• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
6
0
0

Teljes szövegt

(1)

volume 6, issue 2, article 48, 2005.

Received 07 March, 2005;

accepted 19 March, 2005.

Communicated by:Th.M. Rassias

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

A GEOMETRICAL PROOF OF A NEW INEQUALITY FOR THE GAMMA FUNCTION

C. ALSINA AND M.S. TOMÁS

Secció de Matemàtiques

ETSAB. Univ. Politècnica Catalunya Diagonal 649, 08028 Barcelona, Spain.

EMail:claudio.alsina@upc.es EMail:maria.santos.tomas@upc.es

c

2000Victoria University ISSN (electronic): 1443-5756 085-05

(2)

A Geometrical Proof of a New Inequality for the Gamma

Function C. Alsina and M.S. Tomás

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of6

J. Ineq. Pure and Appl. Math. 6(2) Art. 48, 2005

http://jipam.vu.edu.au

Abstract

Using the inclusions between the unit balls for thep-norms, we obtain a new inequality for the gamma function.

2000 Mathematics Subject Classification:33B15, 33C05, 26D07.

Key words: Gamma function, Hypergeometric function, Inequalities.

The authors thank Prof. Hans Heinrich Kairies for his interesting remarks concerning this paper.

Since the gamma function Γ(x) =

Z

0

e−ttx−1dt, x >0

is one of the most important functions in Mathematics, there exists an extensive literature on its inequalities (see [1], [2]).

Our aim here is to present and prove the inequalities 1

n! ≤ Γ(1 +x)n

Γ(1 +nx) ≤1 x∈[0,1], n∈N.

As we will show the above inequalities follow immediately from a key geo- metrical argument. From now on for any r > 0,p, n ≥ 1we will consider the notation:

Dk·kn,r

p ={(x1, . . . , xn)∈Rn/k(x1, . . . , xn)kp < r}

(3)

A Geometrical Proof of a New Inequality for the Gamma

Function C. Alsina and M.S. Tomás

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of6

J. Ineq. Pure and Appl. Math. 6(2) Art. 48, 2005

http://jipam.vu.edu.au

for then-ball of radiusrfor thep-normk(x1, . . . , xn)kp = (|x1|p+· · ·+|xn|p)1/p. To this end, we need to prove the following:

Lemma 1. For allninN,p≥1andr >0we have:

(1) Volume

Dk·kn,r

p

= 2n Γ

1 + 1pn

Γ

1 + np rn.

Proof. Forn = 1,D1,rk·k

p is the interval(−r, r), whose measure is2r, i.e., 2r= 2

Γ

1 + 1p Γ

1 + 1pr

and (1) holds. By induction, let us assume that (1) holds forn−1. Then we note that|x1|p+· · ·+|xn|p < rp is equivalent to|x1|p+· · ·+|xn−1|p < rp− |xn|p and by virtue of the induction hypothesis we have

Volume

Dn,rk·k

p

= Z

Dn,rk·k

p

dx1. . . dxn

= 2 Z r

0

Z

Dn−1,(rp−|xn|p)1/p k·kp

dx1. . . dxn−1

! dxn

(4)

A Geometrical Proof of a New Inequality for the Gamma

Function C. Alsina and M.S. Tomás

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of6

J. Ineq. Pure and Appl. Math. 6(2) Art. 48, 2005

http://jipam.vu.edu.au

= 2 Z r

0

2n−1 Γ

1 + 1p

n−1

Γ

1 + n−1p (rp−xpn)n−1p dxn

= 2n Γ

1 + 1pn−1

Γ

1 + n−1p rn Z 1

0

(1−zp)n−1p dz,

wherez =xn/r.

If we considerF(a, b, c, z)the first hypergeometric function (see [3]), then Z

(1−zp)n−1p dz =zF 1

p,−n−1

p ,1 + 1 p, zn

and by well-known properties of the hypergeometric function we deduce:

Volume Dk·kn,r

p

= 2n Γ

1 + 1p

n−1

Γ

1 + n−1p rnF 1

p,−n−1 p ,1 + 1

p,1

= 2n Γ

1 + 1pn−1

Γ

1 + n−1p rn Γ

1 + 1p Γ

1 + n−1p Γ

1 + np

= 2n Γ

1 + 1pn

Γ

1 + nprn.

(5)

A Geometrical Proof of a New Inequality for the Gamma

Function C. Alsina and M.S. Tomás

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of6

J. Ineq. Pure and Appl. Math. 6(2) Art. 48, 2005

http://jipam.vu.edu.au

Therefore we have

Theorem 2. For alln ∈Nandxin(0,1)we have

1

n! ≤ Γ(1 +x)n Γ(1 +nx) ≤1.

Proof. For allninNandp≥1, from the inclusions Dn,1k·k

1 ⊆Dk·kn,1

p ⊆Dk·kn,1

, we deduce

Volume

Dk·kn,1

1

≤Volume

Dk·kn,1

p

≤Volume

Dn,1k·k

,

so by Lemma1:

2n Γ(2)n

Γ(n+ 1) ≤2n Γ

1 + 1p

n

Γ

1 + np ≤2n

and with1/p=x, bearing in mind thatΓ(2) = 1,Γ(n+ 1) =n!, 1

n! ≤ Γ(1 +x)n Γ(1 +nx) ≤1.

From this it follows immediately that the functionΓ(1 +x)n/Γ(1 +nx)is strictly decreasing on(0,1].

(6)

A Geometrical Proof of a New Inequality for the Gamma

Function C. Alsina and M.S. Tomás

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of6

J. Ineq. Pure and Appl. Math. 6(2) Art. 48, 2005

http://jipam.vu.edu.au

References

[1] H. ALZER, On some inequalities for the gamma and psi functions, Math of Comp., 66(217) (1997), 373–389.

[2] H. ALZER, Sharp bounds for the ratio of q−Gamma functions, Math Nachr., 222 (2001), 5–14.

[3] E.W. WEISSTEIN, Hypergeometric function, [ONLINE: http://

mathworld.wolfram.com/HypergeometricFunction.html].

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

We prove in an elementary way a new inequality for the average order of the Piltz divisor function with application to class number of number fields.. 2000 Mathematics

We derive a simple q-analogue of Konrad Knopp’s inequality for Euler-Knopp means, using the finite and infinite q-binomial theoremsL. 2000 Mathematics Subject

By means of the convex properties of function ln Γ(x), we obtain a new proof of a generalization of a double inequality on the Euler gamma function, obtained by Jozsef Sándor..

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. 2000 Mathematics Subject Classification:

In this note, a weighted Ostrowski type inequality for the cumulative distribution function and expectation of a random variable is established.. 2000 Mathematics

In this paper, we discuss the case of equality of this Young’s inequality, and obtain a characterization for compact normal operators.. 2000 Mathematics Subject Classification:

In this paper we obtain a generalization of Ozaki-Nunokawa’s univalence crite- rion using the method of Loewner chains.. 2000 Mathematics Subject

In this short paper we derive new and interesting upper and lower bounds for the Euler’s gamma function in terms of the digamma function ψ(x) = Γ 0 (x)/Γ(x).. 2000 Mathematics