√m

.

Proof. For the first inequality we apply Theorem 1.1and Lemma 2.3. The in- equality (2.29) is obtained from (2.28) by choosingδ12 = 1m .

(16)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

Corollary 2.5. Iff ∈Cb(∆2), then

(2.30) lim

m→∞(U Bmf)(x, y) =f(x, y) uniformly on2.

Proof. Because f ∈ Cb(∆2), there results that f is uniform B-continuous on

2 and then lim

m→∞ωmixed

f;1m,1m

= 0(see [2] or [3]). From (2.29), there results the conclusion.

Theorem 2.6. Let the functionf ∈Db(∆2)withDBf ∈B(∆2). Then for any (x, y)∈∆2, any natural numberm,m≥8, we have

(2.31) |f(x, y)−(U Bmf)(x, y)| ≤ 9

2m kDbfk

+ 3

2m+δ1−1 3 m√

m+δ−12 3 m√

m+δ1−1δ2−1 9 4m2

ωmixed(DBf;δ1, δ2) for anyδ1, δ2 >0and

(2.32) |f(x, y)−(U Bmf)(x, y)|

≤ 3 4m

6kDBfk+ 13ωmixed

DBf; 1

√m

√1 m

.

Proof. It results from Theorem1.2and Lemma2.3.

(17)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

http://jipam.vu.edu.au

References

[1] C. BADEA AND C. COTTIN, Korovkin-type theorems for generalised boolean sum operators, Colloquia Mathematica Societatis János Bolyai, 58, Approximation Theory, Kecskemét (Hunagary), 1990, 51–67.

[2] C. BADEA, Modul de continuitate în sens Bögel ¸si unele aplica¸tii în aproximarea printr-un operator Bernstein, Studia Univ. "Babe¸s-Bolyai", Ser. Math.-Mech., 18(2) (1973), 69–78 (Romanian).

[3] C. BADEA, I. BADEA, C. COTTIN AND H.H. GONSKA, Notes on the degree of approximation ofB-continuous andB-differentiable functions, J. Approx. Theory Appl., 4 (1988), 95–108.

[4] D. B ˘ARBOSU, Aproximarea func¸tiilor de mai multe variabile prin sume booleene de operatori liniari de tip interpolator, Ed. Risoprint, Cluj- Napoca, 2002 (Romanian).

[5] K. BÖGEL, Mehrdimensionale Differentiation von Funtionen mehrerer Veränderlicher, J. Reine Angew. Math., 170 (1934), 197–217.

[6] K. BÖGEL, Über die mehrdimensionale differentiation, integration und beschränkte variation, J. Reine Angew. Math., 173 (1935), 5–29.

[7] K. BÖGEL, Über die mehrdimensionale differentiation, Jber. DMV, 65 (1962), 45–71.

[8] G.G. LORENTZ, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.

(18)

Approximation ofB-Continuous andB-Differentiable Functions by GBS Operators of Bernstein

Bivariate Polynomials Ovidiu T. Pop and Mircea Farca¸s

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of18

J. Ineq. Pure and Appl. Math. 7(3) Art. 92, 2006

[9] M. NICOLESCU, Contribu¸tii la o analiz˘a de tip hiperbolic a planului, St.

Cerc. Mat., III, 1-2, 1952, 7–51 (Romanian).

[10] M. NICOLESCU, Analiz˘a Matematic˘a, II, E. D. P. Bucure¸sti, 1980 (Ro- manian).

[11] O.T. POP, Approximation ofB-differentiable functions by GBS operators (to appear in Anal. Univ. Oradea).

[12] D.D. STANCU, Gh. COMAN, O. AGRATINIANDR. TRÎMBI ¸TA ¸S, Anal- iz˘a Numeric˘a ¸si Teoria Aproxim˘arii, I, Presa Universitar˘a Clujean˘a, Cluj- Napoca, 2001 (Romanian).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Linear positive operators, Summation-integral type operators, Rate of convergence, Asymptotic formula, Error estimate, Local direct results, K-functional, Modulus

Key words and phrases: Linear positive operators, Summation-integral type operators, Rate of convergence, Asymptotic for- mula, Error estimate, Local direct results,

Key words and phrases: Linear positive operators, Bernstein bivariate polynomials, GBS operators, B -differentiable func- tions, approximation of B-differentiable functions by

OWA, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric func- tions, Hadamard products, linear operators, and certain subclasses

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex

BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, Dokl.. DITZIAN, Direct estimate for Bernstein

We estimate the rate of the pointwise approximation by operators of Bleimann, Butzer and Hahn of locally bounded functions, and of functions having a locally bounded deriv- ative..