• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
26
0
0

Teljes szövegt

(1)

volume 4, issue 5, article 101, 2003.

Received 08 January, 2003;

accepted 07 August, 2003.

Communicated by:B.G. Pachpatte

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

OSTROWSKI-GRÜSS TYPE INEQUALITIES IN TWO DIMENSIONS

NENAD UJEVI ´C

Department of Mathematics University of Split

Teslina 12/III, 21000 Split CROATIA.

EMail:ujevic@pmfst.hr

c

2000Victoria University ISSN (electronic): 1443-5756 003-03

(2)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

Abstract

A general Ostrowski-Grüss type inequality in two dimensions is established. A particular inequality of the same type is also given.

2000 Mathematics Subject Classification:26D10, 26D15.

Key words: Ostrowski’s inequality, 2-dimensional generalization, Ostrowski-Grüss inequality.

Contents

1 Introduction. . . 3 2 A General Ostrowski-Grüss Inequality. . . 4 3 A Particular Inequality . . . 18

References

(3)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

1. Introduction

In 1938 A. Ostrowski proved the following integral inequality ([17] or [16, p.

468]).

Theorem 1.1. Let f : I → R, where I ⊂ R is an interval, be a mapping differentiable in the interiorInt I ofI, and leta, b∈ Int I, a < b. If|f0(t)| ≤ M,∀t ∈[a, b], then we have

(1.1)

f(x)− 1 b−a

Z b a

f(t)dt

"

1

4+ (x−a+b2 )2 (b−a)2

#

(b−a)M, forx∈[a, b].

The first (direct) generalization of Ostrowski’s inequality was given by G.V.

Milovanovi´c and J. Peˇcari´c in [14]. In recent years a number of authors have written about generalizations of Ostrowski’s inequality. For example, this topic is considered in [2], [4], [6], [9] and [14]. In this way, some new types of in- equalities have been formed, such as inequalities of Ostrowski-Grüss type, in- equalities of Ostrowski-Chebyshev type, etc. The first inequality of Ostrowski- Grüss type was given by S.S. Dragomir and S. Wang in [6]. It was generalized and improved in [9]. X.L. Cheng gave a sharp version of the mentioned inequal- ity in [4]. The first multivariate version of Ostrowski’s inequality was given by G.V. Milovanovi´c in [12] (see also [13] and [16, p. 468]). Multivariate ver- sions of Ostrowski’s inequality were also considered in [3], [7] and [11]. In this paper we give a general two-dimensional Ostrowski-Grüss inequality. For that purpose, we introduce specially defined polynomials, which can be consid- ered as harmonic or Appell-like polynomials in two dimensions. In Section3 we use the mentioned general inequality to obtain a particular two-dimensional Ostrowski-Grüss type inequality.

(4)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

2. A General Ostrowski-Grüss Inequality

LetΩ = [a, b]×[a, b]and letf : Ω→Rbe a given function. Here we suppose thatf ∈C2n(Ω). LetPk(s)andQk(t)be harmonic or Appell-like polynomials, i.e.

(2.1) Pk0(s) =Pk−1(s)andQ0k(t) =Qk−1(t), k= 1,2, . . . , n+ 1, with

(2.2) P0(s) = Q0(t) = 1.

We also define

(2.3) Rk(s, t) =Pk(s)Qk(t), k = 0,1,2, . . . , n+ 1.

Lemma 2.1. LetRk(s, t)be defined by (2.3). Then we have

(2.4) ∂2Rk(s, t)

∂s∂t =Rk−1(s, t) fork = 1,2, . . . , n+ 1.

Proof. From (2.1) – (2.3) it follows that

2Rk(s, t)

∂s∂t = ∂

∂t

∂Rk(s, t)

∂s

= ∂

∂t(Pk0(s)Qk(t))

=Pk−1(s)Q0k(t)

=Pk−1(s)Qk−1(t) =Rk−1(s, t).

(5)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

We now define (2.5) Jk =

Z b a

Rk(b, t)∂2k−1f(b, t)

∂sk−1∂tk −Rk(a, t)∂2k−1f(a, t)

∂sk−1∂tk

dt,

(2.6) uk−1(t) = ∂k−1f(b, t)

∂sk−1 , vk−1(t) = ∂k−1f(a, t)

∂sk−1 , fork = 1,2, . . . , n. We also define

(2.7) Jk,1 = Z b

a

Rk(b, t)∂2k−1f(b, t)

∂sk−1∂tk dt =Pk(b) Z b

a

Qk(t)u(k)k−1(t)dt and

(2.8) Jk,2 = Z b

a

Rk(a, t)∂2k−1f(a, t)

∂sk−1∂tk dt=Pk(a) Z b

a

Qk(t)vk−1(k) (t)dt such that

(2.9) Jk =Jk,1−Jk,2.

Lemma 2.2. LetJk,1be defined by (2.7). Then we have (2.10) Jk,1 =Pk(b)

k

X

j=1

(−1)k−jh

Qj(b)u(j−1)k−1 (b)−Qj(a)u(j−1)k−1 (a)i + (−1)kPk(b)

Z b a

uk−1(t)dt, fork = 1,2, . . . , n.

(6)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

Proof. We introduce the notation

Uk(uk−1) = Z b

a

Qk(t)u(k)k−1(t)dt.

Then we have

(−1)kUk(uk−1) = (−1)k Z b

a

Qk(t)u(k)k−1(t)dt

= (−1)kh

Qk(b)u(k−1)k−1 (b)−Qk(a)u(k−1)k−1 (a)i + (−1)k−1

Z b a

Qk−1(t)u(k−1)k−1 (t)dt.

We can write the above relation in the form (−1)kUk(uk−1)

= (−1)kh

Qk(b)u(k−1)k−1 (b)−Qk(a)u(k−1)k−1 (a)i

+ (−1)k−1Uk−1(uk−1).

In a similar way we get

(−1)k−1Uk−1(uk−1) = (−1)k−1 Z b

a

Qk−1(t)u(k−1)k−1 (t)dt

= (−1)k−1h

Qk−1(b)u(k−2)k−1 (b)−Qk−1(a)u(k−2)k−1 (a)i + (−1)k−2

Z b a

Qk−2(t)u(k−2)k−1 (t)dt

(7)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

or

(−1)k−1Uk−1(uk−1)

= (−1)k−1h

Qk−1(b)u(k−2)k−1 (b)−Qk−1(a)u(k−2)k−1 (a) i

+ (−1)k−2Uk−2(uk−1).

If we continue the above procedure then we obtain (−1)kUk(uk−1)

=

k

X

j=1

(−1)jh

Qj(b)u(j−1)k−1 (b)−Qj(a)u(j−1)k−1 (a)i

+U0(uk−1)

=

k

X

j=1

(−1)jh

Qj(b)u(j−1)k−1 (b)−Qj(a)u(j−1)k−1 (a)i +

Z b a

uk−1(t)dt.

Note now that

Jk,1 =Pk(b)Uk(uk−1) such that (2.10) holds.

Lemma 2.3. LetJk,2be defined by (2.8). Then we have (2.11) Jk,2 =Pk(a)

k

X

j=1

(−1)k−jh

Qj(b)v(j−1)k−1 (b)−Qj(a)v(j−1)k−1 (a) i

+ (−1)kPk(a) Z b

a

vk−1(t)dt,

(8)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

fork = 1,2, . . . , n.

Proof. The proof is almost identical to that of Lemma2.2.

We now define (2.12) Kk =

Z b a

∂Rk(s, b)

∂s

2k−2f(s, b)

∂sk−1∂tk−1 − ∂Rk(s, a)

∂s

2k−2f(s, a)

∂sk−1∂tk−1

ds, fork = 2, . . . , n,

(2.13) xk−1(s) = ∂k−1f(s, b)

∂tk−1 , yk−1(s) = ∂k−1f(s, a)

∂tk−1 and

(2.14) K1 =Q1(b) Z b

a

x0(s)ds−Q1(a) Z b

a

y0(s)ds.

We also define

Kk,1 = Z b

a

∂Rk(s, b)

∂s

2k−2f(s, b)

∂sk−1∂tk−1 ds (2.15)

=Qk(b) Z b

a

Pk−1(s)x(k−1)k−1 (s)ds and

Kk,2 = Z b

a

∂Rk(s, a)

∂s

2k−2f(s, a)

∂sk−1∂tk−1 ds (2.16)

=Qk(a) Z b

a

Pk−1(s)yk−1(k−1)(s)ds

(9)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

such that

(2.17) Kk =Kk,1−Kk,2,k = 1,2, . . . , n.

Lemma 2.4. LetKk,1be defined by (2.15). Then we have

(2.18) Kk,1 =Qk(b)

k

X

j=2

(−1)k−j+1h

Pj−1(b)x(j−2)k−1 (b)−Pj−1(a)x(j−2)k−1 (a) i

+ (−1)k−1Qk(b) Z b

a

xk−1(s)ds, fork = 2, . . . , n.

Proof. We introduce the notation

Uk−1(xk−1) = Z b

a

Pk−1(s)x(k−1)k−1 (s)ds.

Then we have

(−1)k−1Uk−1(xk−1) = (−1)k−1 Z b

a

Pk−1(s)x(k−1)k−1 (s)ds

= (−1)k−1h

Pk−1(b)x(k−2)k−1 (b)−Pk−1(a)x(k−2)k−1 (a)i + (−1)k−2

Z b a

Pk−2(s)x(k−2)k−1 (s)ds.

(10)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

We can write the above relation in the form (−1)k−1Uk−1(xk−1)

= (−1)k−1h

Pk−1(b)x(k−2)k−1 (b)−Pk−1(a)x(k−2)k−1 (a)i

+ (−1)k−2Uk−2(xk−1).

In a similar way we get

(−1)k−2Uk−2(xk−1) = (−1)k−2 Z b

a

Pk−2(s)x(k−2)k−1 (s)ds

= (−1)k−2h

Pk−2(b)x(k−3)k−1 (b)−Pk−2(a)x(k−3)k−1 (a)i + (−1)k−3

Z b a

Pk−3(s)x(k−3)k−1 (s)ds or

(−1)k−2Uk−2(xk−1)

= (−1)k−2h

Pk−2(b)x(k−3)k−1 (b)−Pk−2(a)x(k−3)k−1 (a)i

+ (−1)k−3Uk−3(xk−1).

If we continue the above procedure then we get (−1)k−1Uk−1(xk−1)

=

k

X

j=2

(−1)j−1h

Pj−1(b)x(j−2)k−1 (b)−Pj−1(a)x(j−2)k−1 (a)i

+U0(xk−1)

(11)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

=

k

X

j=2

(−1)j−1h

Pj−1(b)x(j−2)k−1 (b)−Pj−1(a)x(j−2)k−1 (a)i +

Z b a

xk−1(t)dt.

Note now that

Kk,1 =Qk(b)Uk−1(xk−1) such that (2.18) holds.

Lemma 2.5. LetKk,2be defined by (2.16). Then we have (2.19) Kk,2 =Qk(a)

k

X

j=2

(−1)k−j+1h

Pj−1(b)yk−1(j−2)(b)−Pj−1(a)yk−1(j−2)(a)i + (−1)k−1Qk(a)

Z b a

yk−1(s)ds, fork = 2, . . . , n.

Proof. The proof is almost identical to that of Lemma2.4.

Let (X,h·,·i) be a real inner product space and e ∈ X, kek = 1. Let γ, ϕ,Γ,Φbe real numbers andx, y ∈X such that the conditions

(2.20) hΦe−x, x−ϕei ≥0and hΓe−y, y−γei ≥0 hold. In [5] we can find the inequality

(2.21) |hx, yi − hx, ei hy, ei| ≤ 1

4|Φ−ϕ| |Γ−γ|.

(12)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

We also have

(2.22) |hx, yi − hx, ei hy, ei| ≤ kxk2− hx, ei212

kyk2− he, yi212 . LetX =L2(Ω)ande= 1/(b−a). If we define

(2.23) T(f, g) = 1 (b−a)2

Z b a

Z b a

f(t, s)g(t, s)dtds

− 1 (b−a)4

Z b a

Z b a

f(t, s)dtds Z b

a

Z b a

g(t, s)dtds, then from (2.20) and (2.21) we obtain the Grüss inequality inL2(Ω),

(2.24) |T(f, g)| ≤ 1

4(Γ−γ)(Φ−ϕ), if

γ ≤f(x, y)≤Γ, ϕ ≤g(x, y)≤Φ,(x, y)∈Ω.

From (2.22), we have the pre-Grüss inequality (2.25) T(f, g)2 ≤T(f, f)T(g, g).

We now define

(2.26) In=

Z b a

Z b a

Rn(s, t)∂2nf(s, t)

∂sn∂tn dsdt and

(2.27) Sn= 1

(b−a)2 Z b

a

Z b a

Rn(s, t)dsdt Z b

a

Z b a

2nf(s, t)

∂sn∂tn dsdt.

(13)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

Lemma 2.6. LetInandSnbe defined by (2.26) and (2.27), respectively. Then we have the inequality

(2.28) |In−Sn| ≤ M2n−m2n

2 C(b−a)2, where

M2n= max

(s,t)∈Ω

2nf(s, t)

∂sn∂tn , m2n = min

(s,t)∈Ω

2nf(s, t)

∂sn∂tn and

(2.29) C =

1 (b−a)2

Z b a

Pn(s)2ds Z b

a

Qn(t)2dt

− 1 (b−a)4

Z b a

Pn(s)ds Z b

a

Qn(t)dt 2)12

. Proof. From (2.23), (2.26) and (2.27) we see that

In−Sn = (b−a)2T

Rn(s, t),∂2nf(s, t)

∂sn∂tn

. Then from (2.25) we get

|In−Sn| ≤(b−a)2T (Rn(s, t), Rn(s, t))12 T

2nf(s, t)

∂sn∂tn ,∂2nf(s, t)

∂sn∂tn 12

. From (2.24) we have

T

2nf(s, t)

∂sn∂tn ,∂2nf(s, t)

∂sn∂tn 12

≤ M2n−m2n

2 .

(14)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

We also have

T (Rn(s, t), Rn(s, t)) = 1 (b−a)2

Z b a

Pn(s)2ds Z b

a

Qn(t)2dt

− 1 (b−a)4

Z b a

Pn(s)ds Z b

a

Qn(t)dt 2

. From the last three relations we see that (2.28) holds.

Theorem 2.7. LetΩ = [a, b]×[a, b]and letf : Ω→Rbe a given function such thatf ∈C2n(Ω). Let the conditions of Lemma2.6hold. IfJk,Kkare given by (2.9), (2.17), where Jk,1, Jk,2, Kk,1, Kk,2 are given by Lemmas2.2 –2.5, then we have the inequality

(2.30)

Z b a

Z b a

f(s, t)dsdt+

n

X

k=1

Jk

n

X

k=1

Kk−Sn

≤ M2n−m2n

2 C(b−a)2, where

(2.31) Sn = 1

(b−a)2[Pn+1(b)−Pn+1(a)] [Qn+1(b)−Qn+1(a)]

×[v(b, b)−v(b, a)−v(a, b) +v(a, a)], andv(s, t) = ∂s2n−2n−1∂tt(s,t)n−1.

(15)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

Proof. We have

In= Z b

a

Z b a

Rn(s, t)∂2nf(s, t)

∂sn∂tn dsdt (2.32)

= Z b

a

dt Z b

a

Rn(s, t) ∂

∂s

2n−1f(s, t)

∂sn−1∂tn

ds

= Z b

a

Rn(b, t)∂2n−1f(b, t)

∂sn−1∂tn −Rn(a, t)∂2n−1f(a, t)

∂sn−1∂tn

dt

− Z b

a

Z b a

∂Rn(s, t)

∂s

2n−1f(s, t)

∂sn−1∂tn dsdt

=Jn−Ln, where

Ln = Z b

a

Z b a

∂Rn(s, t)

∂s

2n−1f(s, t)

∂sn−1∂tn dsdt.

We also have Ln =

Z b a

ds Z b

a

∂Rn(s, t)

∂s

∂t

2n−2f(s, t)

∂sn−1∂tn−1

dt

= Z b

a

∂Rn(s, b)

∂s

2n−2f(s, b)

∂sn−1∂tn−1 −∂Rn(s, a)

∂s

2n−2f(s, a)

∂sn−1∂tn−1

ds

− Z b

a

Z b a

Rn−1(s, t)∂2n−2f(s, t)

∂sn−1∂tn−1dsdt

=Kn−In−1.

(16)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

Hence, we have

In=Jn−Kn+In−1. In a similar way we obtain

In−1 =Jn−1−Kn−1+In−2. If we continue this procedure then we get

(2.33) In =

n

X

k=1

Jk

n

X

k=1

Kk+I0, where

(2.34) I0 =

Z b a

Z b a

f(s, t)dsdt.

We now consider the term

(2.35) Sn = 1

(b−a)2 Z b

a

Z b a

Rn(s, t)dsdt Z b

a

Z b a

2nf(s, t)

∂sn∂tn dsdt.

We have Z b

a

Z b a

Rn(s, t)dsdt= Z b

a

Pn(s)ds Z b

a

Qn(t)dt

= [Pn+1(b)−Pn+1(a)] [Qn+1(b)−Qn+1(a)]

(17)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

and Z b

a

Z b a

2nf(s, t)

∂sn∂tn dsdt

= Z b

a

dt Z b

a

∂s

2n−1f(s, t)

∂sn−1∂tn

ds

= Z b

a

2n−1f(b, t)

∂sn−1∂tn − ∂2n−1f(a, t)

∂sn−1∂tn

dt

= ∂2n−2f(b, b)

∂sn−1∂tn−1 − ∂2n−2f(b, a)

∂sn−1∂tn−1 − ∂2n−1f(a, b)

∂sn−1∂tn−1 +∂2n−1f(a, a)

∂sn−1∂tn−1

= [v(b, b)−v(b, a)−v(a, b) +v(a, a)], Thus (2.31) holds. From (2.33) – (2.35) we see that

In−Sn= Z b

a

Z b a

f(s, t)dsdt+

n

X

k=1

Jk

n

X

k=1

Kk−Sn. Then from Lemma2.6we conclude that (2.30) holds.

(18)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

3. A Particular Inequality

Here we use the notations introduced in Section2. In Theorem2.7 we proved a general inequality of Ostrowski-Grüss type. Many particular inequalities can be obtained if we choose specific harmonic or Appell-like polynomials Pk(s), Qk(t)in (2.30). For example, in [8] we can find the following harmonic poly- nomials

Pk(s) = 1

k!(s−a)k, Pk(s) = 1

k!

s− a+b 2

k

, Pk(s) = (b−a)k

k! Bk

s−a b−a

, Pk(s) = (b−a)k

k! Ek

s−a b−a

,

whereBk(s)andEk(s)are Bernoulli and Euler polynomials, respectively. We shall not consider all possible combinations of these polynomials. Here we choose the following combination

Pk(s) = (b−a)k k! Bk

s−a b−a

(3.1) ,

Qk(t) = (b−a)k k! Bk

t−a b−a

.

We now substitute the above polynomials in (2.10), (2.11), (2.18), (2.19) to obtain

(19)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

Jk,1 = ¯Jk,1 (3.2)

= (b−a)k k! Bk(1)

k

X

j=1

(−1)k−j(b−a)j j!

×h

Bj(1)u(j−1)k−1 (b)−Bj(0)u(j−1)k−1 (a) i

+ (−1)kBk(1)(b−a)k k!

Z b a

uk−1(t)dt, Jk,2 = ¯Jk,2

(3.3)

= (b−a)k k! Bk(0)

k

X

j=1

(−1)k−j(b−a)j j!

×h

Bj(1)vk−1(j−1)(b)−Bj(0)vk−1(j−1)(a) i

+ (−1)kBk(0)(b−a)k k!

Z b a

vk−1(t)dt, Kk,1 = ¯Kk,1

(3.4)

= (b−a)k k! Bk(1)

k

X

j=2

(−1)k−j+1(b−a)j−1 (j−1)!

×h

Bj−1(1)x(j−2)k−1 (b)−Bj−1(0)x(j−2)k−1 (a)i + (−1)k−1(b−a)k

k! Bk(1) Z b

a

xk−1(s)ds,

(20)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

and

Kk,2 = ¯Kk,2 (3.5)

= (b−a)k k! Bk(0)

k

X

j=2

(−1)k−j+1(b−a)j−1 (j −1)!

×h

Bj−1(1)y(j−2)k−1 (b)−Bj−1(0)yk−1(j−2)(a)i + (−1)k−1(b−a)k

k! Bk(0) Z b

a

yk−1(s)ds.

We have

(3.6) Jk = ¯Jk = ¯Jk,1−J¯k,2,k = 1,2, . . . , n,

(3.7) Kk = ¯Kk= ¯Kk,1−K¯k,2, k = 2, . . . , n and

(3.8) K¯1 = b−a 2

Z b a

x0(s)ds+ Z b

a

y0(s)ds

,

whereJ¯k,1,J¯k,2,K¯k,1,K¯k,2are defined by (3.2) – (3.5), respectively.

Basic properties of Bernoulli polynomials can be found in [1]. Here we emphasize the following properties:

(3.9)

Z 1 0

Bk(s)ds = 0, k = 1,2, . . .

(21)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

and (3.10)

Z 1 0

Bk(s)Bj(s)ds = (−1)k−1 k!j!

(k+j)!Bk+j, k, j = 1,2, . . . , where

(3.11) Bk=Bk(0),k = 0,1,2, . . . are Bernoulli numbers. We also have

(3.12) B2i+1 = 0,i= 1,2, . . . ,

(3.13) Bk(0) =Bk(1) =Bk,k= 0,2,3,4, . . . , and, in particular,

(3.14) B1(0) =−1

2, B1(1) = 1 2. From (3.2) – (3.8) and (3.12) we see that

(3.15) J¯2i+1 = ¯K2i+1 = 0, i= 1,2, . . . , n.

Note also that sums in (3.2) – (3.5) have only even-indexed terms and the term forj = 1 (j = 2)is non-zero.

(22)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

Theorem 3.1. Under the assumptions of Theorem2.7we have

(3.16)

Z b a

Z b a

f(s, t)dsdt+

n

X

k=1

k

n

X

k=1

k

≤ M2n−m2n

2 ·|B2n|

(2n)!(b−a)2n+2, where Bk are Bernoulli numbers andk,k are given by (3.6), (3.7), respec- tively.

Proof. The proof follows from the proof of Theorem2.7, since the following is valid. LetPnandQnbe defined by (3.1), fork=n.

Firstly, we have Sn = 1

(b−a)2 Z b

a

Z b a

Rn(s, t)dsdt Z b

a

Z b a

2nf(s, t)

∂sn∂tn dsdt= 0, since

Z b a

Z b an

(s, t)dsdt= Z b

a

Pn(s)ds Z b

a

Qn(t)dt

= Z b

a

Pn(s)ds 2

=

(b−a)n+1 n!

1

Z

0

Bn(s)ds

2

= 0,

(23)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

because of (3.9).

Secondly, we have C =

1 (b−a)2

Z b a

Pn(s)2ds Z b

a

Qn(t)2dt

− 1 (b−a)4

Z b a

Pn(s)ds Z b

a

Qn(t)dt 2)12

= 1

(b−a)2 Z b

a

Pn(s)2ds Z b

a

Qn(t)2dt 12

= 1

b−a Z b

a

Pn(s)2ds

= 1

b−a ·(b−a)2n+1 (n!)2

Z 1 0

Bn(s)2ds

= (b−a)2n (n!)2

(n!)2

(2n)!|B2n|= |B2n|

(2n)!(b−a)2n, since (3.10) holds.

(24)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

References

[1] M. ABRAMOWITZ ANDI.A. STEGUN (Eds), Handbook of Mathemati- cal Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, Wash- ington, 1965

[2] G.A. ANASTASSIOU, Multivariate Ostrowski type inequalities, Acta Math. Hungar., 76 (1997), 267–278.

[3] G.A. ANASTASSIOU, Ostrowski type inequalities, Proc. Amer. Math.

Soc., 123(12) (1995), 3775–3781.

[4] X.L. CHENG, Improvement of some Ostrowski-Grüss type inequalities, Comput. Math. Appl., 42 (2001), 109–114.

[5] S.S. DRAGOMIR, A generalization of Grüss inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74–82.

[6] S.S. DRAGOMIRANDS. WANG, An inequality of Ostrowski–Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33(11) (1997), 16–20.

[7] G. HANNA, P. CERONE AND J. ROUMELIOTIS, An Ostrowski type inequality in two dimensions using the three point rule, ANZIAM J., 42(E) (2000), 671–689.

(25)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

[8] M. MATI ´C, J. PE ˇCARI ´C AND N. UJEVI ´C, On new estimation of the remainder in generalized Taylor’s formula, Math. Inequal. Appl., 2(3), (1999), 343–361.

[9] M. MATI ´C, J. PE ˇCARI ´CANDN. UJEVI ´C, Improvement and further gen- eralization of some inequalities of Ostrowski-Grüss type, Comput. Math.

Appl., 39 (2000), 161–175.

[10] M. MATI ´C, J. PE ˇCARI ´C AND N. UJEVI ´C, Generalizations of weighted version of Ostrowski’s inequality and some related results, J. Inequal.

Appl., 5 (2000), 639–666.

[11] M. MATI ´C, J. PE ˇCARI ´CANDN. UJEVI ´C, Weighted version of multivari- ate Ostrowski type inequalities, Rocky Mountain J. Math, 31(2) (2001), 511–538.

[12] G.V. MILOVANOVI ´C, On some integral inequalities, Univ. Beograd Publ.

Elektrotehn. Fak. Ser. Mat. Fiz., No 498-541, (1975), 119–124.

[13] G.V. MILOVANOVI ´C, O nekim funkcionalnim nejednakostima, Univ.

Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No 599, (1977), 1–59.

[14] G.V. MILOVANOVI ´C AND J.E. PE ˇCARI ´C, On generalization of the in- equality of A. Ostrowski and some related applications, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No 544-576, (1976), 155-158.

[15] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

(26)

Ostrowski-Grüss type Inequalities in Two Dimensions

Nenad Ujevi´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of26

J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003

http://jipam.vu.edu.au

[16] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Inequalities Involv- ing Functions and Their Integrals and Derivatives, Kluwer Acad. Publ., Dordrecht, Boston/London, 1991.

[17] A. OSTROWSKI, Über die Absolutabweichung einer Differentiebaren Funktion von ihren Integralmittelwert, Comment. Math. Helv., 10 (1938), 226–227.

[18] B.G. PACHPATTE, On multidimensional Grüss type inequalities, J. In- equal. Pure Appl. Math., 3(2) (2002), Article 27. [ONLINE http://

jipam.vu.edu.au/v3n2/063_01.html].

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

We are able now to provide a different proof for the Grüss type inequality in inner product spaces mentioned in the Introduction, than the one from paper [1]..

PACHPATTE, On a new Ostrowski type inequality in two indepen- dent variables, Tamkang J. PACHPATTE, On an inequality of Ostrowski type in three indepen- dent

In particular, we shall establish an Ostrowski type inequality for a triple integral which pro- vides a generalisation or extension of a result given by Pachpatte [10].. In

The following corollary which provides a simpler Grüss type inequality for real constants (and in particular, for real inner product spaces) holds..

In Section 3 we use the mentioned general inequality to obtain a particular two-dimensional Ostrowski-Grüss type

In this paper we establish two new integral inequalities similar to that of the Grüss inequality by using a fairly elementary analysis.. 2000 Mathematics Subject Classification:

In this paper we establish two new integral inequalities similar to that of the Grüss inequality by using a fairly elementary analysis.. Key words and phrases: Grüss type,

The aim of this paper is to establish some new multidimensional finite difference inequalities of the Ostrowski and Grüss type using a fairly elementary analysis.. 2000