• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
19
0
0

Teljes szövegt

(1)

volume 4, issue 1, article 7, 2003.

Received 06 May, 2002;

accepted 31 August, 2002.

Communicated by:J. Sándor

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON MULTIDIMENSIONAL OSTROWSKI AND GRÜSS TYPE FINITE DIFFERENCE INEQUALITIES

B.G. PACHPATTE

57, Shri Niketen Colony Aurangabad - 431 001, (Maharashtra) India.

EMail:bgpachpatte@hotmail.com

c

2000Victoria University ISSN (electronic): 1443-5756 063-02

(2)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

Abstract

The aim of this paper is to establish some new multidimensional finite difference inequalities of the Ostrowski and Grüss type using a fairly elementary analysis.

2000 Mathematics Subject Classification:26D15, 26D20.

Key words: Multidimensional, Ostrowski and Grüss type inequalities, Finite differ- ence inequalities, Forward differences, Empty sum, Identities.

Contents

1 Introduction. . . 3

2 Statement of Results. . . 5

3 Proof of Theorem 2.1 . . . 10

4 Proof of Theorem 2.3 . . . 13

5 Proof of Theorem 2.4 . . . 17 References

(3)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

1. Introduction

The most celebrated Ostrowski inequality can be stated as follows (see [5, p.

469]).

Letf : [a, b]→Rbe continuous on[a, b]and differentiable on(a, b)whose derivative f0 : (a, b) → Ris bounded on(a, b),i.e., kf0k = sup

t∈(a,b)

|f0(t)| <

∞,then (1.1)

f(x)− 1 b−a

Z b

a

f(t)dt

"

1

4 + x− a+b2 2

(b−a)2

#

(b−a)kf0k, for allx∈[a, b].

Another remarkable inequality established by Grüss (see [4, p. 296]) in 1935 states that

(1.2)

1 b−a

Z b

a

f(x)g(x)dx

− 1

b−a Z b

a

f(x)dx 1

b−a Z b

a

g(x)dx

≤ 1

4(M−m) (N −n), provided thatf andg are two integrable functions on[a, b]and satisfy the con- ditionsm ≤ f(x) ≤ M, n ≤ g(x)≤ N for allx ∈ [a, b],wherem, M, n, N are constants.

Many papers have been written dealing with generalisations, extensions and variants of the inequalities (1.1) and (1.2), see [1] – [10] and the references cited

(4)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

therein. It appears that, the finite difference inequalities of the Ostrowski and Grüss type are more difficult to establish and require more effort. The main purpose of the present paper is to establish the Ostrowski and Grüss type finite difference inequalities involving functions of many independent variables and their first order forward differences. An interesting feature of the inequalities established here is that the analysis used in their proofs is quite elementary and provides new estimates on these types of inequalities.

(5)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

2. Statement of Results

In what follows, R and Ndenote the sets of real and natural numbers respec- tively. Let Ni[0, ai] = {0,1,2, . . . , ai}, ai ∈ N. i = 1,2, . . . , n and B =

n

Q

i=1

Ni[0, ai].For a function z(x) : B → R we define the first order forward difference operators as

1z(x) =z(x1+ 1, x2, . . . , xn)−z(x), . . . ,∆nz(x)

=z(x1, . . . , xn−1, xn+ 1)−z(x)

and denote then−fold sum overBwith respect to the variabley= (y1, . . . , yn)∈ B by

X

y

z(y) =

a1−1

X

y1=0

· · ·

an−1

X

yn=0

z(y1, . . . , yn). ClearlyP

y

z(y) =P

x

z(x)forx, y ∈B.The notation

xi−1

X

ti=yi

iz(y1, . . . , yi−1, ti, xi+1, . . . , xn), xi, yi ∈Ni[0, ai]

fori= 1,2, . . . , nwe mean fori= 1it is

x1−1

P

t1=y1

1z(t1, x2, . . . , xn)and so on and for i = 1it is

xn−1

P

tn=yn

nz(y1, . . . , yn−1, tn). We use the usual convention that the empty sum is taken to be zero.

Our main results are given in the following theorems.

(6)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

Theorem 2.1. Letf, gbe real-valued functions defined onBandif,∆igare bounded, i.e.,

k∆ifk = sup

x∈B

|∆if(x)|<∞, k∆igk = sup

x∈B

|∆ig(x)|<∞.

Let w be a real-valued nonnegative function defined on B andP

y

w(y) > 0.

Then forx, y ∈B,

(2.1)

f(x)g(x)− 1

2Mg(x)X

y

f(y)− 1

2Mf(x)X

y

g(y)

≤ 1 2M

n

X

i=1

[|g(x)| k∆ifk+|f(x)| k∆igk]Hi(x),

(2.2)

f(x)g(x)−

g(x)P

y

w(y)f(y) +f(x)P

y

w(y)g(y) 2P

y

w(y)

≤ P

y

w(y)

n

P

i=1

[|g(x)| k∆ifk+|f(x)| k∆igk]|xi−yi| 2P

y

w(y) ,

whereM =

n

Q

i=1

ai andHi(x) =P

y

|xi−yi|.

(7)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

The following result is a consequence of Theorem2.1.

Corollary 2.2. Letg(x) = 1 in Theorem2.1and henceig(x) = 0,then for x, y ∈B,

(2.3)

f(x)− 1 M

X

y

f(y)

≤ 1 M

n

X

i=1

k∆ifkHi(x),

(2.4)

f(x)− P

y

w(y)f(y) P

y

w(y)

≤ P

y

w(y)

n

P

i=1

k∆ifk|xi−yi|

P

y

w(y) ,

whereM, wandHi(x)are as in Theorem2.1.

Remark 2.1. It is interesting to note that the inequalities (2.3) and (2.4) can be considered as the finite difference versions of the inequalities established by Milovanovi´c [3, Theorems 2 and 3]. The one independent variable version of the inequality given in (2.3) is established by the present author in [10].

Theorem 2.3. Letf, g,∆if,∆igbe as in Theorem2.1. Then for everyx, y ∈B,

(2.5)

f(x)g(x)− 1

Mg(x)X

y

f(y)

− 1

Mf(x)X

y

g(y) + 1 M

X

y

f(y)g(y)

(8)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

≤ 1 M

X

y

" n X

i=1

k∆ifk|xi−yi|

# " n X

i=1

k∆igk|xi−yi|

# ,

(2.6)

f(x)g(x)− 1

Mg(x)X

y

f(y)

− 1

Mf(x)X

y

g(y) + 1 M2

X

y

f(y)

! X

y

g(y)

!

≤ 1 M2

n

X

i=1

k∆ifkHi(x)

! n X

i=1

k∆igkHi(x)

! ,

whereM andHi(x)are as defined in Theorem2.1.

Remark 2.2. In [8,9] the discrete versions of Ostrowski type integral inequali- ties established therein are given. Here we note that the inequalities in Theorem 2.3are different and the analysis used in the proof is quite elementary.

Theorem 2.4. Letf, g,∆if,∆igbe as in Theorem2.1. Then

(2.7)

1 M

X

x

f(x)g(x)− 1 M

X

x

f(x)

! 1 M

X

x

g(x)

!

≤ 1 2M2

X

x

X

y

" n X

i=1

k∆ifk|xi−yi|

# " n X

i=1

k∆igk|xi−yi|

#!

,

(9)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

(2.8)

1 M

X

x

f(x)g(x)− 1 M

X

x

f(x)

! 1 M

X

x

g(x)

!

≤ 1 2M2

X

x n

X

i=1

[|g(x)| k∆ifk+|f(x)| k∆igk]Hi(x)

! ,

whereM andHi(x)are as defined in Theorem2.1.

Remark 2.3. In [4] and the references cited therein, many generalisations of Grüss inequality (1.2) are given. Multidimensional integral inequalities of the Grüss type were recently established in [6,7]. We note that the inequality (2.8) can be considered as the finite difference analogue of the inequality recently established in [7, Theorem 2.3].

(10)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

3. Proof of Theorem 2.1

For x = (x1, . . . , xn), y = (y1, . . . , yn) in B, it is easy to observe that the following identities hold:

(3.1) f(x)−f(y) =

n

X

i=1

(xi−1 X

ti=yi

if(y1, . . . , yi−1, ti, xi+1, . . . , xn) )

,

(3.2) g(x)−g(y) =

n

X

i=1

(xi−1 X

ti=yi

ig(y1, . . . , yi−1, ti, xi+1, . . . , xn) )

. Multiplying both sides of (3.1) and (3.2) by g(x) and f(x) respectively and adding we get

(3.3) 2f(x)g(x)−g(x)f(y)−f(x)g(y)

=g(x)

n

X

i=1

(xi−1 X

ti=yi

if(y1, . . . , yi−1, ti, xi+1, . . . , xn) )

+f(x)

n

X

i=1

(xi−1 X

ti=yi

ig(y1, . . . , yi−1, ti, xi+1, . . . , xn) )

. Summing both sides of (3.3) with respect toyoverB, using the fact thatM > 0 and rewriting we have

(3.4) f(x)g(x)− 1

2Mg(x)X

y

f(y)− 1

2Mf(x)X

y

g(y)

(11)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

= 1 2M

"

g(x)X

y

" n X

i=1

(xi−1 X

ti=yi

if(y1, . . . , yi−1, ti, xi+1, . . . , xn) )#

+ f(x)X

y

" n X

i=1

(xi−1 X

ti=yi

ig(y1, . . . , yi−1, ti, xi+1, . . . , xn) )##

.

From (3.4) and using the properties of modulus we have

f(x)g(x)− 1

2Mg(x)X

y

f(y)− 1

2Mf(x)X

y

g(y)

≤ 1 2M

"

|g(x)|X

y

" n X

i=1

(

xi−1

X

ti=yi

if(y1, . . . , yi−1, ti, xi+1, . . . , xn)

)#

+|f(x)|X

y

" n X

i=1

(

xi−1

X

ti=yi

ig(y1, . . . , yi−1, ti, xi+1, . . . , xn)

)##

≤ 1 2M

"

|g(x)|X

y

" n X

i=1

(

k∆ifk

xi−1

X

ti=yi

1

)#

+|f(x)|X

y

" n X

i=1

(

k∆igk

xi−1

X

ti=yi

1

)##

= 1 2M

n

X

i=1

[|g(x)| k∆ifk+|f(x)| k∆igk] X

y

|xi−yi|

!

(12)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

= 1 2M

n

X

i=1

[|g(x)| k∆ifk+|f(x)| k∆igk]Hi(x).

The proof of the inequality (2.1) is complete.

Multiplying both sides of (3.4) byw(y), y ∈B and summing the resulting identity with respect toy onB and following the proof of inequality (2.1), we get the desired inequality in (2.2).

(13)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

4. Proof of Theorem 2.3

From the hypotheses, as in the proof of Theorem 2.1, the identities (3.1) and (3.2) hold. Multiplying the left sides and right sides of (3.1) and (3.2) we get (4.1) f(x)g(x)−g(x)f(y)−f(x)g(y) +f(y)g(y)

=

" n X

i=1

(x

i−1

X

ti=yi

if(y1, . . . , yi−1, ti, xi+1, . . . , xn) )#

×

" n X

i=1

(x

i−1

X

ti=yi

ig(y1, . . . , yi−1, ti, xi+1, . . . , xn) )#

.

Summing both sides of (4.1) with respect toyonB and rewriting we have (4.2) f(x)g(x)− 1

Mg(x)X

y

f(y)

− 1

Mf(x)X

y

g(y) + 1 M

X

y

f(y)g(y)

= 1 M

X

y

" n X

i=1

(x

i−1

X

ti=yi

if(y1, . . . , yi−1, ti, xi+1, . . . , xn) )#

×

" n X

i=1

(x

i−1

X

ti=yi

ig(y1, . . . , yi−1, ti, xi+1, . . . , xn) )#

.

(14)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

From (4.2) and using the properties of modulus we have

f(x)g(x)− 1

Mg(x)X

y

f(y)− 1

Mf(x)X

y

g(y) + 1 M

X

y

f(y)g(y)

≤ 1 M

X

y

" n X

i=1

(x

i−1

X

ti=yi

|∆if(y1, . . . , yi−1, ti, xi+1, . . . , xn)|

)

#

×

" n X

i=1

(x

i−1

X

ti=yi

|∆ig(y1, . . . , yi−1, ti, xi+1, . . . , xn)|

)

#

≤ 1 M

X

y

" n X

i=1

k∆ifk|xi−yi|

# " n X

i=1

k∆igk|xi −yi|

# ,

which is the required inequality in (2.5).

Summing both sides of (3.1) and (3.2) with respect toyand rewriting we get (4.3) f(x)− 1

M X

y

f(y)

= 1 M

X

y

" n X

i=1

(xi−1 X

ti=yi

if(y1, . . . , yi−1, ti, xi+1, . . . , xn) )#

and

(4.4) g(x)− 1 M

X

y

g(y)

(15)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

= 1 M

X

y

" n X

i=1

(xi−1 X

ti=yi

ig(y1, . . . , yi−1, ti, xi+1, . . . , xn) )#

,

respectively. Multiplying the left sides and right sides of (4.3) and (4.4) we get (4.5) f(x)g(x)− 1

Mg(x)X

y

f(y)− 1

Mf(x)X

y

g(y)

+ 1 M2

X

y

f(y)

! X

y

g(y)

!

= 1 M2

X

y

" n X

i=1

(xi−1 X

ti=yi

if(y1, . . . , yi−1, ti, xi+1, . . . , xn) )#!

× X

y

" n X

i=1

(xi−1 X

ti=yi

ig(y1, . . . , yi−1, ti, xi+1, . . . , xn) )#!

.

From (4.5) and using the properties of modulus we have

f(x)g(x)− 1

Mg(x)X

y

f(y)− 1

Mf(x)X

y

g(y)

+ 1 M2

X

y

f(y)

! X

y

g(y)

!

(16)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

≤ 1 M2

X

y

" n X

i=1

(xi−1 X

ti=yi

|∆if(y1, . . . , yi−1, ti, xi+1, . . . , xn)|

)

#!

× X

y

" n X

i=1

(xi−1 X

ti=yi

|∆ig(y1, . . . , yi−1, ti, xi+1, . . . , xn)|

)

#!

≤ 1 M2

n

X

i=1

k∆ifkHi(x)

! n X

i=1

k∆igkHi(x)

! .

This is the desired inequality in (2.6) and the proof is complete.

(17)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

5. Proof of Theorem 2.4

From the hypotheses, the identities (4.2) and (3.4) hold. Summing both sides of (4.2) with respect toxonB,rewriting and using the properties of modulus we have

1 M

X

x

f(x)g(x)− 1 M

X

x

f(x)

! 1 M

X

x

g(x)

!

≤ 1 2M2

X

x

X

y

" n X

i=1

(xi−1 X

ti=yi

|∆if(y1, . . . , yi−1, ti, xi+1, . . . , xn)|

)

#

×

" n X

i=1

(xi−1 X

ti=yi

|∆ig(y1, . . . , yi−1, ti, xi+1, . . . , xn)|

)

#!

≤ 1 2M2

X

x

X

y

" n X

i=1

k∆ifk|xi−yi|

# " n X

i=1

k∆igk|xi−yi|

#!

,

which proves the inequality (2.7).

Summing both sides of (3.4) with respect toxonB and following the proof of inequality (2.7) with suitable changes we get the required inequality in (2.8).

The proof is complete.

(18)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

References

[1] G.A. ANASTASSIOU, Multivariate Ostrowski type inequalities, Acta Math. Hungar., 76 (1997), 267–278.

[2] S.S. DRAGOMIR, N.S. BARNETTANDP. CERONE, Ann−dimensional version of Ostrowski’s inequality for mappings of Hölder type, Kyungpook Math. J., 40(1) (2000), 65–75. RGMIA Research Report Collection, 2(2) (1999), 169–180.

[3] G.V. MILOVANOVI ´C, On some integral inequalities, Univ. Beograd Publ.

Elek. Fak. Ser. Mat. Fiz., No. 496–no. 541 (1975), 119–124.

[4] D.S. MITRINOVI ´C, J.E. PECARI ´CANDA.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1994.

[5] D.S. MITRINOVI ´C, J.E. PECARI ´C AND A.M. FINK, Inequalities for Functions and their Integrals and Derivatives, Kluwer Academic Publish- ers, Dordrecht, 1994.

[6] B.G. PACHPATTE, On Grüss type inequalities for double integrals, J.

Math. Anal. Appl., 267 (2002), 454–459.

[7] B.G. PACHPATTE, On multidimensional Grüss type inequalities, J. Ineq. Pure Appl. Math., 3(2) (2002), Article 27. [ONLINE:

http://jipam.vu.edu.au/v3n2/063_01.html]

[8] B.G. PACHPATTE, On an inequality of Ostrowski type in three indepen- dent variables, J. Math. Anal. Appl., 249 (2000), 583–591.

(19)

On Multidimensional Ostrowski and Grüss Type Finite Difference Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 7, 2003

http://jipam.vu.edu.au

[9] B.G. PACHPATTE, On a new Ostrowski type inequality in two indepen- dent variables, Tamkang J. Math., 32 (2001), 45–49.

[10] B.G. PACHPATTE, New Ostrowski and Grüss like discrete inequalities, submitted.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The main purpose of the present note is to establish two new Ostrowski type inequalities using the well known Cauchy’s mean value theorem and a variant of the Lagrange’s mean

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

The aim of the present paper is to establish some new linear and nonlinear discrete inequalities in two independent variables.. We give some examples in difference equations and we

The main purpose of this note is to establish a new generalization of Os- trowski’s integral inequality involving two functions and their derivatives by using fairly

In this paper, using Grüss’ and Chebyshev’s inequalities we prove several in- equalities involving Taylor’s remainder.. 2000 Mathematics Subject

The aim of this paper is to establish some new multidimensional finite difference inequalities of the Ostrowski and Grüss type using a fairly elementary analysis.. Key words

In this paper, some new inequalities similar to Hilbert-Pachpatte type inequali- ties are given.. 2000 Mathematics Subject