• Nem Talált Eredményt

SOME COMPANIONS OF AN OSTROWSKI TYPE INEQUALITY AND APPLICATIONS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "SOME COMPANIONS OF AN OSTROWSKI TYPE INEQUALITY AND APPLICATIONS"

Copied!
23
0
0

Teljes szövegt

(1)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page

Contents

JJ II

J I

Page1of 23 Go Back Full Screen

Close

SOME COMPANIONS OF AN OSTROWSKI TYPE INEQUALITY AND APPLICATIONS

ZHENG LIU

Institute of Applied Mathematics, School of Science University of Science and Technology Liaoning Anshan 114051, Liaoning, China

EMail:lewzheng@163.net

Received: 11 February, 2009

Accepted: 12 May, 2009

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 26D15.

Key words: Ostrowski type inequality, Perturbed trapezoid rule, Midpoint rule, Composite quadrature rule.

Abstract: We establish some companions of an Ostrowski type integral inequality for func- tions whose derivatives are absolutely continuous. Applications for composite quadrature rules are also given.

(2)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page2of 23 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Some Integral Inequalities 5

3 A Composite Quadrature Formula 19

(3)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page3of 23 Go Back Full Screen

Close

1. Introduction

Motivated by [1], Dragomir in [2] has proved the following companion of the Os- trowski inequality:

(1.1) 1

2[f(x) +f(a+b−x)]− 1 b−a

Z b a

f(t) dt

















1

8 + 2x−3a+b 4

b−a

2

(b−a)kf0k[a,b],∞ iff0 ∈L[a, b] ;

21q (q+1)1q

x−a b−a

q+1

+a+b 2 −x b−a

q+11q

(b−a)1q kf0k[a,b],p, ifp > 1,1p +1q = 1, andf0 ∈Lp[a, b] ; h1

4 +

x−3a+b

4

b−a

ikf0k[a,b],1 iff0 ∈L1[a, b],

for allx∈ a,a+b2

, wheref : [a, b]→Ris an absolutely continuous function.

In particular, the best result in (1.1) is obtained forx= a+3b4 , giving the following trapezoid type inequalities:

(1.2) 1 2

f

3a+b 4

+f

a+ 3b 4

− 1 b−a

Z b a

f(t)dt









1

8 (b−a)kf0k[a,b],∞ if f0 ∈L[a, b] ;

1 4 · (b−a)

1q

(q+1)1q

kf0k[a,b],p, if f0 ∈Lp[a, b], p >1, 1p +1q = 1;

1

4kf0k[a,b],1 if f0 ∈L1[a, b]. Some natural applications of (1.1) and (1.2) are also provided in [2].

(4)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page4of 23 Go Back Full Screen

Close

In [3], Dedi´c et al. have derived the following trapezoid type inequality:

(1.3) 1 2

f

3a+b 4

+f

a+ 3b 4

− 1 b−a

Z b a

f(t)dt

≤ (b−a)2

32 kf00k, for a function f : [a, b] → R whose derivative f0 is absolutely continuous and f00 ∈L[a, b].

In [4], we find that for a functionf : [a, b]→Rwhose derivativef0 is absolutely continuous, the following perturbed trapezoid inequalities hold:

(1.4)

Z b a

f(t) dt− b−a

2 [f(a) +f(b)] + (b−a)2

8 [f0(b)−f0(a)]













(b−a)3

24 kf00k if f00 ∈L[a, b] ;

(b−a)2+ 1q 8(2q+1)1q

kf00kp, if f00 ∈LP[a, b], p >1, 1p +1q = 1;

(b−a)2

8 kf00k1 if f00 ∈L1[a, b].

In this paper, we provide some companions of Ostrowski type inequalities for functions whose first derivatives are absolutely continuous and whose second deriva- tives belong to the Lebesgue spacesLp[a, b], 1≤p ≤ ∞. These improve (1.3) and recapture (1.4). Applications for composite quadrature rules are also given.

(5)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page5of 23 Go Back Full Screen

Close

2. Some Integral Inequalities

Lemma 2.1. Letf : [a, b]→Rbe such that the derivativef0 is absolutely continu- ous on[a, b]. Then we have the equality

(2.1) 1 b−a

Z b a

f(t)dt− 1

2[f(x) +f(a+b−x)]

+ 1 2

x−3a+b 4

[f0(x)−f0(a+b−x)]

= 1

2 (b−a)

"

Z x a

(t−a)2f00(t) dt+

Z a+b−x x

t− a+b 2

2

f00(t)dt +

Z b a+b−x

(t−b)2f00(t) dt

for anyx∈

a,a+b2 .

Proof. Using the integration by parts formula for Lebesgue integrals, we have Z x

a

(t−a)2f00(t) dt= (x−a)2f0(x)−2 (x−a)f(x) + 2 Z x

a

f(t) dt,

Z a+b−x x

t− a+b 2

2

f00(t)dt

=

x− a+b 2

2

[f0(a+b−x)−f0(x)]

+ 2

x−a+b 2

[f(x) +f(a+b−x)] + 2

Z a+b−x x

f(t)dt,

(6)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page6of 23 Go Back Full Screen

Close

and Z b

a+b−x

(t−b)2f00(t)dt

=−(x−a)2f0(a+b−x)−2 (x−a)f(a+b−x) + 2 Z b

a+b−x

f(t)dt.

Summing the above equalities, we deduce the desired identity (2.1).

Theorem 2.2. Letf : [a, b]→Rbe such that the derivativef0 is absolutely contin- uous on[a, b]. Then we have the inequality

1 b−a

Z b a

f(t) dt− 1

2[f(x) +f(a+b−x)]

(2.2)

+ 1 2

x−3a+b 4

[f0(x)−f0(a+b−x)]

≤ 1

2 (b−a)

"

Z x a

(t−a)2|f00(t)|dt+

Z a+b−x x

t− a+b 2

2

|f00(t)|dt +

Z b a+b−x

(t−b)2|f00(t)|dt

:=M(x) for anyx∈

a,a+b2 .

Iff00 ∈L[a, b], then we have the inequalities

M(x)≤ 1

2 (b−a)

"

(x−a)3

3 kf00k[a,x],∞

(2.3)

(7)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page7of 23 Go Back Full Screen

Close

+ 2 3

a+b 2 −x

3

kf00k[x,a+b−x],∞+(x−a)3

3 kf00k[a+b−x,b]

#





























1

96+ 12x−3a+b 4

b−a

2

(b−a)2kf00k[a,b],∞;

1 2α−1

x−a b−a

+x−a+b 2

b−a

α1

×h

kf00kβ[a,x],∞+kf00kβ[x,a+b−x],∞+kf00kβ[a+b−x,b],∞

iβ1 (b−a)2

3

if α >1,α1 +β1 = 1;

max

1 2

x−a b−a

3

,x−a+b 2

b−a

3

×

kf00k[a,x],∞+kf00k[x,a+b−x],∞+kf00k[a+b−x,b],∞

(b−a)2 3 ; for anyx∈

a,a+b2 .

The inequality (2.2), the first inequality in (2.3) and the constant 961 are sharp.

Proof. The inequality (2.2) follows by Lemma2.1on taking the modulus and using its properties.

Iff00 ∈L[a, b], then Z x

a

(t−a)2|f00(t)|dt ≤ (x−a)3

3 kf00k[a,x],∞, Z a+b−x

x

t− a+b 2

2

|f00(t)|dt≤ 2 3

a+b 2 −x

3

kf00k[x,a+b−x],∞,

Z b a+b−x

(t−b)2|f00(t)|dt≤ (x−a)3

3 f00k[a+b−x,b],∞

(8)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page8of 23 Go Back Full Screen

Close

and the first inequality in (2.3) is proved.

Denote

M¯ (x) := (x−a)3

6 kf00k[a,x],∞+1 3

a+b 2 −x

3

kf00k[x,a+b−x],∞

+(x−a)3

6 kf00k[a+b−x,b]

forx∈ a,a+b2

. Firstly, observe that

M¯ (x)≤max

kf00k[a,x],∞,kf00k[x,a+b−x],∞,kf00k[a+b−x,b],∞

×

"

(x−a)3

6 + 1

3

a+b 2 −x

3

+(x−a)3 6

#

=kf00k[a,b],∞

"

(b−a)2 96 +1

2

x−3a+b 4

2#

(b−a) and the first part of the second inequality in (2.3) is proved.

Using the Hölder inequality forα >1, α1 + 1β = 1, we also have

M¯ (x)≤ 1 3

("

(x−a)3 2

#α

+

x− a+b 2

+

"

(x−a)3 2

#α)α1

×h

kf00kβ[a,x],∞+kf00kβ[x,a+b−x],∞+kf00kβ[a+b−x,b],∞

iβ1

giving the second part of the second inequality in (2.3)

(9)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page9of 23 Go Back Full Screen

Close

Finally, we also observe that M¯ (x)≤ 1

3max

((x−a)3

2 ,

x− a+b 2

3)

×

kf00k[a,x],∞+kf00k[x,a+b−x],∞+kf00k[a+b−x,b],∞

. The sharpness of the inequalities mentioned follows from the fact that we can choose a functionf : [a, b]→R,f(t) =t2for anyx∈

a,a+b2

to obtain the corresponding equalities.

Remark 1. If in Theorem2.2 we choose x = a, then we recapture the first part of the inequality (1.4), i.e.,

1 b−a

Z b a

f(t) dt− 1

2[f(a) +f(b)] + b−a

8 [f0(b)−f0(a)]

≤ 1

24(b−a)2kf00k

with 241 as a sharp constant. If we choosex= a+b2 , then we get

1 b−a

Z b a

f(t) dt−f

a+b 2

≤ 1 48

hkf00k[a,a+b2 ],∞+kf00k[a+b2 ,b],∞

i

≤ 1

24(b−a)2kf00k[a,b],∞

with the constants 481 and 241 being sharp.

Corollary 2.3. With the assumptions in Theorem2.2, one has the inequality (2.4)

1 b−a

Z b a

f(t)dt− f 3a+b4

+f a+3b4 2

≤ 1

96(b−a)2kf00k[a,b],∞.

(10)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page10of 23 Go Back Full Screen

Close

The constant 961 is best possible in the sense that it cannot be replaced by a smaller constant. Clearly (2.4) is an improvement of (1.3).

Theorem 2.4. Letf : [a, b]→Rbe such that the derivativef0 is absolutely contin- uous on[a, b]andf00 ∈Lp[a, b],p >1. IfM(x)is as defined in (2.2), then we have the bounds:

(2.5) M(x)≤ 1 2 (2q+ 1)1q

"

x−a b−a

2+1q

kf00k[a,x],p

+21q

a+b 2 −x b−a

!2+1q

kf00k[x,a+b−x],p

x−a b−a

2+1q

kf00k[a+b−x,b],p

(b−a)1+1q

≤ 1

2 (2q+ 1)1q

×





































2 x−ab−a2+1q

+ 21q a+b

2 −x b−a

2+1q

×max

kf00k[a,x],p,kf00k[x,a+b−x],p,kf00k[a+b−x,b],p (b−a)1+1q ;

2 x−ab−a2α+αq

+ 2αq a+b 2 −x b−a

2α+αq1α

×h

kf00kβ[a,x],p+kf00kβ[x,a+b−x],p+kf00kβ[a+b−x,b],p

iβ1

(b−a)1+1q ifα >1,α1 +β1 = 1, max

x−a b−a

2+1q

,21q a+b 2 −x b−a

2+1q

×

kf00k[a,x],p+kf00k[x,a+b−x],p+kf00k[a+b−x,b],p

(b−a)1+1q ; for anyx∈

a,a+b2 .

(11)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page11of 23 Go Back Full Screen

Close

Proof. Using Hölder’s integral inequality forp >1, 1p +1q = 1, we have Z x

a

(t−a)2|f00(t)|dt≤ Z x

a

(t−a)2q dt 1q

kf00k[a,x],p

= (x−a)2+1q (2q+ 1)1q

kf00k[a,x],p,

Z a+b−x x

t− a+b 2

2

|f00(t)|dt ≤

Z a+b−x

x

|t− a+b 2 |2qdt

1q

kf00k[x,a+b−x],p

= 21q a+b2 −x2+1q

(2q+ 1)1q

kf00k[x,a+b−x],p,

and

Z b a+b−x

(t−b)2|f00(t)|dt ≤ Z b

a+b−x

(b−t)2q dt 1q

kf00k[a+b−x,b],p

= (x−a)2+1q (2q+ 1)1q

kf00k[a+b−x,b],p.

Summing the above inequalities, we deduce the first bound in (2.5).

The last part may be proved in a similar fashion to the one in Theorem 2.2, and we omit the details.

Remark 2. If in (2.5) we chooseα = q, β = p, 1p + 1q = 1,p > 1, then we get the

(12)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page12of 23 Go Back Full Screen

Close

inequality

(2.6) M(x)≤ 21q 2 (2q+ 1)1q

x−a b−a

2q+1

+

a+b 2 −x b−a

!2q+1

1 q

×(b−a)1+1q kf00k[a,b],p, for anyx∈

a,a+b2 .

Remark 3. If in Theorem2.4we choosex=a, then we recapture the second part of the inequality (1.4), i.e.,

(2.7)

1 b−a

Z b a

f(t) dt− 1

2[f(a) +f(b)] + b−a

8 [f0(b)−f0(a)]

≤ 1

8· (b−a)1+1qkf00k[a,b],p

(2q+ 1)1q .

The constant 18 is best possible in the sense that it cannot be replaced by a smaller constant.

Proof. Indeed, if we assume that (2.7) holds with a constantC > 0, instead of 18, i.e.,

(2.8)

1 b−a

Z b a

f(t)dt− 1

2[f(a) +f(b)] + b−a

8 [f0(b)−f0(a)]

≤C· (b−a)1+1qkf00k[a,b],p (2q+ 1)1q

,

(13)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page13of 23 Go Back Full Screen

Close

then for the functionf : [a, b]→R,f(x) = k x− a+b2 2

,k > 0, we have f(a) +f(b)

2 =k·(b−a)2 4 , f0(b)−f0(a) = 2k(b−a), 1

b−a Z b

a

f(t)dt =k· (b−a)2 12 , kf00k[a,b],p= 2k(b−a)1p; and by (2.8) we deduce

k(b−a)2

12 −k(b−a)2

4 + k(b−a)2 4

≤ 2C·k(b−a)2 (2q+ 1)1q

,

givingC ≥ (2q+1)

1q

24 . Lettingq → 1+, we deduceC ≥ 18, and the sharpness of the constant is proved.

Remark 4. If in Theorem2.4we choosex= a+b2 , then we get the midpoint inequality

1 b−a

Z b a

f(t) dt−f

a+b 2

(2.9)

≤ 1

8 · (b−a)1+1q 21q (2q+ 1)1q

hkf00k[a,a+b2 ],p+kf00k[a+b2 ,b],p i

≤ 1

8 ·(b−a)1+1q (2q+ 1)1q

kf00k[a,b],p, p >1,1 p+ 1

q = 1.

(14)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page14of 23 Go Back Full Screen

Close

In both inequalities the constant 18 is sharp in the sense that it cannot be replaced by a smaller constant.

To show this fact, assume that (2.9) holds withC, D > 0, i.e.,

1 b−a

Z b a

f(t)dt−f

a+b 2

(2.10)

≤C· (b−a)1+1q 21q (2q+ 1)1q

hkf00k[a,a+b2 ],p+kf00k[a+b2 ,b],p i

≤D· (b−a)1+1q (2q+ 1)1q

kf00k[a,b],p.

For the functionf : [a, b]→R,f(x) = k x− a+b2 2

,k >0, we have f

a+b 2

= 0, 1

b−a Z b

a

f(t)dt = k(b−a)2 12 ,

kf00k[a,a+b2 ],p+kf00k[a+b2 ,b],p= 4k

b−a 2

1p

= 21+1q (b−a)1pk, kf00k[a,b],p= 2 (b−a)1pk;

and then by (2.10) we deduce k(b−a)2

12 ≤C·2k(b−a)2 (2q+ 1)1q

≤D· 2k(b−a)2 (2q+ 1)1q

,

(15)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page15of 23 Go Back Full Screen

Close

givingC, D ≥ (2q+1)

1 q

24 for anyq >1. Lettingq →1+, we deduceC, D ≥ 18 and the sharpness of the constants in (2.9) is proved.

The following result is useful in providing the best quadrature rule in the class for approximating the integral of a functionf : [a, b] → Rwhose first derivative is absolutely continuous on[a, b]and whose second derivative is inLp[a, b].

Corollary 2.5. With the assumptions in Theorem2.4, one has the inequality

(2.11) 1 2

f

3a+b 4

+f

a+ 3b 4

− 1 b−a

Z b a

f(t) dt

≤ 1

32· (b−a)1+1q (2q+ 1)1q

kf00k[a,b],p,

where 1p + 1q = 1.

The constant 321 is the best possible in the sense that it cannot be replaced by a smaller constant.

Proof. The inequality follows by Theorem2.4and (2.6) on choosingx= 3a+b4 . To prove the sharpness of the constant, assume that (2.11) holds with a constant E >0, i.e.,

(2.12) 1 2

f

3a+b 4

+f

a+ 3b 4

− 1 b−a

Z b a

f(t) dt

≤E· (b−a)1+1q (2q+ 1)1q

kf00k[a,b],p.

(16)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page16of 23 Go Back Full Screen

Close

Consider the functionf : [a, b]→R,

f(x) =













12 x− 3a+b4 2

if x∈

a,3a+b4 ,

1

2 x− 3a+b4 2

if x∈ 3a+b4 ,a+b2 ,

12 x− a+3b4 2

if x∈ a+b2 ,a+3b4 ,

1

2 x− a+3b4 2

if x∈ a+3b4 , b . We have

f0(x) =

x− 3a+b4

if x∈ a,a+b2

, x− a+3b4

if x∈ a+b2 , b .

Thenf0is absolutely continuous andf00 ∈Lp[a, b],p > 1. We also have 1

2

f

3a+b 4

+f

a+ 3b 4

= 0, 1

b−a Z b

a

f(t) dt= (b−a)2 96 , kf00k[a,b],p = (b−a)1p, and then, by (2.12), we obtain

(b−a)2

96 ≤E· (b−a)2 (2q+ 1)1q

,

givingE ≥ (2q+1)

1q

96 for anyq >1, i.e.,E ≥ 321, and the corollary is proved.

(17)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page17of 23 Go Back Full Screen

Close

Theorem 2.6. Letf : [a, b]→Rbe such that the derivativef0 is absolutely contin- uous on [a, b] andf00 ∈ L1[a, b]. If M(x) is as defined in (2.2), then we have the bounds:

M(x)≤ b−a 2

"

x−a b−a

2

kf00k[a,x],1 (2.13)

+

a+b 2 −x b−a

!2

kf00k[x,a+b−x],1+

x−a b−a

2

kf00k[a+b−x,b],1





























b−a 2

2 x−ab−a2

+a+b 2 −x b−a

2

×max

kf00k[a,x],1,kf00k[x,a+b−x],1,kf00k[a+b−x,b],1

;

b−a 2

2 x−ab−a

+ a+b

2 −x b−a

α1

×h

kf00kβ[a,x],1+kf00kβ[x,a+b−x],1+kf00kβ[a+b−x,b],1

iβ1 if α >1,α1 +β1 = 1;

b−a 2

h

|x−

3a+b 4

b−a |+ 14 i2

kf00k[a,b],1; for anyx∈

a,a+b2 .

The proof is as in Theorem2.2 and we need only to prove the third inequality of the last part as

M(x)≤ b−a 2 max

x−a b−a

2

,

a+b 2 −x b−a

!2

×

kf00k[a,x],1+kf00k[x,a+b−x],1+kf00k[a+b−x,b],1

(18)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page18of 23 Go Back Full Screen

Close

= b−a 2

"

x−3a+b4 b−a

+ 1 4

#2

kf00k[a,b],1.

Remark 5. By the use of Theorem2.6, forx =a, we recapture the third part of the inequality (1.4), i.e.,

1 b−a

Z b a

f(t) dt− 1

2[f(a) +f(b)] + b−a

8 [f0(b)−f0(a)]

≤ 1

8(b−a)kf00k[a,b],1. If in (2.13) we choosex= a+b2 , then we get the mid-point inequality

1 b−a

Z b a

f(t) dt−f

a+b 2

≤ 1

8(b−a)kf00k[a,b],1. Corollary 2.7. With the assumptions in Theorem2.6, one has the inequality

1 b−a

Z b a

f(t) dt− f 3a+b4

+f a+3b4 2

≤ 1

32(b−a)kf00k[a,b],1.

(19)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page19of 23 Go Back Full Screen

Close

3. A Composite Quadrature Formula

We use the following inequalities obtained in the previous section:

(3.1) 1 2

f

3a+b 4

+f

a+ 3b 4

− 1 b−a

Z b a

f(t) dt









1

96(b−a)2kf00k[a,b],∞ if f00∈L[a, b] ;

1

32 ·(b−a)1+ 1q

(2q+1)

1

q kf00k[a,b],p if f00∈Lp[a, b], p >1, 1p +1q = 1;

1

32(b−a)kf00k[a,b],1 if f00∈L1[a, b].

LetIn :a=x0 < x1 <· · ·< xn−1 < xn =b be a division of the interval[a, b]and hi :=xi+1−xi (i= 0, . . . , n−1)andν(In) := max{hi|i= 0, . . . , n−1}.

Consider the composite quadrature rule (3.2) Qn(In, f) := 1

2

n−1

X

i=0

f

3xi+xi+1 4

+f

xi+ 3xi+1 4

hi.

The following result holds.

Theorem 3.1. Letf : [a, b]→Rbe such that the derivativef0 is absolutely contin- uous on[a, b]. Then we have

Z b a

f(t) dt=Qn(In, f) +Rn(In, f),

where Qn(In, f) is defined by the formula (3.2), and the remainder satisfies the

(20)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page20of 23 Go Back Full Screen

Close

estimates

(3.3) |Rn(In, f)| ≤

















1

96kf00k[a,b],∞

n−1

P

i=0

h3i if f00 ∈L[a, b] ;

1 32(2q+1)1q

kf00k[a,b],p n−1

P

i=0

h2q+1i 1q

if f00 ∈Lp[a, b], p > 1, 1p + 1q = 1;

1

32kf00k[a,b],1[ν(In)]2 if f00 ∈L1[a, b]. Proof. Applying inequality (3.1) on the interval[xi, xi+1], we may state that (3.4)

Z xi+1

xi

f(t) dt− 1 2

f

3xi+xi+1 4

+f

xi+ 3xi+1 4

hi









1

96h3ikf00k[xi,xi+1],∞;

1 32(2q+1)1q

h2+

1 q

i kf00k[xi,xi+1],p, p >1, 1p +1q = 1;

1

32h2ikf00k[xi,xi+1],1; for eachi∈ {0, . . . , n−1}.

Summing the inequality (3.4) over ifrom 0to n−1and using the generalized triangle inequality, we get

(3.5) |Rn(In, f)| ≤









1 96

Pn−1

i=0 h3ikf00k[xi,xi+1],∞;

1 32(2q+1)

1 q

Pn−1 i=0 h2+

1 q

i kf00k[xi,xi+1],p, p > 1, 1p + 1q = 1;

1 32

Pn−1

i=0 h2ikf00k[xi,xi+1],1.

(21)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page21of 23 Go Back Full Screen

Close

Now, we observe that

n−1

X

i=0

h3ikf00k[xi,xi+1],∞≤ kf00k[a,b],∞

n−1

X

i=0

h3i.

Using Hölder’s discrete inequality, we may write that

n−1

X

i=0

h2+

1 q

i kf00k[xi,xi+1],p

n−1

X

i=0

h(2+1q)q

i

!1q n−1 X

i=0

kf00kp[x

i,xi+1],p

!p1

=

n−1

X

i=0

h2q+1i

!1q n−1 X

i=0

Z xi+1

xi

|f00(t)|pdt

!1p

=

n−1

X

i=0

h2q+1i

!1q

kf00k[a,b],p.

Also, we note that

n−1

X

i=0

h2ikf00k[xi,xi+1],1 ≤ max

0≤i≤n−1

h2i

n−1

X

i=0

kf00k[xi,xi+1],1

= [ν(In)]2kf00k[a,b],1.

Consequently, by the use of (3.5), we deduce the desired result (3.3).

For the particular case where the divisionInis equidistant, i.e., In:=xi =a+i· b−a

n , i= 0, . . . , n,

(22)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page22of 23 Go Back Full Screen

Close

we may consider the quadrature rule:

(3.6) Qn(f) := b−a 2n

n−1

X

i=0

f

a+

4i+ 1 4n

(b−a)

+f

a+

4i+ 3 4n

(b−a)

.

The following corollary will be more useful in practice.

Corollary 3.2. With the assumption of Theorem3.1, we have

Z b a

f(t) dt=Qn(f) +Rn(f),

whereQn(f)is defined by (3.6) and the remainderRn(f)satisfies the estimate:

|Rn(In, f)| ≤









1

96kf00k[a,b],∞(b−a)3 n2 ;

1 32(2q+1)

1

qkf00k[a,b],p(b−a)n22+ 1q, p >1, 1p +1q = 1;

1

32kf00k[a,b],1(b−a)n2 2.

(23)

Ostrowski Type Inequality Zheng Liu vol. 10, iss. 2, art. 52, 2009

Title Page Contents

JJ II

J I

Page23of 23 Go Back Full Screen

Close

References

[1] A. GUESSAB AND G. SCHMEISSER, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115 (2002), 260–288.

[2] S. S. DRAGOMIR, Some companions of Ostrowski’s inequality for absolutely continuous functions and applications, Bull. Korean Math. Soc., 42(2) (2005), 213–230.

[3] Lj. DEDI ´C, M.MATI ´C AND J.PE ˇCARI ´C, On generalizations of Ostrowski in- equality via some Euler-type identities, Math. Inequal. Appl., 3(3) (2000), 337–

353.

[4] P. CERONE AND S.S. DRAGOMIR, Trapezoidal type rules from an inequal- ities point of view, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press N.Y. (2000), 65–134.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

ROUMELIOTIS, An inequality of Ostrowski-Grüss type for twice differentiable mappings and applications in numerical integration, Kyungpook Math. CHENG, Improvement of

A generalized Ostrowski type inequality for twice differentiable mappings in terms of the upper and lower bounds of the second derivative is established.. The inequality is applied

A generalized Ostrowski type inequality for twice differentiable mappings in terms of the upper and lower bounds of the second derivative is established.. The inequality is applied

The objective of this paper is to obtain further generalizations of the classical Hardy integral inequality which will be useful in applications by using some elementary methods

The objective of this paper is to obtain further generalizations of the classical Hardy integral inequality which will be useful in applications by using some elementary methods

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

An inequality providing some bounds for the integral mean via Pompeiu’s mean value theorem and applications for quadrature rules and special means are given.. 2000 Mathematics