• Nem Talált Eredményt

APPROXIMATION OF B-CONTINUOUS AND B-DIFFERENTIABLE FUNCTIONS BY GBS OPERATORS DEFINED BY INFINITE SUM

N/A
N/A
Protected

Academic year: 2022

Ossza meg "APPROXIMATION OF B-CONTINUOUS AND B-DIFFERENTIABLE FUNCTIONS BY GBS OPERATORS DEFINED BY INFINITE SUM"

Copied!
17
0
0

Teljes szövegt

(1)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page

Contents

JJ II

J I

Page1of 17 Go Back Full Screen

Close

APPROXIMATION OF B-CONTINUOUS AND B-DIFFERENTIABLE FUNCTIONS BY GBS

OPERATORS DEFINED BY INFINITE SUM

OVIDIU T. POP

National College "Mihai Eminescu"

5 Mihai Eminescu Street Satu Mare 440014, Romania EMail:ovidiutiberiu@yahoo.com

Received: 27 June, 2008

Accepted: 18 March, 2009

Communicated by: S.S Dragomir

2000 AMS Sub. Class.: 41A10, 41A25, 41A35, 41A36, 41A63

Key words: Linear positive operators, GBS operators, B-continuous and B-differentiable functions, approximation of B-continuous and B-differentiable functions by GBS operators.

Abstract: In this paper we start from a class of linear and positive operators defined by infinite sum. We consider the associated GBS operators and we give an approx- imation ofB-continuous and B-differentiable functions with these operators.

Through particular cases, we obtain statements verified by the GBS operators of Mirakjan-Favard-Szász, Baskakov and Meyer-König and Zeller.

(2)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page2of 17 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Preliminaries 9

3 Main Results 11

(3)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page3of 17 Go Back Full Screen

Close

1. Introduction

In this section, we recall some notions and results which we will use in this article.

LetNbe the set of positive integers andN0 =N∪ {0}.

In the following, letXandY be real intervals.

A functionf :X×Y →Ris called aB-continuous function in(x0, y0)∈X×Y if and only if

lim

(x,y)→(x0,y0)

∆f[(x, y),(x0, y0)] = 0, where

∆f[(x, y),(x0, y0)] =f(x, y)−f(x0, y)−f(x, y0) +f(x0, y0) denotes a so-called mixed difference off.

A functionf : X×Y → Ris called aB-continuous function onX ×Y if and only if it isB-continuous in any point ofX×Y.

A function f : X ×Y → R is called aB-differentiable function in(x0, y0) ∈ X×Y if and only if it exists and if the limit is finite

(x,y)→(xlim0,y0)

∆f[(x, y),(x, y0)]

(x−x0)(y−y0) .

This limit is called the B-differential of f in the point(x0, y0)and is noted by DBf(x0, y0).

A functionf :X×Y →Ris called aB-differentiable function onX×Y if and only if it isB-differentiable in any point ofX×Y.

The definition ofB-continuity andB-differentiability was introduced by K. Bögel in the papers [8] and [9].

The functionf :X×Y →RisB-bounded onX×Y if and only if there exists k >0so that|∆f[(x, y),(s, t)]| ≤kfor any(x, y),(s, t)∈X×Y.

(4)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page4of 17 Go Back Full Screen

Close

We shall use the function setsB(X×Y) = {f|f :X×Y → R, f bounded on X ×Y} with the usual sup-normk·k, Bb(X ×Y) = {f|f : X ×Y → R, f is B-bounded onX×Y}, Cb(X×Y) = {f|f :X×Y → R, f isB-continuous on X×Y}andDb(X×Y) = {f|f :X×Y →R,f isB-differentiable onX×Y}.

Letf ∈Bb(X×Y). The functionωmixed(f;·,·) : [0,∞)×[0,∞)→Rdefined by

ωmixed(f;δ1, δ2) = sup{∆f[(x, y),(s, t)]|:|x−s| ≤δ1,|y−t| ≤δ2} for any(δ1, δ2)∈[0,∞)×[0,∞)is called the mixed modulus of smoothness.

Theorem 1.1. LetX andY be compact real intervals andf ∈Bb(X×Y).

Then lim

δ12→0ωmixed(f;δ1, δ2) = 0if and only iff ∈Cb(X×Y).

For any x ∈ X consider the functionϕx : X → R, defined byϕx(t) = |t−x|, for anyt ∈ X. For additional information, see the following papers: [1], [3], [15]

and [19].

Let m ∈ N and the operator Sm : C2([0,∞)) → C([0,∞)) defined for any functionf ∈C2([0,∞))by

(1.1) (Smf)(x) = e−mx

X

k=0

(mx)k k! f

k m

,

for any x ∈ [0,∞), whereC2([0,∞)) =

f ∈ C([0,∞)) : lim

x→∞

f(x)

1+x2 exists and is finite . The operators(Sm)m≥1 are called the Mirakjan-Favard-Szász operators, introduced in 1941 by G. M. Mirakjan in the paper [13].

These operators were intensively studied by J. Favard in 1944 in the paper [11]

and O. Szász in the paper [20].

From [18], the following three lemmas result.

(5)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page5of 17 Go Back Full Screen

Close

Lemma 1.2. For anym ∈N, we have that

(1.2) Smϕ2x

(x) = x m,

(1.3) Smϕ4x

(x) = 3mx2+x m3 for anyx∈[0,∞)and

(1.4) Smϕ2x

(x)≤ a m,

(1.5) Smϕ4x

(x)≤ a(3a+ 1) m2 for anyx∈[0, a], wherea >0.

Let m ∈ N and the operator Vm : C2([0,∞)) → C([0,∞)), defined for any functionf ∈C2([0,∞))by

(1.6) (Vmf)(x) = (1 +x)−m

X

k=0

m+k−1 k

x 1 +x

k

f k

m

for anyx∈[0,∞).

The operators(Vm)m≥1 are called Baskakov operators, introduced in 1957 by V.

A. Baskakov in the paper [5].

Lemma 1.3. For anym ∈N, we have that

(1.7) Vmϕ2x

(x) = x(1 +x)

m ,

(6)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page6of 17 Go Back Full Screen

Close

(1.8) Vmϕ4x

(x) = 3(m+ 2)x4+ 6(m+ 2)x3+ (3m+ 7)x2+x m3

for anyx∈[0,∞)and

(1.9) Vmϕ2x

(x)≤ a(1 +a)

m ,

(1.10) Vmϕ4x

(x)≤ a(9a3 + 18a2+ 10a+ 1) m2

for anyx∈[0, a], wherea >0.

W. Meyer-König and K. Zeller have introduced a sequence of linear positive oper- ators in paper [12]. After a slight adjustment, given by E. W. Cheney and A. Sharma in [10], these operators take the form Zm : B([0,1)) → C([0,1)), defined for any functionf ∈B([0,1))by

(1.11) (Zmf)(x) =

X

k=0

m+k k

(1−x)m+1xkf k

m+k

, for anym ∈Nand for anyx∈[0,1).

These operators are called the Meyer-König and Zeller operators.

In the following we considerZm :C([0,1]) →C([0,1]), for anym∈N. Lemma 1.4. For anym ∈Nand anyx∈[0,1], we have that

(1.12) Zmϕ2x

(x)≤ x(1−x)2 m+ 1

1 + 2x m+ 1

(7)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page7of 17 Go Back Full Screen

Close

and

(1.13) Zmϕ2x

(x)≤ 2 m.

The inequality of Corollary 5 from [4], in the condition (1.14) becomes inequality (1.15). Inequality (1.16) is demonstrated in [16].

Theorem 1.5. LetL :Cb(X×Y)→ B(X×Y)be a linear positive operator and U L : Cb(X ×Y) → B(X×Y)the associated GBS operator. Supposing that the operatorLhas the property

(1.14) L(· −x)2i(∗ −y)2j

(x, y) = L(· −x)2i

(x, y) L(∗ −y)2j (x, y) for any(x, y) ∈ X×Y and anyi, j ∈ {1,2}, where "·" and "∗" stand for the first and second variable. Then:

(i) For any functionf ∈Cb(X×Y), any(x, y) ∈X×Y and anyδ1, δ2 >0, we have that

(1.15) |f(x, y)−(U Lf)(x, y)| ≤ |f(x, y)||1−(Le00)(x, y)|

+h

(Le00)(x, y)+δ−11 p

(L(·−x)2)(x, y)+δ−12 p

(L(∗−y)2)(x, y) +δ1−1δ−12 p

(L(· −x)2)(x, y)(L(∗ −y)2)(x, y)i

ωmixed(f;δ1, δ2).

(ii) For anyf ∈Db(X×Y)withDBf ∈B(X×Y), any(x, y)∈X×Y and any

(8)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page8of 17 Go Back Full Screen

Close

δ1, δ2 >0, we have that

|f(x, y)−(U Lf)(x, y)|

(1.16)

≤ |f(x, y)||1−(Le00)(x, y)|

+ 3kDBfk

p(L(· −x)2)(x, y)(L(∗ −y)2)(x, y) +hp

(L(· −x)2)(x, y)(L(∗ −y)2)(x, y) +δ−11 p

(L(· −x)4)(x, y)(L(∗ −y)2)(x, y) +δ−12 p

(L(· −x)2)(x, y)(L(∗ −y)4)(x, y) +δ−11 δ2−1(L(· −x)2)(x, y)(L(∗ −y)2)(x, y)i

ωmixed(DBf;δ1, δ2).

(9)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page9of 17 Go Back Full Screen

Close

2. Preliminaries

Let I, J, K ⊂ R be intervals, J ⊂ K and I ∩J 6= ∅. We consider the sequence of nodes((xm,k)k∈N0)m≥1 so that xm,k ∈ I∩J, k ∈ N0,m ∈ N and the functions ϕm,k : K → Rwith the property that ϕm,k(x) ≥ 0, for any k ∈ N0, m ∈ N and x∈J.

Definition 2.1. Ifm∈N, we define the operatorLm :E(I)→F(K)by

(2.1) (Lmf) (x) =

X

k=0

ϕm,k(x)f(xm,k)

for any functionf ∈E(I)and anyx∈K, whereE(I)andF(K)are subsets of the set of real functions defined onI, respectively onK.

Proposition 2.2. The operators(Lm)m≥1are linear and positive onE(I ∩J).

Proof. The proof follows immediately.

Definition 2.3. Ifm, n ∈ N, the operator Lm,n : E(I ×I) → F(K ×K)defined for any functionf ∈E(I×I)and any(x, y)∈K×Kby

(2.2) Lm,nf

(x, y) =

X

k=0

X

j=0

ϕm,k(x)ϕn,j(y)f(xm,k, xn,j) is called the bivariate operator ofL- type.

Proposition 2.4. The operators Lm,n

m,n≥1are linear and positive onE[(I×I)∩ (J×J)].

Proof. The proof follows immediately.

(10)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page10of 17 Go Back Full Screen

Close

Definition 2.5. Ifm, n∈N, the operatorU Lm,n :E(I×I)→F(K×K)defined for any functionf ∈E(I×I)and any(x, y)∈K×Kby

(2.3) U Lm,nf (x, y)

=

X

k=0

X

j=0

ϕm,k(x)ϕn,j(y)

f(xm,k, y) +f(x, xn,j)−f(xm,k, xn,j) is called a GBS operator ofL - type.

(11)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page11of 17 Go Back Full Screen

Close

3. Main Results

Lemma 3.1. For anym, n∈N,i, j ∈N0and(x, y)∈K ×K, the identity (3.1) Lm,n(· −x)2i(∗ −y)2j

(x, y) = Lm(· −x)2i

(x) Ln(∗ −y)2j (y) holds.

Proof. We have that

Lm,n(· −x)2i(∗ −y)2j

(x, y) =

X

k=0

X

j=0

ϕm,k(x)ϕn,j(y)(xm,k−x)2i(xn,j −y)2j

=

X

k=0

ϕm,k(x)(xm,k−x)2i

X

j=0

ϕn,j(y)(xn,j −y)2j

= Lm(· −x)2i

(x) Ln(∗ −y)2j (y), so (3.1) holds.

For the operators constructed in this section, we note thatδm(x) = p

(Lmϕ2x) (x), δm,x=p

(Lmϕ4x) (x), wherex∈I∩J,m∈N,m 6= 0.

Then, by taking Lemma3.1into account, Theorem1.5becomes:

Theorem 3.2.

(i) For any functionf ∈Cb(I×I), any(x, y)∈(I×I)∩(J×J), anym, n∈N, anyδ1, δ2 >0, we have that

(3.2) |f(x, y)−(U Lm,nf)(x, y)|

≤ |f(x, y)||1−(Le00)(x, y)|+ (Le00)(x, y) +δ−11 δm(x) +δ2−1δn(y) +δ1−1δ−12 δm(x)δn(y)

ωmixed(f;δ1, δ2).

(12)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page12of 17 Go Back Full Screen

Close

(ii) For any functionf ∈Db(I×I)withDBf ∈B(I×I), any(x, y)∈(I×I)∩ (J×J), anym, n∈N, anyδ1, δ2 >0, we have that

(3.3) |f(x, y)−(U Lf)(x, y)| ≤ |f(x, y)||1−(Le00)(x, y)|

+ 3kDBfkδm(x)δn(y) +

δm(x)δn(y) +δ1−1δm,xδn(y) +δ2−1δm(x)δn,y1−1δ−12 δm2(x)δ2n(y)

ωmixed(DBf;δ1, δ2).

In the following, we give examples of operators and of the associated GBS oper- ators.

Application 1. IfI =J =K = [0,∞), E(I) = C2([0,∞)), F(K) =C([0,∞)), ϕm,k(x) =e−mx(mx)k!k , xm,k = mk ,x ∈ [0,∞),m, k ∈ N0,m 6= 0, then we obtain the Mirakjan-Favard-Szász operators.

Theorem 3.3. Leta, b∈R,a >0andb >0. Then:

(i) For any function f ∈ C([0,∞)× [0,∞)), any (x, y) ∈ [0, a] × [0, b] and m, n∈N, we have that

(3.4) |f(x, y)−(U Sm,nf)(x, y)|

≤ 1+√ a

1+√ b

ωmixed

f; 1

√m, 1

√n

.

(ii) For any functionf ∈ Db([0,∞)×[0,∞))∩C([0,∞)×[0,∞))withDBf ∈

(13)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page13of 17 Go Back Full Screen

Close

B([0, a]×[0, b]), any(x, y)∈[0, a]×[0, b], anym, n∈N, we have that (3.5) |f(x, y)−(U Sm,nf)(x, y)| ≤√

ab

"

3kDBfk+ 1 +√

3a+ 1

+√

3b+ 1 +√ ab

ωmixed

DBf; 1

√m, 1

√n #

√1 mn. Proof. It results from Theorem3.2, by choosing δ1 = 1m, δ2 = 1n and Lemma 1.2.

Theorem 3.4. Iff ∈C([0,∞)×[0,∞)), then the convergence

(3.6) lim

m,n→∞(U Sm,nf)(x, y) = f(x, y) is uniform on any compact[0, a]×[0, b], wherea, b >0.

Proof. It results from Theorem1.1and Theorem3.3.

Application 2. IfI =J =K = [0,∞), E(I) = C2([0,∞)), F(K) =C([0,∞)), ϕm,k(x) = (1 +x)−m m+k−1k x

1+x

k

, xm,k = mk , x ∈ [0,∞), m, k ∈ N0, m 6= 0, then we obtain the Baskakov operators.

Theorem 3.5. Leta, b∈R,a >0andb >0. Then:

(i) For any functionf ∈ C([0,∞)×[0,∞)), any(x, y) ∈ [0, a]×[0, b]and any m, n∈N, we have that

(3.7) |f(x, y)−(U Vm,nf)(x, y)|

≤ 1 +p

a(1 +a) 1 +p

b(1 +b)

ωmixed

f; 1

√m, 1

√n

.

(14)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page14of 17 Go Back Full Screen

Close

(ii) For any functionf ∈ Db([0,∞)×[0,∞))∩C([0,∞)×[0,∞))withDBf ∈ B([0, a]×[0, b]), any(x, y)∈[0, a]×[0, b], anym, n∈N, we have that (3.8) |f(x, y)−(U Vm,nf)(x, y)| ≤p

ab(1 +a)(1 +b) (

3kDBk

+h 1 +√

9a3+ 18a2+ 10a+ 1 +√

9b3+ 18b2+ 10b+ 1 +p

ab(1 +a)(1 +b)i ωmixed

DBf; 1

√m, 1

√n )

√1 mn. Proof. It results from Theorem3.2, by choosing δ1 = 1m, δ2 = 1n and Lemma 1.3.

Theorem 3.6. Iff ∈C([0,∞)×[0,∞)), then the convergence

(3.9) lim

m,n→∞(U Vm,nf)(x, y) =f(x, y) is uniform on any compact[0, a]×[0, b], wherea, b >0.

Proof. It results from Theorem1.1and Theorem3.5.

Application 3. If I = J = K = [0,1], E(I) = F(K) = C([0,1]), ϕm,k(x) =

m+k k

(1−x)m+1xk,xm,k = mk , x∈ [0,1],m, k ∈ N0,m 6= 0, then we obtain the Meyer-König and Zeller operators.

Theorem 3.7. For any functionf ∈C([0,1]×[0,1]), any(x, y)∈[0,1]×[0,1]and anym, n∈N, we have that

(3.10) |f(x, y)−(U Zm,nf)(x, y)| ≤(3 + 2√

2)ωmixed

f; 1

√m , 1

√n

.

(15)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page15of 17 Go Back Full Screen

Close

Proof. It results from Theorem3.2, by choosing δ1 = 1m, δ2 = 1n and Lemma 1.4.

Theorem 3.8. Iff ∈C([0,1]×[0,1]), then the convergence

(3.11) lim

m,n→∞(U Zm,nf)(x, y) =f(x, y) is uniform on[0,1]×[0,1].

Proof. It results from Theorem1.1and Theorem3.7.

(16)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page16of 17 Go Back Full Screen

Close

References

[1] I. BADEA, Modulul de continuitate în sens Bögel ¸si unele aplica¸tii în aprox- imarea printr-un operator Bernstein, Studia Univ. Babe¸s-Bolyai, Ser. Math.- Mech., 4(2) (1973), 69–78 (Romanian).

[2] C. BADEA, I. BADEAANDH.H. GONSKA, A test function theorem and ap- proximation by pseudopolynomials, Bull. Austral. Math. Soc., 34 (1986), 53–

64.

[3] C. BADEA, I. BADEA, C. COTTINANDH.H. GONSKA, Notes on the degree of approximation of B-continuous andB-differentiable functions, J. Approx.

Theory Appl., 4 (1988), 95–108.

[4] C. BADEAANDC. COTTIN, Korovkin-type theorems for generalized boolean sum operators, Colloquia Mathematica Societatis János Bolyai, 58 (1990), Ap- proximation Theory, Kecskemét (Hungary), 51–67.

[5] V.A. BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249–251.

[6] D. B ˘ARBOSU, On the approximation by GBS operators of Mirakjan type, BAM-1794/2000, XCIV, 169–176.

[7] M. BECHERANDR.J. NESSEL, A global approximation theorem for Meyer- König and Zeller operators, Math. Zeitschr., 160 (1978), 195–206.

[8] K. BÖGEL, Mehrdimensionale Differentiation von Funktionen mehrer Verän- derlicher, J. Reine Angew. Math., 170 (1934), 197–217.

[9] K. BÖGEL, Über mehrdimensionale Differentiation, Integration und beschränkte Variation, J. Reine Angew. Math., 173 (1935), 5–29.

(17)

Approximation ofB-Continuous andB-Differentiable Functions

Ovidiu T. Pop vol. 10, iss. 1, art. 7, 2009

Title Page Contents

JJ II

J I

Page17of 17 Go Back Full Screen

Close

[10] E.W. CHENEYANDA. SHARMA, Bernstein power series, Canadian J. Math., 16 (1964), 241–252.

[11] J. FAVARD, Sur les multiplicateur d’interpolation, J. Math. Pures Appl., 23(9) (1944), 219–247.

[12] W. MEYER-KÖNIG AND K. ZELLER, Bernsteinsche Potenzreihen, Studia Math., 19 (1960), 89–94.

[13] G.M. MIRAKJAN, Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, 31 (1941), 201–205.

[14] M.W. MÜLLER, Die Folge der Gammaoperatoren, Dissertation Stuttgart, 1967.

[15] M. NICOLESCU, Analiz˘a matematic˘a, II, Editura Didactic˘a ¸si Pedagogic˘a, Bucure¸sti, 1980 (Romanian).

[16] O.T. POP, Approximation of B-differentiable functions by GBS operators, Anal. Univ. Oradea, Fasc. Matematica, Tom XIV (2007), 15–31.

[17] O.T. POP, Approximation of B-continuous and B-differentiable functions by GBS operators defined by finite sum, Facta Universitatis (Niš), Ser. Math. In- form., 22(1) (2007), 33–41.

[18] O.T. POP, About some linear and positive operators defined by infinite sum, Dem. Math., 39 (2006).

[19] D.D. STANCU, GH. COMAN, O. AGRATINIAND R. TRÎMBI ¸TA ¸S, Analiz˘a numeric˘a ¸si teoria aproxim˘arii, I, Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2001 (Romanian).

[20] O. SZÁSZ, Generalization of S. Bernstein’s polynomials to the infinite interval, J. Research National Bureau of Standards, 45 (1950), 239–245.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. CHANDRA, A note on the degree of approximation of continuous function,

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math.. CHANDRA, A note on the degree of approximation of continuous function,

In this work, we study the convergence properties of these operators in the weighted spaces of continuous functions on positive semi-axis with the help of a weighted Korovkin

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. CHANDRA, A note on the degree of approximation of continuous functions,

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math.. CHANDRA, A note on the degree of approximation of continuous functions,

Key words: Linear positive operators, Bernstein bivariate polynomials, GBS opera- tors, B-differentiable functions, approximation of B-differentiable func- tions by GBS operators,

Key words and phrases: Linear positive operators, Bernstein bivariate polynomials, GBS operators, B -differentiable func- tions, approximation of B-differentiable functions by

BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, Dokl.. DITZIAN, Direct estimate for Bernstein