• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
12
0
0

Teljes szövegt

(1)

volume 3, issue 1, article 11, 2002.

Received 29 June, 2001;

accepted 18 October, 2001.

Communicated by:J. Sándor

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON GRÜSS TYPE INTEGRAL INEQUALITIES

B.G. PACHPATTE

57, Shri Niketen Colony Aurangabad - 431 001, (Maharashtra) India.

EMail:bgpachpatte@hotmail.com

c

2000Victoria University ISSN (electronic): 1443-5756 070-01

(2)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

Abstract

In this paper we establish two new integral inequalities similar to that of the Grüss inequality by using a fairly elementary analysis.

2000 Mathematics Subject Classification:26D15, 26D20.

Key words: Grüss type, Integral Inequalities, Absolutely Continuous, Integral Iden- tity.

Contents

1 Introduction. . . 3

2 Statement of Results. . . 4

3 Proof of Theorem 2.1 . . . 7

4 Proof of Theorem 2.2 . . . 10 References

(3)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

1. Introduction

In 1935 (see [4, p. 296]), G. Grüss proved the following integral inequality which gives an estimation for the integral of a product in terms of the product of integrals:

1 b−a

Z b a

f(x)g(x)dx− 1 b−a

Z b a

f(x)dx· 1 b−a

Z b a

g(x)dx

≤ 1

4(M−m) (N −n), provided that f andg are two integrable functions on[a, b]and satisfying the condition

m≤f(x)≤M, n≤g(x)≤N, for allx∈[a, b],wherem, M, n, N are given real constants.

A great deal of attention has been given to the above inequality and many papers dealing with various generalizations, extensions and variants have ap- peared in the literature, see [1] – [6] and the references cited therein. The main purpose of the present paper is to establish two new integral inequalities similar to that of the Grüss inequality involving functions and their higher order deriva- tives. The analysis used in the proof is elementary and our results provide new estimates on inequalities of this type.

(4)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

2. Statement of Results

In this section, we state our results to be proved in this paper. In what follows, we denote byR, the set of real numbers and[a, b]⊂R,a < b.

Our main results are given in the following theorems.

Theorem 2.1. Let f, g : [a, b] → R be functions such that f(n−1), g(n−1) are absolutely continuous on[a, b]andf(n), g(n) ∈L[a, b].Then

(2.1)

1 b−a

Z b a

f(x)g(x)dx− 1

b−a Z b

a

f(x)dx 1 b−a

Z b a

g(x)dx

− 1 2 (b−a)2

Z b a

" n−1 X

k=1

Fk(x)

!

g(x) +

n−1

X

k=1

Gk(x)

! f(x)

# dx

≤ 1 2 (b−a)2

Z b a

|g(x)|

f(n)

+|f(x)|

g(n)

An(x)dx, where

Fk(x) =

"

(b−x)k+1+ (−1)k(x−a)k+1 (k+ 1)!

#

f(k)(x), (2.2)

Gk(x) =

"

(b−x)k+1+ (−1)k(x−a)k+1 (k+ 1)!

#

g(k)(x), (2.3)

An(x) = Z b

a

|Kn(x, t)|dt, (2.4)

(5)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

in whichKn: [a, b]2 →Ris given by

(2.5) Kn(x, t) =









(t−a)n

n! if t∈[a, x]

(t−b)n

n! if t∈(x, b]

and

f(n)

= sup

t∈[a,b]

f(n)(t) <∞, g(n)

= sup

t∈[a,b]

g(n)(t) <∞, forx∈[a, b]andn≥1a natural number.

Theorem 2.2. Let p, q : [a, b] → R be functions such that p(n−1), q(n−1) are absolutely continuous on[a, b]andp(n), q(n) ∈L[a, b].Then

(2.6)

1 b−a

Z b a

p(x)q(x)dx−n 1

b−a Z b

a

p(x)dx 1 b−a

Z b a

q(x)dx

+ 1

2 (b−a) Z b

a

" n−1 X

k=1

Pk(x)

!

q(x) +

n−1

X

k=1

Qk(x)

! p(x)

# dx

≤ 1

2 (n−1)! (b−a)2 Z b

a

|q(x)|

p(n)

+|p(x)|

q(n)

Bn(x)dx,

(6)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

where

Pk(x) = (n−k)

k! · p(k−1)(a) (x−a)k−p(k−1)(b) (x−b)k

b−a ,

(2.7)

Qk(x) = (n−k)

k! · q(k−1)(a) (x−a)k−q(k−1)(b) (x−b)k

b−a ,

(2.8)

Bn(x) = Z b

a

(x−t)n−1r(t, x) dt, (2.9)

in which

r(t, x) =

t−a, if a≤t≤x≤b, t−b, if a≤x < t≤b, and

p(n)

= sup

t∈[a,b]

p(n)(t) <∞, q(n)

= sup

t∈[a,b]

q(n)(t) <∞, forx∈[a, b]andn≥1is a natural number.

(7)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

3. Proof of Theorem 2.1

From the hypotheses on f, we have the following integral identity (see [1, p.

52]):

(3.1) Z b

a

f(t)dt =

n−1

X

k=0

"

(b−x)k+1+ (−1)k(x−a)k+1 (k+ 1)!

#

f(k)(x) + (−1)n

Z b a

Kn(x, t)f(n)(t)dt, forx∈[a, b].In [1] the identity (3.1) is proved by mathematical induction. For a different proof, see [6]. The identity (3.1) can be rewritten as

(3.2) f(x) = 1 b−a

Z b a

f(t)dt− 1 b−a

n−1

X

k=1

Fk(x)

−(−1)n b−a

Z b a

Kn(x, t)f(n)(t)dt.

Similarly, from the hypotheses ong we have the identity

(3.3) g(x) = 1 b−a

Z b a

g(t)dt− 1 b−a

n−1

X

k=1

Gk(x)

− (−1)n b−a

Z b a

Kn(x, t)g(n)(t)dt.

(8)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

Multiplying (3.2) byg(x)and (3.3) byf(x)and summing the resulting identi- ties and integrating fromatoband rewriting we have

(3.4) 1 b−a

Z b a

f(x)g(x)dx= 1

b−a Z b

a

f(x)dx 1 b−a

Z b a

g(x)dx

− 1 2 (b−a)2

Z b a

" n−1 X

k=1

Fk(x)

!

g(x) +

n−1

X

k=1

Gk(x)

! f(x)

# dx

− 1 2 (b−a)2

Z b a

g(x)

(−1)n b−a

Z b a

Kn(x, t)f(n)(t)dt

dx

+ Z b

a

f(x)

(−1)n b−a

Z b a

Kn(x, t)g(n)(t)dt

dx

. From (3.4) we observe that

1 b−a

Z b a

f(x)g(x)dx− 1

b−a Z b

a

f(x)dx 1 b−a

Z b a

g(x)dx

− 1 2 (b−a)2

Z b a

" n−1 X

k=1

Fk(x)

!

g(x) +

n−1

X

k=1

Gk(x)

! f(x)

# dx

≤ 1 2 (b−a)2

Z b a

|g(x)|

Z b a

|Kn(x, t)|

f(n)(t) dt

+ |f(x)|

Z b a

|Kn(x, t)|

g(n)(t) dt

dx

(9)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

≤ 1 2 (b−a)2

Z b a

|g(x)|

f(n)

+|f(x)|

g(n)

An(x), which is the required inequality in (2.1). The proof is complete.

(10)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

4. Proof of Theorem 2.2

From the hypotheses on p we have the following integral identity (see [2, p.

291]):

(4.1) 1

n p(x) +

n−1

X

k=1

Pk(x)

!

− 1 b−a

Z b a

p(y)dy

= 1

n! (b−a) Z b

a

(x−t)n−1r(t, x)p(n)(t)dt, forx∈[a, b].The identity (4.1) can be rewritten as

(4.2) p(x) = n b−a

Z b a

p(x)dx−

n−1

X

k=1

Pk(x)

+ 1

(n−1)! (b−a) Z b

a

(x−t)n−1r(t, x)p(n)(t)dt.

Similarly, from the hypotheses onqwe have the identity

(4.3) q(x) = n b−a

Z b a

q(x)dx−

n−1

X

k=1

Qk(x)

+ 1

(n−1)! (b−a) Z b

a

(x−t)n−1r(t, x)q(n)(t)dt.

(11)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

Multiplying (4.2) byq(x)and (4.3) byp(x)and summing the resulting identi- ties and integrating fromatoband rewriting we have

(4.4) 1 b−a

Z b a

p(x)q(x)dx=n 1

b−a Z b

a

p(x)dx 1 b−a

Z b a

q(x)dx

− 1 2 (b−a)

Z b a

" n−1 X

k=1

Pk(x)

!

q(x) +

n−1

X

k=1

Qk(x)

! p(x)

# dx

+ 1

2 (n−1)! (b−a)2 Z b

a

q(x) Z b

a

(x−t)n−1r(t, x)p(n)(t)dt

dx

+ Z b

a

p(x) Z b

a

(x−t)n−1r(t, x)q(n)(t)dt

dx

. From (4.4) and following the similar arguments as in the last part of the proof of Theorem2.1, we get the desired inequality in (2.6). The proof is complete.

(12)

On Grüss Type Integral Inequalities B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of12

J. Ineq. Pure and Appl. Math. 3(1) Art. 11, 2002

http://jipam.vu.edu.au

References

[1] P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS, Some Os- trowski type inequalities for n−time differentiable mappings and applications, Demonstratio Mathematica, 32(2) (1999), 679–712.

RGMIA Research Report Collection, 1(1) (1998), 51–66. ONLINE:

http://rgmia.vu.edu.au/v1n1.html

[2] A.M. FINK, Bounds on the derivation of a function from its averages, Chechslovak Math. Jour., 42 (1992), 289–310.

[3] G.V. MILOVANOVI ´C AND J.E. PE ˇCARI ´C, On generalization of the in- equality of A. Ostrowski and some related applications, Univ. Beograd.

Publ. Elek. Fak. Ser. Mat. Fiz., 544–576 (1976), 155–158.

[4] D.S MITRINOVI ´C, J.E. PE ˇCARI ´C AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

[5] B.G. PACHPATTE, A note on some inequalities analogous to Grüss in- equality, Octogon Math. Magazine, 5 (1997), 62–66.

[6] J. SÁNDOR, On the Jensen-Hadamard inequality, Studia Univ. Babes- Bolyai, Math., 36(1) (1991), 9–15.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

2000 Mathematics Subject Classification: Primary 26D15, 46D05 Secondary 46C99 Key words: Grüss’ Inequality, Inner products, Integral inequalities, Discrete

In the present paper, by introducing some parameters, new forms of Hardy- Hilbert’s inequalities are given.. 2000 Mathematics Subject

The main purpose of this note is to establish a new generalization of Os- trowski’s integral inequality involving two functions and their derivatives by using fairly

A generalization of an inequality involving the generalized elementary symmet- ric mean and its elementary proof are given.. 2000 Mathematics Subject Classification: Primary 26D15

In this paper, using Grüss’ and Chebyshev’s inequalities we prove several in- equalities involving Taylor’s remainder.. 2000 Mathematics Subject

The aim of this paper is to establish some new multidimensional finite difference inequalities of the Ostrowski and Grüss type using a fairly elementary analysis.. 2000

The aim of this paper is to establish some new multidimensional finite difference inequalities of the Ostrowski and Grüss type using a fairly elementary analysis.. Key words

In this paper, some new inequalities similar to Hilbert-Pachpatte type inequali- ties are given.. 2000 Mathematics Subject