• Nem Talált Eredményt

MONTGOMERY IDENTITIES FOR FRACTIONAL INTEGRALS AND RELATED FRACTIONAL INEQUALITIES

N/A
N/A
Protected

Academic year: 2022

Ossza meg "MONTGOMERY IDENTITIES FOR FRACTIONAL INTEGRALS AND RELATED FRACTIONAL INEQUALITIES"

Copied!
16
0
0

Teljes szövegt

(1)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page

Contents

JJ II

J I

Page1of 16 Go Back Full Screen

Close

MONTGOMERY IDENTITIES FOR FRACTIONAL INTEGRALS AND RELATED FRACTIONAL

INEQUALITIES

G. ANASTASSIOU

Department of Mathematical Sciences The University of Memphis

Memphis,TN 38152, USA EMail:ganastss@memphis.edu

M. R. HOOSHMANDASL, A. GHASEMI AND F. MOFTAKHARZADE

Department of Mathematical Sciences Yazd University, Yazd, Iran

EMail:hooshmandasl@yazduni.ac.ir esfahan.ghasemi@yahoo.com f_moftakhar@yahoo.com

Received: 06 August, 2009

Accepted: 29 November, 2009

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 26A33.

Key words: Montgomery identity; Fractional integral; Ostrowski inequality; Grüss inequal- ity.

Abstract: In the present work we develop some integral identities and inequalities for the fractional integral. We have obtained Montgomery identities for fractional in- tegrals and a generalization for double fractional integrals. We also produced Ostrowski and Grüss inequalities for fractional integrals.

(2)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page2of 16 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Fractional Calculus 5

3 Montgomery Identities for Fractional Integrals 6

4 An Ostrowski Type Fractional Inequality 11

5 A Grüss Type Fractional Inequality 13

(3)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page3of 16 Go Back Full Screen

Close

1. Introduction

Letf : [a, b] → R be differentiable on[a, b], and f0 : [a, b] → Rbe integrable on [a, b], then the following Montgomery identity holds [1]:

(1.1) f(x) = 1

b−a Z b

a

f(t)dt+ Z b

a

P1(x, t)f0(t)dt,

whereP1(x, t)is the Peano kernel

(1.2) P1(x, t) =

( t−a

b−a, a≤t ≤x,

t−b

b−a, x < t≤b.

Suppose now thatw : [a, b] → [0,∞)is some probability density function, i.e. it is a positive integrable function satisfyingRb

a w(t)dt = 1, andW(t) =Rx

a w(x)dx fort ∈ [a, b],W(t) = 0 fort < aandW(t) = 1fort > b. The following identity (given by Peˇcari´c in [4]) is the weighted generalization of the Montgomery identity:

(1.3) f(x) =

Z b

a

w(t)f(t)dt+ Z b

a

Pw(x, t)f0(t)dt,

where the weighted Peano kernel is Pw(x, t) =

( W(t), a≤t≤x, W(t)−1, x < t≤b.

In [2, 3], the authors obtained two identities which generalized (1.1) for functions of two variables. In fact, for a functionf : [a, b]×[c, d] → R such that the partial

(4)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page4of 16 Go Back Full Screen

Close

derivatives ∂f∂s(s,t), ∂f∂t(s,t) and 2∂s∂tf(s,t) all exist and are continuous on[a, b]×[c, d], so for all(x, y)∈[a, b]×[c, d]we have:

(1.4) (d−c)(b−a)f(x, y) = Z d

c

Z b

a

f(s, t)ds dt

+ Z d

c

Z b

a

∂f(s, t)

∂s p(x, s)ds dt+ Z b

a

Z d

c

∂f(s, t)

∂t q(y, t)dt ds +

Z d

c

Z b

a

2f(s, t)

∂s∂t p(x, s)q(y, t)ds dt, where

(1.5) p(x, s) =

( s−a, a≤s≤x,

s−b, x < s≤b, and q(y, t) =

( t−c, c≤t≤y, t−d, y < t≤d.

(5)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page5of 16 Go Back Full Screen

Close

2. Fractional Calculus

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further in this paper.

Definition 2.1. The Riemann-Liouville integral operator of orderα >0witha ≥0 is defined as

Jaαf(x) = 1 Γ(α)

Z x

a

(x−t)α−1f(t)dt, (2.1)

Ja0f(x) = f(x).

Properties of the operator can be found in [8]. In the case ofα = 1, the fractional integral reduces to the classical integral.

(6)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page6of 16 Go Back Full Screen

Close

3. Montgomery Identities for Fractional Integrals

Montgomery identities can be generalized in fractional integral forms, the main re- sults of which are given in the following lemmas.

Lemma 3.1. Let f : [a, b] → Rbe differentiable on [a, b], and f0 : [a, b] → R be integrable on[a, b], then the following Montgomery identity for fractional integrals holds:

(3.1) f(x) = Γ(α)

b−a(b−x)1−αJaαf(b)

−Jaα−1(P2(x, b)f(b)) +Jaα(P2(x, b)f0(b)), α≥1, whereP2(x, t)is the fractional Peano kernel defined by:

(3.2) P2(x, t) =

( t−a

b−a(b−x)1−αΓ(α), a≤t≤x,

t−b

b−a(b−x)1−αΓ(α), x < t≤b.

Proof. In order to prove the Montgomery identity for fractional integrals in relation (3.1), by using the properties of fractional integrals and relation (3.2), we have

Γ(α)Jaα(P1(x, b)f0(b)) (3.3)

= Z b

a

(b−t)α−1P1(x, t)f0(t)dt

= Z x

a

t−a

b−a(b−t)α−1f0(t)dt+ Z b

x

t−b

b−a(b−t)α−1f0(t)dt

= Z x

a

(b−t)α−1f0(t)dt− 1 b−a

Z b

a

(b−t)αf0(t)dt.

(7)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page7of 16 Go Back Full Screen

Close

Next, integrating by parts and using (3.3), we have Γ(α)Jaα(P1(x, b)f0(b))

(3.4)

= (b−x)α−1f(x)− α

b−aΓ(α)Jaαf(b) + (α−1) Z x

a

(b−t)α−2f(t)dt

= (b−x)α−1f(x)− 1

b−aΓ(α)Jaαf(b) + Γ(α)Jaα−1(P1(x, b)f(b)).

Finally, from (3.4) forα≥1, we obtain f(x) = Γ(α)

b−a(b−x)1−αJaαf(b)−Jaα−1(P2(x, b)f(b)) +Jaα(P2(x, b)f0(b)), and the proof is completed.

Remark 1. Lettingα= 1, formula (3.1) reduces to the classic Montgomery identity (1.1).

Lemma 3.2. Letw: [a, b]→[0,∞)be a probability density function, i.e.Rb

a w(t)dt = 1, and setW(t) = Rt

aw(x)dxfora ≤ t ≤ b, W(t) = 0 fort < aandW(t) = 1 fort > b, α ≥ 1. Then the generalization of the weighted Montgomery identity for fractional integrals is in the following form:

(3.5) f(x) = (b−x)1−αΓ(α)Jaα(w(b)f(b))

−Jaα−1(Qw(x, b)f(b)) +Jaα(Qw(x, b)f0(b)), where the weighted fractional Peano kernel is

(3.6) Qw(x, t) =

( (b−x)1−αΓ(α)W(t), a≤t≤x, (b−x)1−αΓ(α)(W(t)−1), x < t≤b.

(8)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page8of 16 Go Back Full Screen

Close

Proof. From fractional calculus and relation (3.6), we have Jaα(Qw(x, b)f0(b))

(3.7)

= 1

Γ(α) Z b

a

(b−t)α−1Qw(x, t)f0(t)dt

= (b−x)1−α Z b

a

(b−t)α−1W(t)f0(t)dt− Z b

x

(b−t)α−1f0(t)dt

.

Using integration by parts in (3.7) andW(a) = 0, W(b) = 1, we have (3.8)

Z b

a

(b−t)α−1W(t)f0(t)dt

=−Γ(α)Jaα(w(b)f(b)) + (α−1) Z b

a

(b−t)α−2W(t)f(t)dt, and

(3.9) Z b

x

(b−t)α−1f0(t)dt=−(b−x)α−1f(x) + (α−1) Z b

x

(b−t)α−2f(t)dt.

We apply (3.8) and (3.9) to (3.7), to get Jaα(Qw(x, b)f0(b))

(3.10)

= (b−x)1−α

−Γ(α)Jaα(w(b)f(b))−(α−1) Z b

x

(b−t)α−2f(t)dt

+(b−x)α−1f(x) + (α−1) Z b

a

(b−t)α−2W(t)f(t)dt

(9)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page9of 16 Go Back Full Screen

Close

=f(x)−Γ(α)(b−x)1−αJaα(w(b)f(b)) + (b−x)1−α(α−1)

× Z x

a

(b−t)α−2W(t)f(t)dt+ Z b

x

(b−t)α−2(W(t)−1)f(t)dt

=f(x)−Γ(α)(b−x)1−αJaα(w(b)f(b)) +Jaα−1(Qw(x, b)f(b)).

Finally, we have obtained that

(3.11) f(x) = (b−x)1−αΓ(α)Jaα(w(b)f(b))

−Jaα−1(Qw(x, b)f(b)) +Jaα(Qw(x, b)f0(b)), proving the claim.

Remark 2. Lettingα = 1, the weighted generalization of the Montgomery identity for fractional integrals in (3.5) reduces to the weighted generalization of the Mont- gomery identity for integrals in (1.3).

Lemma 3.3. Let a functionf : [a, b]×[c, d]→Rhave continuous partial derivatives

∂f(s,t)

∂s , ∂f(s,t)∂t and 2∂s∂tf(s,t) on[a, b]×[c, d],for all(x, y)∈[a, b]×[c, d]andα, β ≥2.

Then the following two variables Montgomery identity for fractional integrals holds:

(d−c) (b−a)f(x, y)

= (b−x)1−α(d−y)1−βΓ(α)Γ(β)

Ja,cα,β

q(y, d) ∂

∂tf(b, d)

+Jc,aβ,α

f(b, d) +p(x, b)∂f(b, d)

∂s +p(x, b)q(y, d)∂2f(b, d)

∂s ∂t

−Jc,aβ,α−1

p(x, b)f(b, d) +p(x, b)q(y, d)∂f(b, d)

∂t

(10)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page10of 16 Go Back Full Screen

Close

−Jc,aβ−1,α

q(y, d)f(b, d) +p(x, b)q(y, d)∂f(b, d)

∂s

+Jc,aβ−1,α−1

p(x, b)q(y, d)f(b, d)i ,

where

Jc,aβ,αf(x, y) = 1 Γ(α)Γ(β)

Z y

c

Z x

a

(x−s)α−1(y−t)β−1f(s, t)ds dt.

Also,p(x, s)andq(y, t)are defined by (1.5).

Proof. Put into (1.4), instead of f, the function g(x, y) = f(x, y)(b− x)α−1(d − y)β−1.

(11)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page11of 16 Go Back Full Screen

Close

4. An Ostrowski Type Fractional Inequality

In 1938, Ostrowski proved the following interesting integral inequality [5]:

(4.1)

f(x)− 1 b−a

Z b

a

f(t)dt

"

1

4 + 1

(b−a)2

x− a+b 2

2#

(b−a)M,

wheref : [a, b] → Ris a differentiable function such that|f0(x)| ≤ M, for every x∈[a, b]. Now we extend it to fractional integrals.

Theorem 4.1. Let f : [a, b] → R be differentiable on[a, b]and |f0(x)| ≤ M, for every x ∈ [a, b] and α ≥ 1. Then the following Ostrowski fractional inequality holds:

(4.2)

f(x)− Γ(α)

b−a(b−x)1−αJaαf(b) +Jaα−1P2(x, b)f(b)

≤ M α(α+ 1)

(b−x)

b−x b−a

−α−1

+ (b−a)α(b−x)1−α

.

Proof. From Lemma3.1we have (4.3)

f(x)− Γ(α)

b−a(b−x)1−αJaαf(b) +Jaα−1(P2(x, b)f(b))

=

Jaα(P2(x, b)f0(b)) .

(12)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page12of 16 Go Back Full Screen

Close

Therefore, from (4.3) and (2.1) and|f0(x)| ≤M, we have 1

Γ(α)

Z b

a

(b−t)α−1P2(x, t)f0(t)dt (4.4)

≤ 1 Γ(α)

Z b

a

(b−t)α−1

P2(x, t)

f0(t) dt

≤ M Γ(α)

Z b

a

(b−t)α−1

P2(x, t) dt

≤M(b−x)1−α b−a

Z x

a

(b−t)α−1(t−a)dt+ Z b

x

(b−t)αdt

= M

α(α+ 1)

(b−x)

b−x b−a

−α−1

+ (b−a)α(b−x)1−α

.

This proves inequality (4.2).

(13)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page13of 16 Go Back Full Screen

Close

5. A Grüss Type Fractional Inequality

In 1935, Grüss proved one of the most celebrated integral inequalities [6], which can be stated as follows

(5.1)

1 b−a

Z b

a

f(x)g(x)dx− 1 (b−a)2

Z b

a

f(x)dx Z b

a

g(x)dx

≤ 1

4(M −m)(N −n), provided thatf andgare two integrable functions on[a, b]and satisfy the conditions

m ≤f(x)≤M, n ≤g(x)≤N, for allx∈[a, b], wherem, M, n, N are given real constants.

A great deal of attention has been given to the above inequality and many papers dealing with various generalizations, extensions, and variants have appeared in the literature [7].

Proposition 5.1. Given thatf(x)andg(x)are two integrable functions for allx ∈ [a, b], and satisfy the conditions

m ≤(b−x)α−1f(x)≤M, n ≤(b−x)α−1g(x)≤N,

whereα > 1/2, andm, M, n, N are real constants, the following Grüss fractional inequality holds:

(5.2)

Γ(2α−1)

(b−a)Γ2(α)Ja2α−1(f g)(b)− 1

(b−a)2Jaαf(b)Jaαg(b)

≤ 1

4 Γ2(α)(M −m)(N −n).

(14)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page14of 16 Go Back Full Screen

Close

Proof. If substituteh(x) = (b−x)α−1f(x)andk(x) = (b−x)α−1g(x)in (5.1), we will obtain (5.2).

In [10] some related fractional inequalities are given.

(15)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page15of 16 Go Back Full Screen

Close

References

[1] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´C AND A.M. FINK, Inequalities for Func- tions and their Integrals and Derivatives, Kluwer Academic Publishers, Dor- drecht, 1994.

[2] N.S. BARNETT AND S.S. DRAGOMIR, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. Math., 27(1) (2001), 1–10.

[3] S.S. DRAGOMIR, P. CERONE, N.S. BARNETTANDJ. ROUMELIOTIS, An inequlity of the Ostrowski type for double integrals and applications for cuba- ture formulae, Tamsui Oxf. J. Math. Sci., 16(1) (2000), 1–16.

[4] J.E. PE ˇCARI ´C, On the ˇCebyšev inequality, Bul. ¸Sti. Tehn. Inst. Politehn. "Tra- ian Vuia" Timi¸soara, 25(39)(1) (1980), 5–9.

[5] A. OSTROWSKI, Über die absolutabweichung einer differentiebaren funktion von ihren integralmittelwert, Comment. Math. Helv., 10 (1938), 226–227.

[6] G. GRÜSS, Über das maximum des absoluten betrages von [1/(b − a)]Rb

af(x)g(x)dx−[1/(b−a)2]Rb

a f(x)dxRb

a g(x)dx, Math. Z., 39 (1935), 215–226.

[7] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´C ANDA.M. FINK, Classical and New In- equalities in Analysis, Kluwer Academic, Dordrecht, 1993.

[8] S. MILLER AND B. ROSS, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, USA, 199, p. 2.

[9] J. PE ˇCARI ´C AND A. VUKELI ´C, Montgomery identities for function of two variables, J. Math. Anal. Appl., 332 (2007), 617–630.

(16)

Montgomery Identities for Fractional Integrals G. Anastassiou, M. R. Hooshmandasl,

A. Ghasemi and F. Moftakharzade vol. 10, iss. 4, art. 97, 2009

Title Page Contents

JJ II

J I

Page16of 16 Go Back Full Screen

Close

[10] G. ANASTASSIOU, Fractional Differentiation Inequalities, Springer, N.Y., Berlin, 2009.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

established sufficient conditions for the existence of solutions for a class of initial value problems for impulsive fractional differential equations involving the Caputo

Keywords: fractional differential equations, fractional integral boundary conditions, Lyapunov-type inequalities, boundary value problems, existence and uniqueness of solutions..

For example, stability and stabilization of fractional order linear systems with uncertainties was considered in [14]; the stability result of fractional order systems

This paper presents some existence and uniqueness results for a boundary value problem of fractional differential equations of order α ∈ (1, 2] with four- point nonlocal

In this paper, Ulam stability and data dependence for fractional differential equations with Caputo fractional derivative of order α are studied.. We present four types of

Keywords: fractional differential equations, Riemann–Liouville derivative, stability, at- tractiveness, multi-order, nonlinear systems.. 2010 Mathematics Subject Classification:

In this article, we investigate the existence of positive solutions of a boundary value problem for a system of fractional differential equations... Fractional differential

In this section, we are now to prove some results concerning fractional integral inequalities (1.9) and (1.10), which can be used to study the global existence of solutions