• Nem Talált Eredményt

accepted 18 March, 2009 Communicated by S.S Dragomir ABSTRACT

N/A
N/A
Protected

Academic year: 2022

Ossza meg "accepted 18 March, 2009 Communicated by S.S Dragomir ABSTRACT"

Copied!
8
0
0

Teljes szövegt

(1)

APPROXIMATION OF B-CONTINUOUS AND B-DIFFERENTIABLE FUNCTIONS BY GBS OPERATORS DEFINED BY INFINITE SUM

OVIDIU T. POP

NATIONALCOLLEGE"MIHAIEMINESCU"

5 MIHAIEMINESCUSTREET

SATUMARE440014, ROMANIA

ovidiutiberiu@yahoo.com

Received 27 June, 2008; accepted 18 March, 2009 Communicated by S.S Dragomir

ABSTRACT. In this paper we start from a class of linear and positive operators defined by infinite sum. We consider the associated GBS operators and we give an approximation ofB-continuous andB-differentiable functions with these operators. Through particular cases, we obtain state- ments verified by the GBS operators of Mirakjan-Favard-Szász, Baskakov and Meyer-König and Zeller.

Key words and phrases: Linear positive operators, GBS operators,B-continuous andB-differentiable functions, approxima- tion ofB-continuous andB-differentiable functions by GBS operators.

2000 Mathematics Subject Classification. 41A10, 41A25, 41A35, 41A36, 41A63.

1. INTRODUCTION

In this section, we recall some notions and results which we will use in this article. LetNbe the set of positive integers andN0 =N∪ {0}.

In the following, letX andY be real intervals.

A functionf : X ×Y → R is called aB-continuous function in(x0, y0) ∈ X ×Y if and only if

(x,y)→(xlim0,y0)∆f[(x, y),(x0, y0)] = 0, where

∆f[(x, y),(x0, y0)] =f(x, y)−f(x0, y)−f(x, y0) +f(x0, y0) denotes a so-called mixed difference off.

A functionf : X×Y → Ris called aB-continuous function on X×Y if and only if it is B-continuous in any point ofX×Y.

A functionf :X×Y →Ris called aB-differentiable function in(x0, y0)∈X×Y if and only if it exists and if the limit is finite

(x,y)→(xlim0,y0)

∆f[(x, y),(x, y0)]

(x−x0)(y−y0) .

180-08

(2)

This limit is called theB-differential off in the point(x0, y0)and is noted byDBf(x0, y0).

A functionf :X ×Y →Ris called aB-differentiable function onX×Y if and only if it isB-differentiable in any point ofX×Y.

The definition of B-continuity and B-differentiability was introduced by K. Bögel in the papers [8] and [9].

The functionf : X ×Y → RisB-bounded onX×Y if and only if there existsk > 0so that|∆f[(x, y),(s, t)]| ≤kfor any(x, y),(s, t)∈X×Y.

We shall use the function sets B(X×Y) = {f|f : X ×Y → R, f bounded on X ×Y} with the usual sup-normk·k,Bb(X×Y) = {f|f :X×Y →R,f isB-bounded onX×Y}, Cb(X×Y) = {f|f : X×Y → R,f isB-continuous onX×Y}andDb(X×Y) = {f|f : X×Y →R,f isB-differentiable onX×Y}.

Letf ∈Bb(X×Y). The functionωmixed(f;·,·) : [0,∞)×[0,∞)→Rdefined by ωmixed(f;δ1, δ2) = sup{∆f[(x, y),(s, t)]|:|x−s| ≤δ1,|y−t| ≤δ2} for any(δ1, δ2)∈[0,∞)×[0,∞)is called the mixed modulus of smoothness.

Theorem 1.1. LetXandY be compact real intervals andf ∈Bb(X×Y).

Then lim

δ12→0ωmixed(f;δ1, δ2) = 0if and only iff ∈Cb(X×Y).

For anyx∈Xconsider the functionϕx :X →R, defined byϕx(t) = |t−x|, for anyt∈X.

For additional information, see the following papers: [1], [3], [15] and [19].

Let m ∈ N and the operator Sm : C2([0,∞)) → C([0,∞))defined for any functionf ∈ C2([0,∞))by

(1.1) (Smf)(x) = e−mx

X

k=0

(mx)k k! f

k m

,

for anyx∈[0,∞), whereC2([0,∞)) =

f ∈ C([0,∞)) : lim

x→∞

f(x)

1+x2 exists and is finite . The operators(Sm)m≥1 are called the Mirakjan-Favard-Szász operators, introduced in 1941 by G.

M. Mirakjan in the paper [13].

These operators were intensively studied by J. Favard in 1944 in the paper [11] and O. Szász in the paper [20].

From [18], the following three lemmas result.

Lemma 1.2. For anym ∈N, we have that

(1.2) Smϕ2x

(x) = x m,

(1.3) Smϕ4x

(x) = 3mx2+x m3 for anyx∈[0,∞)and

(1.4) Smϕ2x

(x)≤ a m,

(1.5) Smϕ4x

(x)≤ a(3a+ 1) m2 for anyx∈[0, a], wherea >0.

(3)

Letm ∈ N and the operatorVm : C2([0,∞)) → C([0,∞)), defined for any function f ∈ C2([0,∞))by

(1.6) (Vmf)(x) = (1 +x)−m

X

k=0

m+k−1 k

x 1 +x

k

f k

m

for anyx∈[0,∞).

The operators(Vm)m≥1are called Baskakov operators, introduced in 1957 by V. A. Baskakov in the paper [5].

Lemma 1.3. For anym ∈N, we have that

(1.7) Vmϕ2x

(x) = x(1 +x)

m ,

(1.8) Vmϕ4x

(x) = 3(m+ 2)x4+ 6(m+ 2)x3+ (3m+ 7)x2+x m3

for anyx∈[0,∞)and

(1.9) Vmϕ2x

(x)≤ a(1 +a)

m ,

(1.10) Vmϕ4x

(x)≤ a(9a3+ 18a2+ 10a+ 1) m2

for anyx∈[0, a], wherea >0.

W. Meyer-König and K. Zeller have introduced a sequence of linear positive operators in paper [12]. After a slight adjustment, given by E. W. Cheney and A. Sharma in [10], these operators take the formZm :B([0,1))→C([0,1)), defined for any functionf ∈B([0,1))by

(1.11) (Zmf)(x) =

X

k=0

m+k k

(1−x)m+1xkf k

m+k

, for anym∈Nand for anyx∈[0,1).

These operators are called the Meyer-König and Zeller operators.

In the following we considerZm :C([0,1]) →C([0,1]), for anym∈N. Lemma 1.4. For anym ∈Nand anyx∈[0,1], we have that

(1.12) Zmϕ2x

(x)≤ x(1−x)2 m+ 1

1 + 2x m+ 1

and

(1.13) Zmϕ2x

(x)≤ 2 m.

The inequality of Corollary 5 from [4], in the condition (1.14) becomes inequality (1.15).

Inequality (1.16) is demonstrated in [16].

Theorem 1.5. Let L : Cb(X × Y) → B(X ×Y) be a linear positive operator and U L : Cb(X×Y)→B(X×Y)the associated GBS operator. Supposing that the operatorLhas the property

(1.14) L(· −x)2i(∗ −y)2j

(x, y) = L(· −x)2i

(x, y) L(∗ −y)2j (x, y)

for any(x, y) ∈X×Y and anyi, j ∈ {1,2}, where "·" and "∗" stand for the first and second variable. Then:

(4)

(i) For any functionf ∈Cb(X×Y), any(x, y)∈X×Y and anyδ1, δ2 >0, we have that (1.15) |f(x, y)−(U Lf)(x, y)| ≤ |f(x, y)||1−(Le00)(x, y)|

+h

(Le00)(x, y)+δ1−1p

(L(·−x)2)(x, y)+δ2−1p

(L(∗−y)2)(x, y) +δ1−1δ2−1p

(L(· −x)2)(x, y)(L(∗ −y)2)(x, y)i

ωmixed(f;δ1, δ2).

(ii) For anyf ∈Db(X×Y)withDBf ∈B(X×Y), any(x, y)∈X×Y and anyδ1, δ2 >0, we have that

|f(x, y)−(U Lf)(x, y)|

(1.16)

≤ |f(x, y)||1−(Le00)(x, y)|+ 3kDBfk

p(L(· −x)2)(x, y)(L(∗ −y)2)(x, y) +hp

(L(· −x)2)(x, y)(L(∗ −y)2)(x, y) +δ−11 p

(L(· −x)4)(x, y)(L(∗ −y)2)(x, y) +δ−12 p

(L(· −x)2)(x, y)(L(∗ −y)4)(x, y) +δ−11 δ2−1(L(· −x)2)(x, y)(L(∗ −y)2)(x, y)i

ωmixed(DBf;δ1, δ2).

2. PRELIMINARIES

LetI, J, K ⊂ R be intervals, J ⊂ K andI ∩J 6= ∅. We consider the sequence of nodes ((xm,k)k∈N0)m≥1 so thatxm,k ∈ I ∩J, k ∈N0, m ∈ Nand the functionsϕm,k :K →Rwith the property thatϕm,k(x)≥0, for anyk∈N0,m ∈Nandx∈J.

Definition 2.1. Ifm∈N, we define the operatorLm :E(I)→F(K)by

(2.1) (Lmf) (x) =

X

k=0

ϕm,k(x)f(xm,k)

for any functionf ∈E(I)and anyx∈K, whereE(I)andF(K)are subsets of the set of real functions defined onI, respectively onK.

Proposition 2.1. The operators(Lm)m≥1 are linear and positive onE(I∩J).

Proof. The proof follows immediately.

Definition 2.2. If m, n ∈ N, the operator Lm,n : E(I ×I) → F(K ×K) defined for any functionf ∈E(I×I)and any(x, y)∈K×Kby

(2.2) Lm,nf

(x, y) =

X

k=0

X

j=0

ϕm,k(x)ϕn,j(y)f(xm,k, xn,j) is called the bivariate operator ofL- type.

Proposition 2.2. The operators Lm,n

m,n≥1 are linear and positive onE[(I×I)∩(J×J)].

Proof. The proof follows immediately.

Definition 2.3. If m, n ∈ N, the operator U Lm,n : E(I ×I) → F(K ×K)defined for any functionf ∈E(I×I)and any(x, y)∈K×Kby

(2.3) U Lm,nf

(x, y) =

X

k=0

X

j=0

ϕm,k(x)ϕn,j(y)

f(xm,k, y) +f(x, xn,j)−f(xm,k, xn,j) is called a GBS operator ofL- type.

(5)

3. MAINRESULTS

Lemma 3.1. For anym, n∈N,i, j ∈N0 and(x, y)∈K×K, the identity (3.1) Lm,n(· −x)2i(∗ −y)2j

(x, y) = Lm(· −x)2i

(x) Ln(∗ −y)2j (y) holds.

Proof. We have that

Lm,n(· −x)2i(∗ −y)2j

(x, y) =

X

k=0

X

j=0

ϕm,k(x)ϕn,j(y)(xm,k−x)2i(xn,j −y)2j

=

X

k=0

ϕm,k(x)(xm,k−x)2i

X

j=0

ϕn,j(y)(xn,j −y)2j

= Lm(· −x)2i

(x) Ln(∗ −y)2j (y),

so (3.1) holds.

For the operators constructed in this section, we note thatδm(x) = p

(Lmϕ2x) (x), δm,x = p(Lmϕ4x) (x), wherex∈I∩J,m∈N,m 6= 0.

Then, by taking Lemma 3.1 into account, Theorem 1.5 becomes:

Theorem 3.2.

(i) For any function f ∈ Cb(I×I), any(x, y) ∈ (I ×I)∩(J ×J), anym, n ∈ N, any δ1, δ2 >0, we have that

(3.2) |f(x, y)−(U Lm,nf)(x, y)|

≤ |f(x, y)||1−(Le00)(x, y)|+ (Le00)(x, y) +δ1−1δm(x) +δ2−1δn(y) +δ−11 δ2−1δm(x)δn(y)

ωmixed(f;δ1, δ2).

(ii) For any functionf ∈Db(I×I)withDBf ∈B(I×I), any(x, y)∈(I×I)∩(J×J), anym, n∈N, anyδ1, δ2 >0, we have that

(3.3) |f(x, y)−(U Lf)(x, y)| ≤ |f(x, y)||1−(Le00)(x, y)|

+ 3kDBfkδm(x)δn(y) +

δm(x)δn(y) +δ1−1δm,xδn(y) +δ2−1δm(x)δn,y1−1δ2−1δm2(x)δn2(y)

ωmixed(DBf;δ1, δ2).

In the following, we give examples of operators and of the associated GBS operators.

Application 1. IfI = J =K = [0,∞), E(I) = C2([0,∞)), F(K) = C([0,∞)),ϕm,k(x) = e−mx(mx)k!k , xm,k = mk , x ∈ [0,∞), m, k ∈ N0, m 6= 0, then we obtain the Mirakjan-Favard- Szász operators.

Theorem 3.3. Leta, b∈R,a >0andb >0. Then:

(i) For any functionf ∈C([0,∞)×[0,∞)), any(x, y)∈[0, a]×[0, b]andm, n∈N, we have that

(3.4) |f(x, y)−(U Sm,nf)(x, y)| ≤ 1+√ a

1+√ b

ωmixed

f; 1

√m , 1

√n

.

(6)

(ii) For any functionf ∈Db([0,∞)×[0,∞))∩C([0,∞)×[0,∞))withDBf ∈B([0, a]× [0, b]), any(x, y)∈[0, a]×[0, b], anym, n∈N, we have that

(3.5) |f(x, y)−(U Sm,nf)(x, y)| ≤√ ab

"

3kDBfk+ 1 +√

3a+ 1

+√

3b+ 1 +

√ ab

ωmixed

DBf; 1

√m , 1

√n #

√1 mn. Proof. It results from Theorem 3.2, by choosingδ1 = 1m2 = 1n and Lemma 1.2.

Theorem 3.4. Iff ∈C([0,∞)×[0,∞)), then the convergence

(3.6) lim

m,n→∞(U Sm,nf)(x, y) = f(x, y) is uniform on any compact[0, a]×[0, b], wherea, b >0.

Proof. It results from Theorem 1.1 and Theorem 3.3.

Application 2. IfI = J =K = [0,∞), E(I) = C2([0,∞)), F(K) = C([0,∞)),ϕm,k(x) = (1 + x)−m m+k−1k x

1+x

k

, xm,k = mk , x ∈ [0,∞), m, k ∈ N0, m 6= 0, then we obtain the Baskakov operators.

Theorem 3.5. Leta, b∈R,a >0andb >0. Then:

(i) For any functionf ∈C([0,∞)×[0,∞)), any(x, y)∈[0, a]×[0, b]and anym, n∈N, we have that

(3.7) |f(x, y)−(U Vm,nf)(x, y)|

≤ 1 +p

a(1 +a) 1 +p

b(1 +b) ωmixed

f; 1

√m , 1

√n

. (ii) For any functionf ∈Db([0,∞)×[0,∞))∩C([0,∞)×[0,∞))withDBf ∈B([0, a]×

[0, b]), any(x, y)∈[0, a]×[0, b], anym, n∈N, we have that (3.8) |f(x, y)−(U Vm,nf)(x, y)| ≤p

ab(1 +a)(1 +b) (

3kDBk

+h 1 +√

9a3+ 18a2+ 10a+ 1 +√

9b3+ 18b2+ 10b+ 1 +p

ab(1 +a)(1 +b)i ωmixed

DBf; 1

√m , 1

√n )

√1 mn. Proof. It results from Theorem 3.2, by choosingδ1 = 1m2 = 1n and Lemma 1.3.

Theorem 3.6. Iff ∈C([0,∞)×[0,∞)), then the convergence

(3.9) lim

m,n→∞(U Vm,nf)(x, y) =f(x, y) is uniform on any compact[0, a]×[0, b], wherea, b >0.

Proof. It results from Theorem 1.1 and Theorem 3.5.

Application 3. If I = J = K = [0,1], E(I) = F(K) = C([0,1]), ϕm,k(x) = m+kk (1− x)m+1xk,xm,k = mk ,x∈[0,1],m, k ∈N0,m 6= 0, then we obtain the Meyer-König and Zeller operators.

(7)

Theorem 3.7. For any function f ∈ C([0,1]×[0,1]), any (x, y) ∈ [0,1] ×[0,1] and any m, n∈N, we have that

(3.10) |f(x, y)−(U Zm,nf)(x, y)| ≤(3 + 2√

2)ωmixed

f; 1

√m, 1

√n

.

Proof. It results from Theorem 3.2, by choosingδ1 = 1m2 = 1n and Lemma 1.4.

Theorem 3.8. Iff ∈C([0,1]×[0,1]), then the convergence

(3.11) lim

m,n→∞(U Zm,nf)(x, y) =f(x, y) is uniform on[0,1]×[0,1].

Proof. It results from Theorem 1.1 and Theorem 3.7.

REFERENCES

[1] I. BADEA, Modulul de continuitate în sens Bögel ¸si unele aplica¸tii în aproximarea printr-un oper- ator Bernstein, Studia Univ. Babe¸s-Bolyai, Ser. Math.-Mech., 4(2) (1973), 69–78 (Romanian).

[2] C. BADEA, I. BADEAANDH.H. GONSKA, A test function theorem and approximation by pseu- dopolynomials, Bull. Austral. Math. Soc., 34 (1986), 53–64.

[3] C. BADEA, I. BADEA, C. COTTIN ANDH.H. GONSKA, Notes on the degree of approximation ofB-continuous andB-differentiable functions, J. Approx. Theory Appl., 4 (1988), 95–108.

[4] C. BADEA AND C. COTTIN, Korovkin-type theorems for generalized boolean sum operators, Colloquia Mathematica Societatis János Bolyai, 58 (1990), Approximation Theory, Kecskemét (Hungary), 51–67.

[5] V.A. BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249–251.

[6] D. B ˘ARBOSU, On the approximation by GBS operators of Mirakjan type, BAM-1794/2000, XCIV, 169–176.

[7] M. BECHER AND R.J. NESSEL, A global approximation theorem for Meyer-König and Zeller operators, Math. Zeitschr., 160 (1978), 195–206.

[8] K. BÖGEL, Mehrdimensionale Differentiation von Funktionen mehrer Veränderlicher, J. Reine Angew. Math., 170 (1934), 197–217.

[9] K. BÖGEL, Über mehrdimensionale Differentiation, Integration und beschränkte Variation, J.

Reine Angew. Math., 173 (1935), 5–29.

[10] E.W. CHENEYANDA. SHARMA, Bernstein power series, Canadian J. Math., 16 (1964), 241–

252.

[11] J. FAVARD, Sur les multiplicateur d’interpolation, J. Math. Pures Appl., 23(9) (1944), 219–247.

[12] W. MEYER-KÖNIGANDK. ZELLER, Bernsteinsche Potenzreihen, Studia Math., 19 (1960), 89–

94.

[13] G.M. MIRAKJAN, Approximation of continuous functions with the aid of polynomials, Dokl.

Acad. Nauk SSSR, 31 (1941), 201–205.

[14] M.W. MÜLLER, Die Folge der Gammaoperatoren, Dissertation Stuttgart, 1967.

[15] M. NICOLESCU, Analiz˘a matematic˘a, II, Editura Didactic˘a ¸si Pedagogic˘a, Bucure¸sti, 1980 (Ro- manian).

(8)

[16] O.T. POP, Approximation of B-differentiable functions by GBS operators, Anal. Univ. Oradea, Fasc. Matematica, Tom XIV (2007), 15–31.

[17] O.T. POP, Approximation ofB-continuous and B-differentiable functions by GBS operators de- fined by finite sum, Facta Universitatis (Niš), Ser. Math. Inform., 22(1) (2007), 33–41.

[18] O.T. POP, About some linear and positive operators defined by infinite sum, Dem. Math., 39 (2006).

[19] D.D. STANCU, GH. COMAN, O. AGRATINI AND R. TRÎMBI ¸TA ¸S, Analiz˘a numeric˘a ¸si teoria aproxim˘arii, I, Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2001 (Romanian).

[20] O. SZÁSZ, Generalization of S. Bernstein’s polynomials to the infinite interval, J. Research Na- tional Bureau of Standards, 45 (1950), 239–245.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words and phrases: Analytic functions, Univalent, Functions with positive real part, Convex functions, Convolution, In- tegral operator.. 2000 Mathematics

Key words: Linear positive operators, Bernstein bivariate polynomials, GBS opera- tors, B-differentiable functions, approximation of B-differentiable func- tions by GBS operators,

Key words and phrases: Linear positive operators, Bernstein bivariate polynomials, GBS operators, B -differentiable func- tions, approximation of B-differentiable functions by

Key words and phrases: Meromorphic functions, Functions with positive real part, Convolution, Integral operator, Functions with bounded boundary and bounded radius

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex

BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, Dokl.. DITZIAN, Direct estimate for Bernstein

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. Key words and phrases: Hardy’s integral