• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
15
0
0

Teljes szövegt

(1)

volume 7, issue 4, article 124, 2006.

Received 15 September, 2005;

accepted 10 May, 2006.

Communicated by:N.S. Barnett

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

A GENERALIZED OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE MAPPINGS AND APPLICATIONS

A. RAFIQ, N.A. MIR AND FIZA ZAFAR

COMSATS Institute of Information Technology Islamabad, Pakistan

EMail:arafiq@comsats.edu.pk EMail:namir@comsats.edu.pk

CASPAM, B. Z. University Multan, Pakistan

EMail:fizazafar@gmail.com

c

2000Victoria University ISSN (electronic): 1443-5756 275-05

(2)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of15

Abstract

A generalized Ostrowski type inequality for twice differentiable mappings in terms of the upper and lower bounds of the second derivative is established.

The inequality is applied to numerical integration.

2000 Mathematics Subject Classification:26D15.

Key words: Ostrowski inequality, Grüss inequality.

The authors express thanks to Prof. N.S. Barnett for giving valuable suggestions during the preparation of this manuscript.

Contents

1 Introduction. . . 3 2 Main Results . . . 5 3 Applications in Numerical Integration . . . 11

References

(3)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 124, 2006

http://jipam.vu.edu.au

1. Introduction

The integral inequality that establishes a connection between the integral of the product of two functions and the product of the integrals is known in the literature as the Grüss inequality. The inequality is as follows:

Theorem 1.1. Let f, g : [a, b] −→ R be integrable functions such that Ψ ≤ f(x) ≤ ϕ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b], where Ψ, ϕ, γ and Γ are constants. It follows that,

(1.1)

1 b−a

Z b a

f(x)g(x)dx− 1 b−a

Z b a

f(x)dx 1 b−a

Z b a

g(x)dx

≤ 1

4(ϕ−Ψ) (Γ−γ), where the constant 14 is sharp.

In [2], S.S. Dragomir and S. Wang proved the following Ostrowski type inequality in terms of lower and upper bounds of the first derivative.

Theorem 1.2. Letf : [a, b]−→Rbe continuous on[a, b]and differentiable on (a, b)and where the first derivative satisfies the condition,

γ ≤f0(x)≤Γ for allx∈[a, b], then,

(1.2)

f(x)− 1 b−a

Z b a

f(t)dt− f(b)−f(a) b−a

x− a+b 2

≤ 1

4(b−a) (Γ−γ)

(4)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of15

for allx∈[a, b].

In [1], S.S. Dragomir and N.S. Barnett, proved the following inequality.

Theorem 1.3. Let f : [a, b] −→ R be continuous on [a, b] and twice differ- entiable on (a, b), where the second derivativef00 : (a, b) −→ R satisfies the condition,

ϕ ≤f00(x)≤Φ for allx∈(a, b), then,

(1.3)

f(x) +

"

(b−a)2 24 +1

2

x− a+b 2

2#

f0(b)−f0(a) b−a

x−a+b 2

f0(x)− 1 b−a

Z b a

f(t)dt

≤ 1

8(Φ−ϕ) 1

2(b−a) +

x− a+b 2

2

for allx∈[a, b].

In this paper we establish a more general form of (1.3) and apply the result to numerical integration.

(5)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 124, 2006

http://jipam.vu.edu.au

2. Main Results

Theorem 2.1. Let f : [a, b] −→ R be a continuous mapping on [a, b], and twice differentiable on(a, b)with second derivativef00 : (a, b)−→Rsatisfying the condition:

ϕ≤f00(x)≤Φ, for allx∈

a+hb−a

2 , b−hb−a 2

. It follows that,

(2.1)

(1−h)

f(x)−

x− a+b 2

f0(x)

+hf(a) +f(b) 2 +

"

1

2(1−h)

x− a+b 2

2

− (3h−1) (b−a)2 24

#

f0(b)−f0(a) b−a

− 1 b−a

Z b a

f(t)dt

≤ 1

8(Φ−ϕ) 1

2(b−a) (1−h) +

x− a+b 2

2

,

for allx∈[a+hb−a2 , b−hb−a2 ]andh∈[0,1]. Proof. The proof uses the following identity, (2.2)

Z b a

f(t)dt = (b−a) (1−h)f(x)

−(b−a) (1−h)

x− a+b 2

f0(x) +hb−a

2 (f(a) +f(b))

− h2(b−a)2

8 (f0(b)−f0(a)) + Z b

a

K(x, t)f00(t)dt.

(6)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of15

for allx∈[a+hb−a2 , b−hb−a2 ],where the kernelK : [a, b]2 →Ris defined by

(2.3) K(x, t) =

1 2

t− a+hb−a2 2

ift∈[a, x]

1 2

t− b−hb−a2 2

ift∈(x, b].

This is a particular form of the identity given in [3, p. 59; Corollary 2.3].

Observe that the kernelKsatisfies the estimation

(2.4) 0≤K(x, t)≤

1 2

b−hb−a2

−x2

, x∈

a+hb−a2 ,a+b2

1 2

x− a+hb−a2 2

, x∈a+b

2 , b−hb−a2 . Applying the Grüss inequality for the mappingsf00(·)andK(x,·) we get,

(2.5)

1 b−a

Z b a

K(x, t)f00(t)dt− 1 b−a

Z b a

K(x, t)dt 1 b−a

Z b a

f00(t)dt

≤ 1

4(Φ−ϕ)×

1 2

b−hb−a2

−x2

, x∈

a+hb−a2 ,a+b2

1 2

x− a+hb−a2 2

, x∈a+b

2 , b−hb−a2 . Observe that,

(2.6) Z b

a

K(x, t)dt= Z x

a

t− a+hb−a2 2

2 dt+

Z b x

t− b−hb−a2 2

2 dt

(7)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 124, 2006

http://jipam.vu.edu.au

= 1 6

"

x−

a+hb−a 2

3

+

b−hb−a 2

−x 3

+h3(b−a)3 4

#

= (b−a) (1−h)

"

(b−a)2(1−h)2

24 +1

2

x− a+b 2

2#

+h3(b−a)3 24 . Using(2.6)in(2.5),we get

1 b−a

Z b a

K(x, t)f00(t)dt−

"

(b−a)2(1−h)3

24 + 1

2(1−h)

x−a+b 2

2

+ h3(b−a)2 24

#

f0(b)−f0(a) b−a

≤ 1

4(Φ−ϕ)×

1 2

b−hb−a2

−x2

, x∈

a+hb−a2 ,a+b2

1 2

x− a+hb−a2 2

, x∈a+b

2 , b−hb−a2 .

Also, by using identity(2.2),the above inequality reduces to,

(1−h)

f(x)−

x−a+b 2

f0(x)

+hf(a) +f(b) 2 +

"

1

2(1−h)

x− a+b 2

2

− (3h−1) (b−a)2 24

#

f0(b)−f0(a) b−a

− 1 b−a

Z b a

f(t)dt

(8)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of15

≤ 1

4(Φ−ϕ)×

1 2

b−hb−a2

−x2

, x∈

a+hb−a2 ,a+b2

;

1 2

x− a+hb−a2 2

, x∈a+b

2 , b−hb−a2 . Since,

max

( b−hb−a2

−x2

2 ,

x− a+hb−a2 2

2

)

=

1 2

b−hb−a2

−x2

, x∈

a+hb−a2 ,a+b2

1 2

x− a+hb−a2 2

, x∈a+b

2 , b−hb−a2 , but on the other hand,

max

( b−hb−a2

−x2

2 ,

x− a+hb−a2 2

2

)

= 1 2

1

2(b−a) (1−h) +

x− a+b 2

2

,

inequality (2.1) is proved.

Remark 1. Forh= 0in (2.1), we obtain (1.3).

Corollary 2.2. Iff is as in Theorem2.1, then we have the following perturbed

(9)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 124, 2006

http://jipam.vu.edu.au

midpoint inequality:

(2.7)

(1−h)f

a+b 2

+hf(a) +f(b) 2

− (3h−1) (b−a)

24 (f0(b)−f0(a))− 1 b−a

Z b a

f(t)dt

≤ 1

32(Φ−ϕ) (b−a)2(1−h)2, giving,

(2.8) f

a+b 2

+(b−a)

24 (f0(b)−f0(a))− 1 b−a

Z b a

f(t)dt

≤ 1

32(Φ−ϕ) (b−a)2, forh= 0.

Remark 2. The classical midpoint inequality states that (2.9)

f

a+b 2

− 1 b−a

Z b a

f(t)dt

≤ 1

24(b−a)2kf00k.

If Φ−ϕ ≤ 43kf00k, then the estimation provided by(2.7)is better than the estimation in the classical midpoint inequality (2.9). A sufficient condition for Φ −ϕ ≤ 43 kf00k to be true is 0 ≤ ϕ ≤ Φ.Indeed, if 0 ≤ ϕ ≤ Φ, then Φ−ϕ≤ kf00k< 43 kf00k.

(10)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of15

Corollary 2.3. Letf be as in Theorem2.1, then,

(2.10)

f(a) +f(b)

2 − (b−a)

12 (f0(b)−f0(a))− 1 b−a

Z b a

f(t)dt

≤ 1

32(Φ−ϕ) (2−h)2(b−a)2. Proof. Putx=aandx=bin turn in (2.1) and use the triangle inequality.

Corollary 2.4. Let f be as in Theorem 2.1, then we have the following per- turbed Trapezoid inequality:

(2.11)

f(a) +f(b)

2 − (b−a)

12 (f0(b)−f0(a))− 1 b−a

Z b a

f(t)dt

≤ 1

32(Φ−ϕ) (b−a)2. Proof. Puth= 1in (2.10).

Remark 3. The classical Trapezoid inequality states that (2.12)

f(a) +f(b)

2 − 1

b−a Z b

a

f(t)dt

≤ 1

12(b−a)2kf00k.

If we assume thatΦ−ϕ ≤ 23kf00k,then the estimation provided by(2.10)is better than the estimation in the classical Trapezoid inequality(2.12).

(11)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 124, 2006

http://jipam.vu.edu.au

3. Applications in Numerical Integration

Let In : a = x0 < x1 < · · · < xn−1 < xn = b be a division of the interval [a, b], ξi ∈ [xi, xi+1], (i= 0,1, . . . , n−1) a sequence of intermediate points andhi :=xi+1 −xi(i= 0,1, . . . , n−1).Following the approach taken in [1]

we have the following:

Theorem 3.1. Letf : [a, b]−→ Rbe continuous on[a, b]and a twice differen- tiable function on(a, b),whose second derivative,f00: (a, b)−→Rsatisfies:

ϕ ≤f00(x)≤Φ, for allx∈(a, b), then,

(3.1)

Z b a

f(t)dt =A(f, f0, In, ξ, δ) +R(f, f0, In, ξ, δ), where

(3.2) A(f, f0, In, ξ, δ)

= (1−δ)

n−1

X

i=0

hif(ξi)−(1−δ)

n−1

X

i=0

hi

ξi− xi+xi−1

2

f0i)

n−1

X

i=0

hi

f(xi) +f(xi+1) 2

+

n−1

X

i=0

"

1

2(1−δ)

ξi− xi+xi+1

2 2

−(3δ−1)h2i 24

(f0(xi+1)−f0(xi))

(12)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of15

and the remainderR(f, f0, In, ξ, δ)satisfies the estimation:

|R(f, f0, In, ξ, δ)|

≤ 1

8(Φ−ϕ)

n−1

X

i=0

hi

(1−δ) 2 hi+

ξi− xi+xi+1 2

2

≤ 1

32(Φ−ϕ) (1−δ)2

n−1

X

i=0

h3i, (3.3)

whereδ∈[0,1]andxih2i ≤ξi ≤xi+1−δh2i.

Proof. Applying Theorem2.1on the interval[xi, xi+1] (i= 0, . . . , n−1)gives:

(1−δ)

hif(ξi)−hi

ξi−xi+xi+1 2

f0i)

+δhi

f(xi) +f(xi+1) 2

+

"

1

2(1−δ)

ξi− xi+xi+1

2 2

− (3δ−1)h2i 24

#

(f0(xi+1)−f0(xi))

− Z xi+1

xi

f(t)dt

≤ 1

8(Φ−ϕ)hi 1

2(1−δ)hi+

ξi−xi+xi+1 2

2

,

≤ 1

8(Φ−ϕ) (1−δ)2h3i

as

ξi− xi+xi+1 2

≤(1−δ)hi

2 for alli∈ {0,1, ..., n−1}

(13)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 124, 2006

http://jipam.vu.edu.au

for any choiceξiof the intermediate points.

Summing the above inequalities overifrom0ton−1, and using the gener- alized triangle inequality, we get the desired estimation(3.3).

Corollary 3.2. The following perturbed midpoint rule holds:

(3.4)

Z b a

f(x)dx=M(f, f0, In) +RM(f, f0, In), where

(3.5) M(f, f0, In) =

n−1

X

i=0

hif

xi+xi+1 2

+ 1

24

n−1

X

i=0

h2i (f0(xi+1)−f0(xi)) and the remainder termRM(f, f0, In)satisfies the estimation:

(3.6) |RM(f, f0, In)| ≤ 1

32(Φ−ϕ)

n−1

X

i=0

h3i.

Corollary 3.3. The following perturbed trapezoid rule holds (3.7)

Z b a

f(x)dx =T (f, f0, In) +RT (f, f0, In), where

(3.8) T (f, f0, In) =

n−1

X

i=0

hif(xi) +f(xi+1)

2 − 1

12

n−1

X

i=0

h2i (f0(xi+1)−f0(xi))

(14)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of15

and the remainder termRT (f, f0, In)satisfies the estimation:

(3.9) |RT (f, f0, In)| ≤ 1

32(Φ−ϕ)

n−1

X

i=0

h3i.

Remark 4. Note that the above mentioned perturbed midpoint formula (3.5) and perturbed trapezoid formula (3.8)can offer better approximations of the integralRb

a f(x)dxfor general classes of mappings as discussed in Remarks1 and2.

(15)

A Generalized Ostrowski-Grüss Type Inequality for Twice Differentiable Mappings and

Applications A. Rafiq, N.A. Mir and Fiza Zafar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 124, 2006

http://jipam.vu.edu.au

References

[1] N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, J. ROUMELIOTISAND

A. SOFO, A survey on Ostrowski type inequalities for twice differentiable mappings and applications, Inequality Theory and Applications, 1 (2001), 33–86.

[2] S.S. DRAGOMIR AND S. WANG, An inequality of Ostrwski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers Math. Appl., 33 (1997), 15–20.

[3] S.S. DRAGOMIR ANDN.S. BARNETT, An Ostrowski type inequality for mappings whose second derivatives are bounded and applications, RGMIA Research Report of Collection, 1(2) (1998), 61–63.

[4] S.S. DRAGOMIR AND Th.M. RASSIAS (Eds.), Ostrowski Type Inequali- ties and Applications in Numerical Integration, Kluwer Academic Publish- ers 2002.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In Section 3 we use the mentioned general inequality to obtain a particular two-dimensional Ostrowski-Grüss type

WANG, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and some numerical quadrature rules, Comput..

WANG, An inequality of Ostrowski-Grüss’ type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers

WANG, An inequality of Ostrowski-Grüss’ type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

An Askey type inequality for the function λ p and the Grünbaum inequality for the modified Bessel functions of the first kind are derived in Section 3.. The lower and upper bounds

An Askey type inequality for the function λ p and the Grünbaum inequality for the modified Bessel functions of the first kind are derived in Section 3.. The lower and upper bounds

In this section, some “Ky Fan” type inequalities are established, the Ky Fan inequality is generalized.