• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
8
0
0

Teljes szövegt

(1)

volume 7, issue 3, article 110, 2006.

Received 25 January, 2006;

accepted 22 March, 2006.

Communicated by:H.M. Srivastava

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

Aq-ANALOGUE OF AN INEQUALITY DUE TO KONRAD KNOPP

L. D. ABREU

Department of Mathematics Universidade de Coimbra Apartado 3008, 3001-454 Coimbra Portugal

EMail:daniel@mat.uc.pt

URL:http://www.mat.uc.pt/faculty/daniel.html

c

2000Victoria University ISSN (electronic): 1443-5756 023-06

(2)

Aq-Analogue of an Inequality due to Konrad Knopp

L. D. Abreu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of8

J. Ineq. Pure and Appl. Math. 7(3) Art. 110, 2006

http://jipam.vu.edu.au

Abstract

We derive a simpleq-analogue of Konrad Knopp’s inequality for Euler-Knopp means, using the finite and infiniteq-binomial theorems.

2000 Mathematics Subject Classification:05A30.

Key words: Knopp’s inequality,q-analogue.

Contents

1 Introduction. . . 3 2 Proof of (1.2). . . 5

References

(3)

Aq-Analogue of an Inequality due to Konrad Knopp

L. D. Abreu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of8

J. Ineq. Pure and Appl. Math. 7(3) Art. 110, 2006

http://jipam.vu.edu.au

1. Introduction

Given a sequence (an)and a number t such that 0 < t < 1, its Euler-Knopp meanen(t)is defined by

en(t) =

n

X

m=0

n m

(1−t)n−mtmam.

Knopp’s inequality [2, Section 3] states that, ifp > 1and0< t <1then (1.1)

X

n=0

[en(t)]p ≤ 1 t

X

m=0

[am]p if the series on the right hand side is convergent.

The aim of this short note is to prove the followingq-extension of Knopp’s inequality (1.1), valid ifp > 1,0< t <1and0< q <1:

(1.2)

X

n=0

[en(t;q)]p ≤ 1 t

X

m=0

qm(m−1)2 [am]p,

provided the series on the right hand side of (1.2) converges. The sequence (en(t;q))is

en(t;q) =

n

X

m=0

n m

q

qm(m−1)2 (1−t)n−mtmam with theq-analogue of the numbers mn

qdefined by n

m

q

= (q;q)n (q;q)m(q;q)n−m

,

(4)

Aq-Analogue of an Inequality due to Konrad Knopp

L. D. Abreu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of8

J. Ineq. Pure and Appl. Math. 7(3) Art. 110, 2006

http://jipam.vu.edu.au

where

(a;q)0 = 1, (a;q)n=

n

Y

k=1

(1−aqk−1),

(a;q) = lim

n→∞(a;q)n. Whenq→1then clearly mn

qmn

and both members in (1.2) tend to (1.1).

(5)

Aq-Analogue of an Inequality due to Konrad Knopp

L. D. Abreu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of8

J. Ineq. Pure and Appl. Math. 7(3) Art. 110, 2006

http://jipam.vu.edu.au

2. Proof of (1.2)

We will follow the notations in [1].

The proof of our result uses theq-binomial theorem and the finiteq-binomial theorem. The finiteq-binomial theorem states that

(2.1) [x−a]nq =

n

X

m=0

(−1)m n

m

q

qm(m−1)2 xn−mam,

where

[x−a]nq = (x−a)(x−aq)...(x−aqn−1).

Theq-binomial theorem states that

(2.2) (az;q)

(z;q) =

X

n=0

(a;q)n

(q;q)nzn, |z|<1.

Using Hölder’s inequality in the form hXakbkip

≤X

bkapkhX bkip−1

, p >1 we have, ifp > 1,

[en(t;q)]p

n

X

m=0

n m

q

qm(m−1)2 (1−t)n−mtmapm

" n X

m=0

n m

q

qm(m−1)2 (1−t)n−mtm

#p−1

.

(6)

Aq-Analogue of an Inequality due to Konrad Knopp

L. D. Abreu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of8

J. Ineq. Pure and Appl. Math. 7(3) Art. 110, 2006

http://jipam.vu.edu.au

The finiteq-binomial theorem (2.1) gives

n

X

m=0

n m

q

qm(m−1)2 (1−t)n−mtm =

n

X

m=0

(−1)m n

m

q

qm(m−1)2 (1−t)n−m(−t)m

= [(1−t) +t]nq

= (1−t+t)(1−t+qt)...(1−t+qn−1t)<1

Therefore,

(2.3) [en(t;q)]p

n

X

m=0

n m

q

qm(m−1)2 (1−t)n−mtmapm.

Now, if0< t <1, then for every positivek we have(1−qk)t <1−qk. This impliest < (1−(1−t)qk)and consequently,tm <((1−t)q;q)m. Using this last estimate on (2.3) and summing innfrom0to∞, the result is

X

n=0

[en(t;q)]p

X

n=0 n

X

m=0

n m

q

qm(m−1)2 (1−t)n−m((1−t)q;q)mapm

=

X

m=0

((1−t)q;q)mqm(m−1)2 apm

X

n≥m

n m

q

(1−t)n−m. (2.4)

(7)

Aq-Analogue of an Inequality due to Konrad Knopp

L. D. Abreu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of8

J. Ineq. Pure and Appl. Math. 7(3) Art. 110, 2006

http://jipam.vu.edu.au

To evaluate the sum inn, observe that

X

n>m

n m

q

(1−t)n−m =

X

n≥m

(q;q)n (q;q)n−m(q;q)m

(1−t)n−m

=

X

k=0

(q;q)m+k (q;q)k(q;q)m

(1−t)k

=

X

k=0

(qm+1;q)k

(q;q)k (1−t)k

= (qm+1(1−t);q)

(q(1−t);q)

= 1

((1−t);q)m+1

,

where theq-binomial formula (2.2) was used in the fourth identity. Substituting in (2.4) we finally have

X

n=0

[en(t;q)]p

n

X

m=0

((1−t)q;q)m

((1−t);q)m+1qm(m−1)2 apm =

n

X

m=0

1

t qm(m−1)2 apm for everyn. Taking the limit asn→ ∞gives (1.2).

(8)

Aq-Analogue of an Inequality due to Konrad Knopp

L. D. Abreu

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of8

J. Ineq. Pure and Appl. Math. 7(3) Art. 110, 2006

http://jipam.vu.edu.au

References

[1] V. KACANDP. CHEUNG, Quantum Calculus, Springer, 2002.

[2] K. KNOPP, Über reihen mit positiven gliedern, J. Lond. Math. Soc., 18 (1930), 13–21.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper, we first generalize the traditional notation (a;q) n to [g(x); q] n and then obtain an inequality about q-series and some infinite products by means of the

In this note we offer two short proofs of Young’s inequality and prove its reverse.. 2000 Mathematics Subject

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. 2000 Mathematics Subject Classification:

Using the inclusions between the unit balls for the p-norms, we obtain a new inequality for the gamma function.. 2000 Mathematics Subject Classification: 33B15,

We derive some interesting properties of this generalized integral operator which include inclu- sion results and radius problems.. 2000 Mathematics Subject Classification:

In this paper, we discuss the case of equality of this Young’s inequality, and obtain a characterization for compact normal operators.. 2000 Mathematics Subject Classification:

In this paper, we obtain a q-analogue of a double inequality involving the Euler gamma function which was first proved geometrically by Alsina and Tomás [1].. and then analytically

In this paper we obtain a generalization of Ozaki-Nunokawa’s univalence crite- rion using the method of Loewner chains.. 2000 Mathematics Subject