• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
17
0
0

Teljes szövegt

(1)

volume 7, issue 3, article 87, 2006.

Received 05 October, 2005;

accepted 10 March, 2006.

Communicated by:J. Sándor

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

AN INEQUALITY FOR THE CLASS NUMBER

OLIVIER BORDELLÈS

2 allée de la combe, la Boriette 43000 AIGUILHE

FRANCE

EMail:borde43@wanadoo.fr

c

2000Victoria University ISSN (electronic): 1443-5756 307-05

(2)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

Abstract

We prove in an elementary way a new inequality for the average order of the Piltz divisor function with application to class number of number fields.

2000 Mathematics Subject Classification:11N99, 11R29.

Key words: Piltz divisor function, Class number.

I would like to thank my wife Véronique for her help.

Contents

1 Introduction. . . 3

2 Results . . . 7

3 The Casen= 3. . . 8

4 Proof of Theorem 2.1 . . . 15 References

(3)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

1. Introduction

It could be interesting to use tools from analytic number theory to solve prob- lems of algebraic number theory. For example, letKbe a number field of degree n, signature(r1, r2), class numberhK,regulator RK, andwK is the number of roots of unity inK,ζKthe Dedekind zeta function,AK := 2−r2π−n/2d1/2

K where dKis the absolute value of the discriminant ofK. The following formula, valid for any real numberσ >1,

(1.1) AσKΓr1σ 2

Γr2(σ)ζK(σ)

= 2r1hKRK

σ(σ−1)wK +X

a6=0

Z

kyk≥1

nkykσ/2+kyk1−σ2 o

e−g(a,y)dy y , whereg(a, y)is a certain function depending on a nonzero integral idealaand vectory := (y1, . . . , yr1+r2) ∈ (R+)r1+r2 (herekyk := max|yi|), is the gener- alization of the well-known formula

π−σ/2Γ σ

2

ζ(σ) = 1 σ(σ−1)+

X

n=1

Z

1

n

yσ/2+y1−σ2 o

e−πn2ydy y for the classical Riemann zeta function. Since the integrand in(1.1)is positive, we get

(1.2) hKRK ≤σ(σ−1)wK2−r1AσKΓr1 σ

2

Γr2(σ)ζK(σ)

for any real numberσ > 1.The study of the function on the right-hand side of (1.2)provides upper bounds forhKRK (see [3] for example) .

(4)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

In a more elementary way, one can connect the class number hK with the Piltz divisor functionτnby using the following result ([1]):

Lemma 1.1. Let bK > 0 be a real number such that every class of ideals of K contains a nonzero integral ideal with norm ≤ bK. Ifτn is the Piltz divisor function, then:

hK ≤ X

m≤bK

τn(m).

Recall that τn is defined by the relations τ1(m) = m and τn(m) = P

d|mτn−1(d)(n ≥2). This function has been studied by many authors (see [6]

for a good survey of its properties). A standard argument from analytic number theory gives ifn≥4

X

m≤x

τn(m) =xPn−1(logx) +Oε

xn−1n+2 ,

wherePn−1 is a polynomial of degreen−1and leading coefficient (n−1)!1 .For some improvements of the error term and related results, see [4]. Note that the Lindelöf Hypothesis is equivalent to αn = (n−1)/(2n)for anyn = 2,3, . . . whereαnis the least number such that

X

m≤x

τn(m)−xPn−1(logx) =Oε xαn . If we are interested in finding upper bounds of the form

X

m≤x

τn(m)nx(logx)n−1,

one mostly uses arguments based upon induction and the following inequality:

(5)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

Lemma 1.2. We setSn(x) := P

m≤xτn(m).Then:

Sn+1(x)≤Sn(x) +x Z x

1

t−2Sn(t)dt.

Proof. It suffices to use the definition above, interchange the summations and integrate by parts.

Using this lemma, it is easy to show by induction the following bound:

X

m≤x

τn(m)≤ x

(n−1)!(logx+n−1)n−1 which enables us to obtain Lenstra’s bound again (see [2]), namely:

(1.3) hK ≤ bK

(n−1)!(logbK+n−1)n−1. In what follows,nis a positive integer and we set

Sn(x) := X

m≤x

τn(m)

for any real number x ≥ 1. bK is a positive real number always satisfying the hypothesis of Lemma 1.1. K is a number field of degree n and class number hK. dK is the absolute value of the discriminant of K. For some tables giving values ofbK,see [7]. The functionsψ andψ2are defined by

ψ(t) = t−[t]− 1 2, ψ2(t) =

Z t

0

ψ(u)du+1

8 = ψ2(t) 2 ,

(6)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

where[t]denotes the integral part oft.Recall that we have for all real numbers t :

|ψ(t)| ≤ 1 2, 0≤ψ2(t)≤ 1

8.

We denote by γ and γ1 the Euler-Mascheroni constant and the first Stieltjes constant, defined respectively by:

γ = lim

n→∞

n

X

k=1

1

k −logn

! ,

γ1 = lim

n→∞

n

X

k=1

logk

k −(logn)2 2

! . The following results are well-known (see [5] for example):

0.577215< γ <0.577216,

−0.072816< γ1 <−0.072815, and

(1.4) γ = 1

2 −2 Z

1

ψ2(t) t3 dt and

(1.5) γ1 =−

Z

1

2 logt−3

t3 ψ2(t)dt.

(7)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

2. Results

Theorem 2.1. Letn ≥3be an integer. For any real numberx≥13,we have:

X

m≤x

τn(m)≤ x

(n−1)!(logx+n−2)n−1.

Applying this result with Lemma1.1allows us to improve upon(1.3) : Theorem 2.2. LetKbe a number field of degreen ≥3.IfbK ≥13satisfies the hypothesis of Lemma1.1, then:

hK ≤ bK

(n−1)!(logbK+n−2)n−1.

(8)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

3. The Case n = 3

The aim of this section is to show that the result of Theorem 2.1 is true for n = 3.Hence we will prove the following inequality forS3 :

Lemma 3.1. For any real numberx≥13,we have:

S3(x)≤ x

2(logx+ 1)2.

We first check this result for13 ≤ x ≤ 670 with the PARI/GP system [8], and then suppose x > 670. The lemma will be a direct consequence of the following estimation:

Lemma 3.2. For any real numberx >670,we have:

S3(x) = x

((logx)2

2 + (3γ−1) logx+ 3γ2−3γ−3γ1+ 1 )

+R(x) where:

|R(x)| ≤2.36x2/3logx.

The proof of this lemma needs some technical results:

Lemma 3.3. Letx, y ≥1be real numbers.

(i) Ife3/2 ≤y≤x,then we have:

X

k≤y

1

k logx k

= logxlogy− (logy)2

2 +γlogx−γ1+R1(x, y)

(9)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

with:

|R1(x, y)| ≤ log (x/y)

2y + logx 4y2 . (ii)

S2(y) =ylogy+ (2γ−1)y+R2(y) with:

|R2(y)| ≤y1/2+1 2. (iii)

X

n≤y

τ(n)

n = (logy)2

2 + 2γlogy+γ2−2γ1+R3(y) with:

|R3(y)| ≤ 1 y1/2 + 1

y.

Proof. (i) By the Euler-MacLaurin summation formula, we get:

X

k≤y

1

klogx k

= logx

2 +

Z y

1

1

t logx t

dt−ψ(y) y log

x y

− ψ2(y) y2

log

x y

+ 1

− Z y

1

2 log (x/t) + 3

t3 ψ2(t)dt

(10)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

= logxlogy− (logy)2

2 +

1 2 −2

Z

1

ψ2(t) t3 dt

logx +

Z

1

2 logt−3

t3 ψ2(t)dt− ψ(y) y log

x y

− ψ2(y) y2

log

x y

+ 1

+ 2 logx Z

y

ψ2(t) t3 dt−

Z

y

2 logt−3

t3 ψ2(t)dt and using(1.4)and(1.5)we get:

X

k≤y

1

k logx k

= logxlogy−(logy)2

2 +γlogx−γ1+R1(x, y) and sincee3/2 ≤y≤x, we have:

|R1(x, y)| ≤ log (x/y)

2y +log (x/y) + 1

8y2 +logx

8y2 +logy−1 8y2

= log (x/y)

2y +logx 4y2 .

(ii) This result is well-known (see [1] for example).

(iii) Using a result from [5], we have for any real numbery ≥1 :

−y−1/2− 3

4 + 1 8e3

y−1−y−3/2 8 −y−2

64 ≤R3(y)≤y−1/2+ 1

2 + 1 8e3

y−1 which concludes the proof of Lemma3.3.

(11)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

Proof of Lemmas3.1and3.2. The Dirichlet hyperbola principle and the esti- mations of Lemma3.3give, for any real numbere3/2 ≤T < x:

S3(x) = X

n≤T

S2x n

+ X

n≤x/T

τ(n)hx n

i−[T]S2x T

=X

n≤T

x

nlogx n

+ (2γ −1)x

n +R4(x, n)

+x X

n≤x/T

τ(n) n − 1

2S2x T

− X

n≤x/T

τ(n)ψ x

n

−T S2 x

T

+ 1 2S2

x T

+ψ(T)S2 x

T

=X

n≤T

x

nlogx n

+ (2γ −1)x

n +R4(x, n) +x X

n≤x/T

τ(n)

n −T S2x T

+R5(x, T)

with

|R4(x, n)| ≤ rx

n +1 2

|R5(x, T)| ≤S2x T

≤ x

T logx T

+ (2γ−1)x T +

rx T + 1

2 and hence:

S3(x) =x (

logxlogT − (logT)2

2 +γlogx

(12)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

−γ1+R6(x, T) + (2γ−1) (logT +γ+R7(T)) o

+X

n≤T

R4(x, n)

+x

((log (x/T))2

2 + 2γlogx T

2−2γ1+R8(x, T) )

+R5(x, T)−xlogx T

−(2γ−1)x−T R9(x, T)

with, ife3/2 ≤T < x:

|R6(x, T)| ≤ log (x/T)

2T + logx 4T2

|R7(T)| ≤ 1 T

|R8(x, T)| ≤ rT

x + T x

|R9(x, T)| ≤ rx

T + 1 2 and thus:

S3(x) =x

((logx)2

2 + (3γ−1) logx+ 3γ2−3γ−3γ1+ 1 )

+xR6(x, T) + (2γ−1)xR7(T) +R10(x, T)

+xR8(x, T) +R5(x, T)−T R9(x, T)

(13)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

with

|R10(x, T)| ≤ X

n≤T

|R4(x, n)|

≤√ xX

n≤T

√1 n +T

2

≤2√

xT −√ x+T

2 and therefore:

S3(x) = x

((logx)2

2 + (3γ−1) logx+ 3γ2−3γ−3γ1+ 1 )

+R11(x, T) with:

|R11(x, T)| ≤ xlog (x/T)

2T + xlogx 4T2 + 4√

xT −√ x + 2x

T logx T

+ 2 (2γ−1) x T +

rx

T + 2T +1 2. We choose:

T =x1/3, which gives:

S3(x) =x

((logx)2

2 + (3γ−1) logx+ 3γ2−3γ−3γ1+ 1 )

+R12(x),

(14)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

where:

|R12(x)| ≤ 5

3x2/3logx+ 2 (2γ+ 1)x2/3−x1/2+1

4x1/3logx+ 3x1/3+1 2

≤2.36x2/3logx

since x > 670. This concludes the proof of Lemma 3.2, and then of Lemma 3.1.

(15)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

4. Proof of Theorem 2.1

We first need the following simple bounds:

Lemma 4.1. For any integern ≥3,we have:

Z 13

1

t−2Sn(t)dt < n3 4 ≤ 1

n!

n+ 1

2 n

.

Proof. This follows from straightforward computations which give:

Z 13

1

t−2Sn(t)dt= 7

624n3+ 2281

9360n2+90283

90090n+ 1− 1 13

< n3 4

since n ≥ 3. The second inequality follows from studying the sequence(un) defined by

un = n3×n!

4 (n+ 1/2)n. We get:

un+1

un = 2 (n+ 1)4 n3(2n+ 3)

2n+ 1 2n+ 3

n

≤ 512 243

1− 2 2n+ 3

n

≤ 512e−1 243 <1

(16)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

and hence(un)is decreasing, and thus:

un≤u3 = 324 343 ≤1, which concludes the proof of Lemma4.1.

Proof of Theorem2.1. We use induction, the result being true for n = 3 by Lemma 3.1. Now suppose the inequality is true for some integer n ≥ 3.By Lemmas1.2,4.1and the induction hypothesis, we get:

Sn+1(x)

≤Sn(x) +x Z 13

1

t−2Sn(t)dt+x Z x

13

t−2Sn(t)dt

≤x

((logx+n−2)n−1 (n−1)! + 1

n!

n+ 1

2 n

+ 1

(n−1)!

Z x

13

(logt+n−2)n−1

t dt

)

=x

((logx+n−2)n

n! +(logx+n−2)n−1 (n−1)!

+1 n!

n+ 1

2 n

− n+ log 13e−2n

≤ x n!

(logx+n−2)n+ (n−1) (logx+n−2)n−1

≤ x

n!(logx+n−1)n.

The proof of Theorem2.1is now complete.

(17)

An Inequality for the Class Number

Olivier Bordellès

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of17

J. Ineq. Pure and Appl. Math. 7(3) Art. 87, 2006

http://jipam.vu.edu.au

References

[1] O. BORDELLÈS, Explicit upper bounds for the average order of dn(m) and application to class number, J. Inequal. Pure and Appl. Math., 3(3) (2002), Art. 38. [ONLINE: http://jipam.vu.edu.au/article.

php?sid=190]

[2] H.W. LENSTRA Jr., Algorithms in algebraic number theory, Bull. Amer.

Math. Soc., 2 (1992), 211–244.

[3] S. LOUBOUTIN, Explicit bounds for residues of Dedekind zeta functions, values ofL−functions ats = 1,and relative class number, J. Number The- ory, 85 (2000), 263–282.

[4] D.S. MITRINOVI ´C, J. SÁNDORANDB. CRSTICI, Handbook of Number Theory I, Springer-Verlag, 2nd printing, (2005).

[5] H. RIESEL AND R.C. VAUGHAN, On sums of primes, Arkiv för Mathe- matik, 21 (1983), 45–74.

[6] J. SÁNDOR, On the arithmetical function dk(n), L’Analyse Numér. Th.

Approx., 18 (1989), 89–94.

[7] R. ZIMMERT, Ideale kleiner norm in Idealklassen und eine Regulator- abschätzung, Fakultät für Mathematik der Universität Bielefield, Disserta- tion (1978).

[8] PARI/GP, Available by anonymous ftp from: ftp://megrez.math.

u-bordeaux.fr/pub/pari.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this note we offer two short proofs of Young’s inequality and prove its reverse.. 2000 Mathematics Subject

In this note, a weighted Ostrowski type inequality for the cumulative distribution function and expectation of a random variable is established.. 2000 Mathematics

Using the inclusions between the unit balls for the p-norms, we obtain a new inequality for the gamma function.. 2000 Mathematics Subject Classification: 33B15,

In this paper, we discuss the case of equality of this Young’s inequality, and obtain a characterization for compact normal operators.. 2000 Mathematics Subject Classification:

In this short paper we derive new and interesting upper and lower bounds for the Euler’s gamma function in terms of the digamma function ψ(x) = Γ 0 (x)/Γ(x).. 2000 Mathematics

A generalization of an inequality involving the generalized elementary symmet- ric mean and its elementary proof are given.. 2000 Mathematics Subject Classification: Primary 26D15

In this paper, using Leibnitz’s formula and pre-Grüss inequality we prove some inequalities involving Taylor’s remainder.. 2000 Mathematics Subject

In this paper we establish two new integral inequalities similar to that of the Grüss inequality by using a fairly elementary analysis.. 2000 Mathematics Subject Classification: