• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
31
0
0

Teljes szövegt

(1)

volume 6, issue 4, article 128, 2005.

Received 17 August, 2005;

accepted 30 August, 2005.

Communicated by:I. Gavrea

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON OSTROWSKI-GRÜSS- ˇCEBYŠEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE MODULUS OF DERIVATIVES ARE CONVEX

B.G. PACHPATTE

57 Shri Niketan Colony Near Abhinay Talkies Aurangabad 431 001 (Maharashtra) India.

EMail:bgpachpatte@hotmail.com

c

2000Victoria University ISSN (electronic): 1443-5756 245-05

(2)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

Abstract

The aim of the present paper is to establish some new Ostrowski-Grüss- ˇCebyšev type inequalities involving functions whose modulus of the derivatives are con- vex.

2000 Mathematics Subject Classification:26D15, 26D20.

Key words: Ostrowski-Grüss- ˇCebyšev type inequalities, Modulus of derivatives, Convex, Log-convex, Integral identities.

Contents

1 Introduction. . . 3

2 Statement of Results. . . 5

3 Proofs of Theorems 2.1 and 2.2. . . 12

4 Proofs of Theorems 2.3 and 2.4. . . 22

5 Proof of Theorem 2.5 . . . 28 References

(3)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

1. Introduction

In 1938, A.M. Ostrowski [5] proved the following classial inequality.

Letf : [a, b]→Rbe continuous on[a, b]and differentiable on(a, b)whose derivativef0 : (a, b)→Ris bounded on(a, b)i.e.,|f0(x)| ≤M < ∞.Then (1.1)

f(x)− 1 b−a

Z b a

f(t)dt

 1

4+ x− a+b2 b−a

!2

(b−a)M, for allx∈[a, b],whereM is a constant.

For two absolutely continuous functions f, g : [a, b] → R, consider the functional

(1.2) T(f, g) = 1 b−a

Z b a

f(x)g(x)dx

− 1

b−a Z b

a

f(x)dx 1 b−a

Z b a

g(x)dx

, provided the involved integrals exist. In 1882, P.L. ˇCebyšev [6] proved that, if f0, g0 ∈L[a, b], then

(1.3) |T (f, g)| ≤ 1

12(b−a)2kf0kkg0k. In 1934, G. Grüss [6] showed that

(1.4) |T (f, g)| ≤ 1

4(M −m) (N −n),

(4)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

provided m, M, n, N are real numbers satisfying the condition −∞ < m ≤ f(x)≤M <∞,−∞< n≤g(x)≤N <∞,for allx∈[a, b].

During the past few years many researchers have given considerable atten- tion to the above inequalities and various generalizations, extensions and vari- ants of these inequalities have appeared in the literature, see [1] – [10] and the references cited therein. Motivated by the recent results given in [1] – [3], in the present paper, we establish some inequalities similar to those given by Os- trowski, Grüss and ˇCebyšev, involving functions whose modulus of derivatives are convex. The analysis used in the proofs is elementary and based on the use of integral identities proved in [1] and [2].

(5)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

2. Statement of Results

Let I be a suitable interval of the real lineR. A function f : I → Ris called convex if

f(λx+ (1−λ)y)≤λf(x) + (1−λ)f(y),

for all x, y ∈ I andλ ∈ [0,1].A function f : I → (0,∞)is said to be log- convex, if

f(tx+ (1−t)y)≤[f(x)]t[f(y)]1−t,

for allx, y ∈Iandt∈[0,1](see [10]). We need the following identities proved in [1] and [2] respectively:

f(x) = 1 b−a

Z b a

f(t)dt+ 1 b−a

Z b a

(x−t) Z 1

0

f0[(1−λ)x+λt]dt

dt,

f(x) = 1 b−a

Z b a

f(t)dt+ (x−a)2 1 b−a

Z 1 0

λf0[(1−λ)a+λx]dλ

−(b−x)2 1 b−a

Z 1 0

λf0[λx+ (1−λ)b]dλ, forx∈[a, b]wheref : [a, b]→Ris an absolutely continuous function on[a, b]

andλ∈[0,1].

We use the following notation to simplify the details of presentation:

S(f, g) =f(x)g(x)− 1 2 (b−a)

g(x)

Z b a

f(t)dt+f(x) Z b

a

g(t)dt

,

(6)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

and definek·kas the usual Lebesgue norm onL[a, b]i.e., khk := ess supt∈[a,b]|h(t)|

forh∈L[a, b].

The following theorems deal with Ostrowski type inequalities involving two functions.

Theorem 2.1. Letf, g: [a, b]→Rbe absolutely continuous functions on[a, b].

(a1) If|f0|,|g0|are convex on[a, b], then

(2.1) |S(f, g)| ≤ 1 4

 1

4 + x− a+b2 b−a

!2

(b−a)

× {|g(x)|[|f0(x)|+kf0k] +|f(x)|[|g0(x)|+kg0k]}, forx∈[a, b].

(a2) If|f0|,|g0|are log-convex on[a, b], then (2.2) |S(f, g)| ≤ 1

2 (b−a)

|g(x)| |f0(x)|

Z b a

|x−t|

A−1 logA

dt +|f(x)| |g0(x)|

Z b a

|x−t|

B−1 logB

dt

,

forx∈[a, b], where

(2.3) A= |f0(t)|

|f0(x)|, B = |g0(t)|

|g0(x)|.

(7)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

Theorem 2.2. Letf, g: [a, b]→Rbe absolutely continuous functions on[a, b].

(b1) If|f0|,|g0|are convex on[a, x]and[x, b], then (2.4) |S(f, g)| ≤ 1

2{|g(x)|F (x) +|f(x)|G(x)}, forx∈[a, b], where

(2.5) F (x) = 1 6

h|f0(a)|

x−a b−a

2

+|f0(b)|

b−x b−a

2

+

1 + 4 x− a+b2 b−a

!2

|f0(x)|

(b−a),

(2.6) G(x) = 1 6 h

|g0(a)|

x−a b−a

2

+|g0(b)|

b−x b−a

2

+

1 + 4 x− a+b2 b−a

!2

|g0(x)|

(b−a), forx∈[a, b].

(b2) If|f0|,|g0|are log-convex on[a, x]and[x, b], then

(2.7) |S(f, g)| ≤ |g(x)|H(x) +|f(x)|L(x),

(8)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

forx∈[a, b], where

(2.8) H(x) = 1

2(b−a)

"

|f0(a)|

x−a b−a

2

A1logA1+ 1−A1

(logA1)2 +|f0(b)|

b−x b−a

2

B1logB1 + 1−B1 (logB1)2

# ,

(2.9) L(x) = 1

2(b−a)

"

|g0(a)|

x−a b−a

2

A2logA2 + 1−A2 (logA2)2 +|g0(b)|

b−x b−a

2

B2logB2 + 1−B2 (logB2)2

# ,

and

A1 = |f0(x)|

|f0(a)|, B1 = |f0(x)|

|f0(b)|, (2.10)

A2 = |g0(x)|

|g0(a)|, B2 = |g0(x)|

|g0(b)|, (2.11)

forx∈[a, b].

The Grüss type inequalities are embodied in the following theorems.

Theorem 2.3. Letf, g: [a, b]→Rbe absolutely continuous functions on[a, b].

(9)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

(c1) If|f0|,|g0|are convex on[a, b], then

(2.12) |T (f, g)| ≤ 1 4 (b−a)2

Z b a

h|g(x)|[|f0(x)|+kf0k] +|f(x)|[|g0(x)|+kg0k]i

E(x)dx, where

(2.13) E(x) = (x−a)2+ (b−x)2

2 ,

forx∈[a, b].

(c2) If|f0|,|g0|are log-convex on[a, b], then (2.14) |T (f, g)|

≤ 1

2 (b−a)2 Z b

a

|g(x)|

Z b a

|x−t| |f0(x)|

A−1 logA

dt +|f(x)|

Z b a

|x−t| |g0(x)|

B−1 logB

dt

dx, whereA,Bare defined by (2.3).

Theorem 2.4. Letf, g: [a, b]→Rbe absolutely continuous functions on[a, b].

(10)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

(d1) If|f0|,|g0|are convex on[a, b], then (2.15) |T (f, g)| ≤ 1

2 Z b

a

"

x−a b−a

2

|g(x)|

1

6|f0(a)|+ 1

3|f0(x)|

+|f(x)|

1

6|g0(a)|+ 1

3|g0(x)|

+

b−x b−a

2

|g(x)|

1

3|f0(x)|+ 1

6|f0(b)|

+|f(x)|

1

3|g0(x)|+1

6|g0(b)|

dx,

(d2) If|f0|,|g0|are log-convex on[a, x]and[x, b], then (2.16) |T (f, g)|

≤ 1 2

Z b a

"

x−a b−a

2

{|g(x)| |f0(a)|A1logA1+ 1−A1 (logA1)2 + |f(x)| |g0(a)|A2logA2+ 1−A2

(logA2)2

+

b−x b−a

2

|g(x)| |f0(b)|B1logB1+ 1−B1 (logB1)2 +|f(x)| |g0(b)|B2logB2+ 1−B2

(logB2)2

dx, whereA1, B1andA2, B2 are defined by (2.10) and (2.11).

(11)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

The next theorem contains ˇCebyšev type inequalities.

Theorem 2.5. Letf, g: [a, b]→Rbe absolutely continuous functions on[a, b].

(e1) If|f0|,|g0|are convex on[a, b], then (2.17) |T (f, g)|

≤ 1

4 (b−a)3 Z b

a

[|f0(x)|+kf0k] [|g0(x)|+kg0k]E2(x)dx, whereE(x)is given by (2.13).

(e2) If|f0|,|g0|are log-convex on[a, b], then

(2.18) |T (f, g)| ≤ 1 (b−a)3

Z b a

Z b a

|x−t| |f0(x)|

A−1 logA

dt

× Z b

a

|x−t| |g0(x)|

B−1 logB

dt

dx, whereA, B are defined by (2.3).

(12)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

3. Proofs of Theorems 2.1 and 2.2

Proof of Theorem2.1. From the hypotheses of Theorem2.1, the following iden- tities hold:

(3.1) f(x) = 1 b−a

Z b a

f(t)dt

+ 1

b−a Z b

a

(x−t) Z 1

0

f0[(1−λ)x+λt]dλ

dt,

(3.2) g(x) = 1 b−a

Z b a

g(t)dt

+ 1

b−a Z b

a

(x−t) Z 1

0

g0[(1−λ)x+λt]dλ

dt, for x ∈ [a, b].Multiplying both sides of (3.1) and (3.2) by g(x)and f(x)re- spectively, adding the resulting identities and rewriting we have

(3.3) S(f, g) = 1 2 (b−a)

g(x)

Z b a

(x−t) Z 1

0

f0[(1−λ)x+λt]dλ

dt +f(x)

Z b a

(x−t) Z 1

0

g0[(1−λ)x+λt]dλ

dt

. (a1)Since|f0|,|g0|are convex on[a, b], from (3.3) we observe that

|S(f, g)|

≤ 1

2 (b−a)

|g(x)|

Z b a

|x−t|

Z 1 0

|f0[(1−λ)x+λt]|dλ

dt

(13)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

+|f(x)|

Z b a

|x−t|

Z 1 0

|g0[(1−λ)x+λt]|dλ

dt

≤ 1

2 (b−a)

|g(x)|

Z b a

|x−t|

Z 1 0

{(1−λ)|f0(x)|+λ|f0(t)|}dλ

dt +|f(x)|

Z b a

|x−t|

Z 1 0

{(1−λ)|g0(x)|+λ|g0(t)|}dλ

dt

= 1

2 (b−a)

|g(x)|

Z b a

|x−t|

|f0(x)|

Z 1 0

(1−λ)dλ+|f0(t)|

Z 1 0

λdλ

dt +|f(x)|

Z b a

|x−t|

|g0(x)|

Z 1 0

(1−λ)dλ+|g0(t)|

Z 1 0

λdλ

dt

= 1

2 (b−a)

|g(x)|

Z b a

|x−t|1

2[|f0(x)|+|f0(t)|]dt +|f(x)|

Z b a

|x−t|1

2[|g0(x)|+|g0(t)|]dt

≤ 1

4 (b−a)

|g(x)| ess.sup

t ∈[a, b] [|f0(x)|+|f0(t)|]

Z b a

|x−t|dt +|f(x)| ess.sup

t ∈[a, b] [|g0(x)|+|g0(t)|]

Z b a

|x−t|dt

= 1

4 (b−a){|g(x)|[|f0(x)|+kf0k] +|f(x)|

|g0(x)|+kg0k Z b

a

|x−t|dt

(14)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

= 1 4

"

(x−a)2+ (b−x)2 2 (b−a)

#

× {|g(x)|[|f0(x)|+kf0k] +|f(x)|

|g0(x)|+kg0k

= 1 4

 1

4 + x− a+b2 b−a

!2

×(b−a){|g(x)|[|f0(x)|+kf0k] +|f(x)|

|g0(x)|+kg0k

. This is the required inequality in (2.1).

(a2)Since|f0|,|g0|are log-convex on[a, b], from (3.3) we observe that

|S(f, g)| ≤ 1 2 (b−a)

|g(x)|

Z b a

|x−t|

Z 1 0

|f0[(1−λ)x+λt]|dλ

dt +|f(x)|

Z b a

|x−t|

Z 1 0

|g0[(1−λ)x+λt]|dλ

dt

≤ 1

2 (b−a)

|g(x)|

Z b a

|x−t|

Z 1 0

[|f0(x)|]1−λ[|f0(t)|]λ

dt +|f(x)|

Z b a

|x−t|

Z 1 0

[|g0(x)|]1−λ[|g0(t)|]λ

dt

= 1

2 (b−a) (

|g(x)|

Z b a

|x−t|

"

|f0(x)|

Z 1 0

|f0(t)|

|f0(x)|

λ

# dt

+|f(x)|

Z b a

|x−t|

"

|g0(x)|

Z 1 0

|g0(t)|

|g0(x)|

λ

# dt

)

(15)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

= 1

2 (b−a)

|g(x)| |f0(x)|

Z b a

|x−t|

A−1 logA

dt +|f(x)| |g0(x)|

Z b a

|x−t|

B−1 logB

dt

.

This completes the proof of the inequality (2.2).

Proof of Theorem2.2. From the hypotheses of Theorem2.2, the following iden- tities hold:

(3.4) f(x) = 1 b−a

Z b a

f(t)dt + (x−a)2 1 b−a

Z 1 0

λf0[(1−λ)a+λx]dλ

−(b−x)2 1 b−a

Z 1 0

λf0[λx+ (1−λ)b]dλ,

(3.5) g(x) = 1 b−a

Z b a

g(t)dt + (x−a)2 1

b−a Z 1

0

λg0[(1−λ)a+λx]dλ

−(b−x)2 1 b−a

Z 1 0

λg0[λx+ (1−λ)b]dλ.

(16)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

Multiplying both sides of (3.4) and (3.5) byg(x)andf(x)respectively, adding the resulting identities and rewriting we have

(3.6) S(f, g) = 1 2

g(x)

(x−a)2 1 b−a

Z 1 0

λf0[(1−λ)a+λx]dλ

−(b−x)2 1 b−a

Z 1 0

λf0[λx+ (1−λ)b]dλ

+f(x)

(x−a)2 1 b−a

Z 1 0

λg0[(1−λ)a+λx]dλ

−(b−x)2 1 b−a

Z 1 0

λg0[λx+ (1−λ)b]dλ

.

(b1)Since|f0|,|g0|are convex on[a, x]and[x, b], from (3.6) we observe that (3.7) |S(f, g)| ≤ 1

2{|g(x)|M(x) +|f(x)|N(x)}, where

(3.8) M(x) = (x−a)2 1 b−a

Z 1 0

λ|f0[(1−λ)a+λx]|dλ + (b−x)2 1

b−a Z 1

0

λ|f0[λx+ (1−λ)b]|dλ,

(3.9) N(x) = (x−a)2 b−a

Z 1 0

λ|g0[(1−λ)a+λx]|dλ

(17)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

+(b−x)2 b−a

Z 1 0

λ|g0[λx+ (1−λ)b]|dλ.

Next, we observe that Z 1

0

λ|f0[(1−λ)a+λx]|dλ (3.10)

≤ |f0(a)|

Z 1 0

λ(1−λ)dλ+|f0(x)|

Z 1 0

λ2

= 1

6|f0(a)|+ 1

3|f0(x)|

and

Z 1 0

λ|f0[λx+ (1−λ)b]|dλ (3.11)

≤ |f0(x)|

Z 1 0

λ2dλ+|f0(b)|

Z 1 0

λ(1−λ)dλ

= 1

3|f0(x)|+1

6|f0(b)|. Similarly we have

(3.12)

Z 1 0

λ|g0[(1−λ)a+λx]|dλ≤ 1

6|g0(a)|+1

3|g0(x)|,

(3.13)

Z 1 0

λ|g0[λx+ (1−λ)b]|dλ≤ 1

3|g0(x)|+1

6|g0(b)|.

(18)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

From (3.8), (3.10) and (3.11) we observe that M(x) =

"

x−a b−a

2Z 1 0

λ|f0[(1−λ)a+λx]|dλ (3.14)

+

b−x b−a

2Z 1 0

λ|f0[λx+ (1−λ)b]|dλ

#

(b−a)

"

x−a b−a

2 1

6|f0(a)|+1

3|f0(x)|

+

b−x b−a

2 1

3|f0(x)|+1

6|f0(b)|

#

(b−a)

= 1 6

"

x−a b−a

2

|f0(a)|+

b−x b−a

2

|f0(b)|

#

(b−a)

+1 3

"

x−a b−a

2

+

b−x b−a

2#

|f0(x)|(b−a)

= 1 6

"

x−a b−a

2

|f0(a)|+

b−x b−a

2

|f0(b)|

+ 2

"

x−a b−a

2

+

b−x b−a

2#

|f0(x)|

#

(b−a).

(19)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

It is easy to observe that 2

"

x−a b−a

2

+

b−x b−a

2#

= 4

b−a

"

(x−a)2+ (b−x)2 2 (b−a)

# (3.15)

= 4

b−a

 1

4 + x− a+b2 b−a

!2

(b−a)

=

1 + 4 x− a+b2 b−a

!2

.

Using (3.15) in (3.14) we get

(3.16) M(x)≤F (x).

Similarly, from (3.9), (3.12), (3.13) we get

(3.17) N(x)≤G(x).

Using (3.16), (3.17) in (3.7) we get the required inequality in (2.4).

(b2)Since |f0|,|g0| are log-convex on [a, x]and [x, b] , from (3.6) we observe that

|S(f, g)|

(3.18)

≤ 1

2(b−a) (

|g(x)|

"

x−a b−a

2Z 1 0

λ|f0[(1−λ)a+λx]|dλ

(20)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

+

b−x b−a

2Z 1 0

λ|f0[λx+ (1−λ)b]|dλ

#

+|f(x)|

"

x−a b−a

2Z 1 0

λ|g0[(1−λ)a+λx]|dλ

+

b−x b−a

2Z 1 0

λ|g0[λx+ (1−λ)b]|dλ

#)

≤ 1

2(b−a) (

|g(x)|

"

x−a b−a

2Z 1 0

λ[|f0(a)|]1−λ[|f0(x)|]λ

+

b−x b−a

2Z 1 0

λ[|f0(x)|]λ[|f0(b)|]1−λ

#

+|f(x)|

"

x−a b−a

2Z 1 0

λ[|g0(a)|]1−λ[|g0(x)|]λ

+

b−x b−a

2Z 1 0

λ[|g0(x)|]λ[|g0(b)|]1−λ

#)

= 1

2(b−a) (

|g(x)|

"

x−a b−a

2

|f0(a)|

Z 1 0

λAλ1

+

b−x b−a

2

|f0(b)|

Z 1 0

λB1λ

#

(21)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

+|f(x)|

"

x−a b−a

2

|g0(a)|

Z 1 0

λAλ2

+

b−x b−a

2

|g0(b)|

Z 1 0

λB2λ

#) .

A simple calculation shows that for anyC > 0we have (see [2]) (3.19)

Z 1 0

λCλdλ= ClogC+ 1−C (logC)2 . Using this fact in (3.18) we get the required inequality in (2.7).

(22)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

4. Proofs of Theorems 2.3 and 2.4

Proof of Theorem2.3. From the hypotheses of Theorem2.3the identities (3.1) – (3.3) hold. Integrating both sides of (3.3) with respect toxfrom a tob and rewriting we have

(4.1) T(f, g)

= 1

2 (b−a)2 Z b

a

g(x)

Z b a

(x−t) Z 1

0

f0[(1−λ)x+λt]dλ

dt

+f(x) Z b

a

(x−t) Z 1

0

g0[(1−λ)x+λt]dλ

dt

dx.

(c1)Since|f0|,|g0|are convex on[a, b], from (4.1) we observe that

|T (f, g)|

≤ 1

2 (b−a)2 Z b

a

|g(x)|

Z b a

|x−t|

Z 1 0

[(1−λ)|f0(x)|+λ|f0(t)|]dλ

dt

+|f(x)|

Z b a

|x−t|

Z 1 0

[(1−λ)|g0(x)|+λ|g0(t)|]dλ

dt

dx

= 1

2 (b−a)2 Z b

a

|g(x)|

Z b a

|x−t|

|f0(x)|+|f0(t)|

2

dt +|f(x)|

Z b a

|x−t|

|g0(x)|+|g0(t)|

2

dt

dx

(23)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

≤ 1

2 (b−a)2 Z b

a

|g(x)|

Z b a

|x−t| esssup t∈[a, b]

|f0(x)|+|f0(t)|

2

dt

+|f(x)|

Z b a

|x−t| ess sup t∈[a, b]

|g0(x)|+|g0(t)|

2

dt

dx

= 1

4 (b−a)2 Z b

a

[|g(x)|[|f0(x)|+kf0k]dt +|f(x)|[|g0(x)|+kg0k]]

Z b a

|x−t|dt

dx

= 1

4 (b−a)2 Z b

a

[|g(x)|[|f0(x)|+kf0k]dt +|f(x)|[|g0(x)|+kg0k]]E(x)dx.

This completes the proof of the inequality (2.14).

(c2)Since|f0|,|g0|are log-convex on[a, b]from (4.1) we observe that

|T (f, g)| ≤ 1 2 (b−a)2

Z b a

|g(x)|

Z b a

|x−t|

Z 1 0

[|f0(x)|]1−λ[|f0(t)|]λ

dt +|f(x)|

Z b a

|x−t|

Z 1 0

[|g0(x)|]1−λ[|g0(t)|]λ

dt

dx

= 1

2 (b−a)2 Z b

a

"

|g(x)|

Z b a

|x−t|

"

|f0(x)|

Z 1 0

|f0(t)|

|f0(x)|

λ

# dt

(24)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

+|f(x)|

Z b a

|x−t|

"

|g0(x)|

Z 1 0

|g0(t)|

|g0(x)|

λ

# dt

# dx

= 1

2 (b−a)2 Z b

a

|g(x)|

Z b a

|x−t| |f0(x)|

A−1 logA

dt

+|f(x)|

Z b a

|x−t| |g0(x)|

B−1 logB

dt

dx,

whereA, Bare defined by (2.3). This is the required inequality in (2.14).

Proof of Theorem2.4. From the hypotheses of Theorem2.4the identities (3.4) – (3.6) hold. Integrating both sides of (3.6) with respect toxfrom a tob and rewriting we have

(4.2) T(f, g) = 1 2

Z b a

"

x−a b−a

2 g(x)

Z 1 0

λf0[(1−λ)a+λx]dλ

+f(x) Z 1

0

λg0[(1−λ)a+λx]dλ

b−x b−a

2 g(x)

Z 1 0

λf0[λx+ (1−λ)b]dλ +f(x)

Z 1 0

λg0[λx+ (1−λ)b]dλ

dx.

(25)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

(d1)Since|f0|,|g0|are convex on[a, x]and[x, b]from (4.2) we observe that

|T(f, g)| ≤ 1 2

Z b a

"

x−a b−a

2

|g(x)|

Z 1 0

λ|f0[(1−λ)a+λx]|dλ

+|f(x)|

Z 1 0

λ|g0[(1−λ)a+λx]|dλ

+

b−x b−a

2

|g(x)|

Z 1 0

λ|f0[λx+ (1−λ)b]|dλ +|f(x)|

Z 1 0

λ|g0[λx+ (1−λ)b]|dλ

dx

≤ 1 2

Z b a

"

x−a b−a

2

|g(x)|

Z 1 0

λ{(1−λ)|f0(a)|+λ|f0(x)|}dλ

+|f(x)|

Z 1 0

λ{(1−λ)|g0(a)|+λ|g0(x)|}dλ

+

b−x b−a

2

|g(x)|

Z 1 0

λ{λ|f0(x)|+ (1−λ)|f0(b)|}dλ +|f(x)|

Z 1 0

λ{λ|g0(x)|+ (1−λ)|g0(b)|}dλ

dx

= 1 2

Z b a

"

x−a b−a

2

|g(x)|

1

6|f0(a)|+1

3|f0(x)|

+|f(x)|

1

6|g0(a)|+1

3|g0(x)|

(26)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

+

b−x b−a

2

|g(x)|

1

3|f0(x)|+1

6|f0(b)|

+|f(x)|

1

3|g0(x)|+ 1

6|g0(b)|

dx.

This proves the inequality in (2.15).

(d2) Since|f0|,|g0| are log-convex on [a, x]and [x, b], from (4.2) and the fact (3.19) we observe that

|T(f, g)|

≤ 1 2

Z b a

"

x−a b−a

2

|g(x)|

Z 1 0

λ[|f0(a)|]1−λ[|f0(x)|]λ

+|f(x)|

Z 1 0

λ[|g0(a)|]1−λ[|g0(x)|]λ

+

b−x b−a

2

|g(x)|

Z 1 0

λ[|f0(x)|]λ[|f0(b)|]1−λdλ +|f(x)|

Z 1 0

λ[|g0(x)|]λ[|g0(b)|]1−λ

dx

= 1 2

Z b a

"

x−a b−a

2

|g(x)| |f0(a)|

Z 1 0

λAλ1dλ+|f(x)| |g0(a)|

Z 1 0

λB1λ

+

b−x b−a

2

|g(x)| |f0(b)|

Z 1 0

λAλ2dλ+|f(x)| |g0(b)|

Z 1 0

λB2λdλ #

dx

(27)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page27of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

= 1 2

Z b a

"

x−a b−a

2

|g(x)| |f0(a)| A1logA1+ 1−A1 (logA1)2 +|f(x)| |g0(a)|B1logB1+ 1−B1

(logB1)2

+

b−x b−a

2

|g(x)| |f0(b)|A2logA2+ 1−A2 (logA2)2 +|f(x)| |g0(b)|B2logB2+ 1−B2

(logB2)2

dx.

This is the desired inequality in (2.16).

(28)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page28of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

5. Proof of Theorem 2.5

From the hypotheses, the identities (3.1) and (3.2) hold. From (3.1) and (3.2) we observe that

f(x)− 1 b−a

Z b a

f(t)dt g(x)− 1 b−a

Z b a

g(t)dt

= 1

b−a Z b

a

(x−t) Z 1

0

f0[(1−λ)x+λt]dλ

dt

× 1

b−a Z b

a

(x−t) Z 1

0

g0[(1−λ)x+λt]dλ

dt

that is,

(5.1) f(x)g(x)−f(x) 1

b−a Z b

a

g(t)dt

−g(x) 1

b−a Z b

a

f(t)dt

+ 1

b−a Z b

a

f(t)dt 1 b−a

Z b a

g(t)dt

= 1

b−a Z b

a

(x−t) Z 1

0

f0[(1−λ)x+λt]dλ

dt

× 1

b−a Z b

a

(x−t) Z 1

0

g0[(1−λ)x+λt]dλ

dt

. Integrating both sides of (5.1) with respect to x from a tob and rewriting we have

(29)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page29of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

(5.2) T(f, g)

= 1

b−a Z b

a

1 b−a

Z b a

(x−t) Z 1

0

f0[(1−λ)x+λt]dλ

dt

× 1

b−a Z b

a

(x−t) Z 1

0

g0[(1−λ)x+λt]dλ

dt

dx.

(e1)Since|f0|,|g0|are convex on[a, b], from (5.2) we observe that

|T (f, g)| ≤ 1 b−a

Z b a

1 b−a

Z b a

|x−t|

Z 1 0

|f0[(1−λ)x+λt]|dλ

dt

× 1

b−a Z b

a

|x−t|

Z 1 0

|g0[(1−λ)x+λt]|dλ

dt

dx

≤ 1

(b−a)3 Z b

a

Z b a

|x−t|

Z 1 0

[(1−λ)|f0(x)|+λ|f0(t)|]dλ

dt

× Z b

a

|x−t|

Z 1 0

[(1−λ)|g0(x)|+λ|g0(t)|]dλ

dt

dx

= 1

(b−a)3 Z b

a

Z b a

|x−t|

|f0(x)|+|f0(t)|

2

dt

× Z b

a

|x−t|

|g0(x)|+|g0(t)|

2

dt

dx.

The rest of the proof of inequality (2.17) can be completed by closely looking at the proof of Theorem2.3, part(c1).

(e2)The proof follows by closely looking at the proof of(e1)given above and the proof of Theorem2.3, part(c2). We omit the details.

(30)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page30of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

http://jipam.vu.edu.au

References

[1] N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, M.R. PINHEIRO AND

A. SOFO, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, RGMIA Res. Rep. Coll., 5(2) (2002), 219–231. [ONLINE: http://rgmia.vu.edu.au/v5n2.

html]

[2] P.CERONE ANDS.S.DRAGOMIR, Ostrowski type inequalities for func- tions whose derivatives satisfy certain convexity assumptions, Demonstra- tio Math., 37(2) (2004), 299–308.

[3] S.S.DRAGOMIRANDA.SOFO, Ostrowski type inequalities for functions whose derivatives are convex, Proceedings of the 4th International Con- ference on Modelling and Simulation, November 11-13, 2002. Victoria University, Melbourne, Australia. RGMIA Res. Rep. Coll., 5(Supp) (2002), Art. 30. [ONLINE:http://rgmia.vu.edu.au/v5(E).html]

[4] S.S.DRAGOMIR AND Th.M. RASSIAS (Eds.), Ostrowski Type Inequal- ities and Applications in Numerical Integration, Kluwer Academic Pub- lishers, Dordrecht, 2002.

[5] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Inequalities Involv- ing Functions and Their Integrals and Derivatives, Kluwer Academic Pub- lishers, Dordrecht, 1991.

[6] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

(31)

On Ostrowski-Grüss- ˇCebyšev Type Inequalities for Functions Whose Modulus of Derivatives

are Convex B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page31of31

J. Ineq. Pure and Appl. Math. 6(4) Art. 128, 2005

[7] B.G. PACHPATTE, A note on integral inequalities involving two log- convex functions, Math. Inequal. Appl., 7(4) (2004), 511–515.

[8] B.G. PACHPATTE, A note on Hadamard type integral inequalities involv- ing several log-convex functions, Tamkang J. Math., 36(1) (2005), 43–47.

[9] B.G. PACHPATTE, Mathematical Inequalities, North-Holland Mathemat- ical Library, Vol. 67 Elsevier, 2005.

[10] J.E. PE ˇCARI ´C, F. PROSCHAN ANDY.L. TANG, Convex functions, Par- tial Orderings and Statistcal Applications, Academic Press, New York, 1991.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Ostrowski inequality, Integral inequalities, Absolutely continuous functions.. Abstract: On utilising an identity from [5], some weighted Ostrowski type inequalities

Key words: Riemann-Stieltjes integral, Functions of bounded variation, Lipschitzian func- tions, Integral inequalities, ˇ Cebyšev, Grüss, Ostrowski and Lupa¸s type inequali-

Key words and phrases: Riemann-Stieltjes integral, Functions of bounded variation, Lipschitzian functions, Integral inequal- ities, ˇ Cebyšev, Grüss, Ostrowski and Lupa¸s

Key words: Univalent, Starlike, Convex, Uniformly convex, Uniformly starlike, Hadamard product, Integral means, Generalized hypergeometric functions.. Abstract: Making use of

In this paper we establish new inequalities similar to the ˇ Cebyšev integral inequal- ity involving functions and their derivatives via certain Trapezoidal like rules.. Key words

In this note we establish new ˇ Cebyšev type integral inequalities involving functions whose derivatives belong to L p spaces via certain integral identities.. Key words and phrases:

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex