• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
15
0
0

Teljes szövegt

(1)

volume 6, issue 2, article 51, 2005.

Received 20 February, 2005;

accepted 02 March, 2005.

Communicated by:Th.M. Rassias

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

GENERALIZED INTEGRAL OPERATOR AND MULTIVALENT FUNCTIONS

KHALIDA INAYAT NOOR

Mathematics Department

COMSATS Institute of Information Technology Islamabad, Pakistan.

EMail:khalidanoor@hotmail.com

c

2000Victoria University ISSN (electronic): 1443-5756 061-05

(2)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

Abstract

LetA(p)be the class of functionsf :f(z) =zp+P

j=1ajzp+janalytic in the open unit discE.Let, for any integern >−p, fn+p−1(z) =(1−z)zpn+p.We define fn+p−1(−1) (z)by using convolution?asfn+p−1(z)? fn+p−1(−1) (z) = (1−z)zPn+p.A func- tionp,analytic inEwithp(0) = 1,is in the classPk(ρ)ifR

0

Rep(z)−ρ p−ρ

dθ≤kπ, wherez = re, k ≥ 2and0 ≤ ρ < p. We use the classPk(ρ)to introduce a new class of multivalent analytic functions and define an integral operator In+p−1(f) =fn+p−1(−1) ? f(z) forf(z)belonging to this class. We derive some interesting properties of this generalized integral operator which include inclu- sion results and radius problems.

2000 Mathematics Subject Classification:Primary 30C45, 30C50.

Key words: Convolution (Hadamard product), Integral operator, Functions with posi- tive real part, Convex functions.

Contents

1 Introduction. . . 3

2 Preliminary Results. . . 5

3 Main Results . . . 6

3.1 Applications . . . 11 References

(3)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

1. Introduction

LetA(p)denote the class of functionsf given by f(z) =zp+

X

j=1

ajzp+j, p∈N ={1,2, . . .}

which are analytic in the unit diskE = {z : |z| < 1}.The Hadamard product or convolution(f ? g)of two functions with

f(z) = zp+

X

j=1

aj,1zp+j and g(z) =zp+

X

j=1

zp+j is given by

(f ? g)(z) =zp+

X

j=1

aj,1aj,2zp+j.

The integral operatorIn+p−1 :A(p)−→ A(p)is defined as follows, see [2].

For any integerngreater than−p,letfn+p−1(z) = (1−z)zpn+pand letfn+p−1(−1) (z) be defined such that

(1.1) fn+p−1(z)? fn+p−1(−1) (z) = zp (1−z)p+1. Then

(1.2) In+p−1f(z) = fn+p−1(−1) (z)? f(z) =

zp (1−z)n+p

(−1)

? f(z).

(4)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

From (1.1) and (1.2) and a well known identity for the Ruscheweyh derivative [1,8], it follows that

(1.3) z(In+pf(z))0 = (n+p)In+p−1f(z)−nIn+pf(z).

Forp= 1,the identity (1.3) is given by Noor and Noor [3].

LetPk(ρ)be the class of functionsp(z)analytic inE satisfying the proper- tiesp(0) = 1and

(1.4)

Z 0

Rep(z)−ρ p−ρ

dθ≤kπ,

wherez =re, k ≥2and0 ≤ρ < p.Forp= 1,this class was introduced in [5] and forρ= 0,see [6]. Forρ= 0, k = 2,we have the well known classP of functions with positive real part and the classk = 2gives us the classP(ρ) of functions with positive real part greater thanρ.Also from (1.4), we note that p∈Pk(ρ)if and only if there existp1, p2 ∈Pk(ρ)such that

(1.5) p(z) =

k 4 + 1

2

p1(z)− k

4 − 1 2

p2(z).

It is known [4] that the classPk(ρ)is a convex set.

Definition 1.1. Letf ∈ A(p).Thenf ∈Tk(α, p, n, ρ)if and only if

(1−α)In+p−1f(z)

zp +αIn+pf(z) zp

∈Pk(ρ), forα≥0, n >−p,0≤ρ < p, k ≥2andz ∈E.

(5)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

2. Preliminary Results

Lemma 2.1. Letp(z) = 1 +b1z+b2z2+· · · ∈P(ρ).Then Rep(z)≥2ρ−1 + 2(1−ρ)

1 +|z| . This result is well known.

Lemma 2.2 ([7]). If p(z)is analytic in E with p(0) = 1 and ifλ1 is a com- plex number satisfying Reλ1 ≥ 0, (λ1 6= 0), then Re{p(z) +λ1zp0(z)} >

β (0≤β < p)implies

Rep(z)> β+ (1−β)(2γ1−1), whereγ1 is given by

γ1 = Z 1

0

1 +tReλ1−1 dt.

Lemma 2.3 ([9]). Ifp(z)is analytic inE, p(0) = 1andRep(z)> 12, z ∈ E,then for any functionF analytic inE,the functionp ? F takes values in the convex hull of the imageEunderF.

(6)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

3. Main Results

Theorem 3.1. Letf ∈Tk(α, p, n, ρ1)andg ∈Tk(α, p, n, ρ2),and letF =f ?g.

ThenF ∈Tk(α, p, n, ρ3)where (3.1) ρ3 = 1−4(1−ρ1)(1−ρ2)

1− n+p 1−α

Z 1 0

u(

n+p 1−α)−1

1 +u du

. This results is sharp.

Proof. Sincef ∈Tk(α, p, n, ρ1),it follows that H(z) =

(1−α)In+p−1f(z)

zp +αIn+pf(z) zp

∈Pk1), and so using (1.3), we have

(3.2) In+pf(z) = n+p 1−αz

(n+p1−α)Z z 0

t

n+p 1−α−1

H(t)dt.

Similarly

(3.3) In+pg(z) = n+p 1−αz

(n+p1−α)Z z 0

t

n+p 1−α−1

H?(t)dt, whereH? ∈Pk2).

Using (3.1) and (3.2), we have (3.4) In+pF(z) = n+p

1−αz

(n+p1−α)Z z 0

t

n+p 1−α−1

Q(t)dt,

(7)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

where

Q(z) = k

4 +1 2

q1(z)− k

4 − 1 2

q2(z)

= n+p 1−αz

(n+p1−α)Z z 0

t

n+p 1−α−1

(H ? H?)(t)dt.

(3.5) Now

H(z) = k

4 +1 2

h1(z)− k

4 − 1 2

h2(z) H(z)? =

k 4 +1

2

h?1(z)− k

4 − 1 2

h?2(z), (3.6)

wherehi ∈P(ρ1)andh?i ∈Pk2), i= 1,2.

Since

p?i(z) = h?i(z)−ρ2 2(1−ρ2) +1

2 ∈P 1

2

, i= 1,2, we obtain that(hi? p?i)(z)∈P(ρ1),by using the Herglotz formula.

Thus

(hi? h?i)(z)∈P(ρ3) with

(3.7) ρ3 = 1−2(1−ρ1)(1−ρ2).

(8)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

Using (3.4), (3.5), (3.6), (3.7) and Lemma2.1, we have Reqi(z) = n+p

1−α Z 1

0

u

n+p 1−α−1

Re{(hi? h?i)(uz)}du

≥ n+p 1−α

Z 1 0

u

n+p 1−α−1

3−1 + 2(1−ρ3) 1 +u|z|

du

> n+p 1−α

Z 1 0

u

n+p 1−α−1

3 −1 + 2(1−ρ3) 1 +u

du

= 1−4(1−ρ1)(1−ρ2)

1− n+p 1−α

Z 1 0

u

n+p 1−α−1

1 +u du

. From this we conclude thatF ∈Tk(α, p, n, ρ3),whereρ3is given by (3.1).

We discuss the sharpness as follows:

We take H(z) =

k 4 + 1

2

1 + (1−2ρ1)z

1−z −

k 4 − 1

2

1−(1−2ρ1)z 1 +z , H?(z) =

k 4 + 1

2

1 + (1−2ρ2)z

1−z −

k 4 − 1

2

1−(1−2ρ2)z 1 +z . Since

1 + (1−2ρ1)z 1−z

?

1 + (1−2ρ2)z 1−z

= 1−4(1−ρ1)(1−ρ2) + 4(1−ρ1)(1−ρ2) 1−z ,

(9)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

it follows from (3.5) that qi(z) = n+p

1−α Z 1

0

u

n+p 1−α−1

1−4(1−ρ1)(1−ρ2) + 4(1−ρ1)(1−ρ2) 1−uz

du

−→1−4(1−ρ1)(1−ρ2)

1− n+p 1−α

Z 1 0

u

n+p 1−α−1

1 +u du

as z −→1.

This completes the proof.

We defineJc :A(p)−→ A(p)as follows:

(3.8) Jc(f) = c+p

zc Z z

0

tc−1f(t)dt, wherecis real andc >−p.

Theorem 3.2. Letf ∈Tk(α, p, n, ρ)andJc(f)be given by (3.8). If (3.9)

(1−α)In+pf(z)

zp +αIn+pJc(f) zp

∈Pk(ρ),

then

In+pJc(f) zp

∈Pk(γ), z ∈E and

γ =ρ(1−ρ)(2σ−1) σ =

Z 1 0

1 +t

Re1−α λ+p

−1 dt.

(3.10)

(10)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

Proof. From (3.8), we have

(c+p)In+pf(z) =cIn+pJc(f) +z(In+pJc(f))0. Let

(3.11) Hc(z) = k

4 + 1 2

s1(z)− k

4 − 1 2

s2(z) = In+pJc(f) zp . From (3.9), (3.10) and (3.11), we have

(1−α)In+pf(z)

zp +αIn+pJc(f) zp

=

Hc(z) + 1−α

λ+pzHc0(z)

and consequently

si(z) + 1−α λ+pzs0i(z)

∈P(ρ), i= 1,2.

Using Lemma2.2, we haveRe{si(z)}> γwhereγis given by (3.10). Thus Hc(z) = In+pJc(f)

zp ∈Pk(γ) and this completes the proof.

Let

(3.12) Jn(f(z)) :=Jn(f) = n+p zp

Z z 0

tn−1f(t)dt.

Then

In+p−1Jn(f) =In+p(f), and we have the following.

(11)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

Theorem 3.3. Letf ∈Tk(α, p, n+1, ρ).ThenJn(f)∈Tk(α, p, n, ρ)forz ∈E.

Theorem 3.4. Let φ ∈ Cp,whereCp is the class of p-valent convex functions, and letf ∈Tk(α, p, n, ρ).Thenφ ? f ∈Tk(α, p, n, ρ)forz ∈E.

Proof. LetG=φ ? f.Then (1−α)In+p−1G(z)

zp +αIn+pG(z) zp

= (1−α)In+p−1(φ ? f)(z)

zp +αIn+p(φ ? f)(z) zp

= φ(z) zp ?

(1−α)In+p−1f(z)

zp +αIn+pf(z) zp

= φ(z)

zp ? H(z), H ∈Pk(ρ)

= k

4 +1

2 (p−ρ)

φ(z)

zp ? h1(z)

− k

4 − 1

2 (p−ρ)

φ(z)

zp ? h2(z)

, h1, h2 ∈P.

Sinceφ ∈Cp, Renφ(z)

zP

o

> 12, z ∈E and so using Lemma2.3, we conclude thatG∈Tk(α, p, n, ρ).

3.1. Applications

(1) We can writeJc(f)defined by (3.8) as Jc(f) = φc? f,

(12)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

whereφc is given by φc(z) =

X

m=p

p+c

m+czm, (c >−p)

and φc ∈ Cp. Therefore, from Theorem 3.4, it follows that Jc(f) ∈ Tk(α, p, n, ρ).

(2) LetJn(f),defined by (3.12), belong toTk(α, p, n, ρ).Thenf ∈Tk(α, p, n, ρ) for|z|< rn= (1+n)

2+

3+n2.In fact,Jn(f) = Ψn? f,where Ψn(z) = zp+

X

j=2

n+j −1 n+ 1 zj+p−1

= n

n+ 1 · zp

1−z + 1

n+ 1 · zp (1−z)2 andΨn∈Cpfor

|z|< rn= 1 +n 2 +√

3 +n2.

NowIn+p−1Jn(f) = Ψn? In+p−1f,and using Theorem3.4, we obtain the result.

Theorem 3.5. For0≤α2 < α1, Tk1, p, n, ρ)⊂Tk2, p, n, ρ), z ∈E.

Proof. Forα2 = 0,the proof is immediate. Letα2 >0and letf ∈Tk1, p, n, ρ).

(13)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

Then

(1−α2)In+p−1f(z) zp2

In+pf(z) zp2

α1 α1

α2 −1

In+p−1f(z)

zp + (1−α1)In+p−1f(z)

zp1In+p−1f(z) zp

=

1− α2 α1

H1(z) + α2

α1H2(z), H1, H2 ∈Pk(ρ).

SincePk(ρ)is a convex set, we conclude thatf ∈Tk2, p, n, ρ)forz ∈E.

Theorem 3.6. Letf ∈Tk(0, p, n, ρ).Thenf ∈Tk(α, p, n, ρ)for

|z|< rα = 1 2α+√

2−2α+ 1, α6= 1

2, 0< α <1.

Proof. Let

Ψα(z) = (1−α) zp

1−z +α zp (1−z)2

=zp+

X

m=2

(1 + (m−1)α)zm+p−1.

Ψα ∈Cp for

|z|< rα = 1 2α+√

2−2α+ 1

α6= 1

2, 0< α <1

(14)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

We can write

(1−α)In+p−1f(z)

zp +αIn+pf(z) zp

= Ψα(z)

zp ?In+p−1f(z) zp . Applying Theorem3.4, we see thatf ∈Tk(α, p, n, ρ)for|z|< rα.

(15)

Generalized Integral Operator and Multivalent Functions

Khalida Inayat Noor

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of15

J. Ineq. Pure and Appl. Math. 6(2) Art. 51, 2005

http://jipam.vu.edu.au

References

[1] R.M. GOELANDN.S. SOHI, A new criterion forp-valent functions, Proc.

Amer. Math. Soc., 78 (1980), 353–357.

[2] J.L. LIUANDK. INAYAT NOOR, Some properties of Noor integral opera- tor, J. Natural Geometry, 21 (2002), 81–90.

[3] K. INAYAT NOORANDM.A. NOOR, On integral operators, J. Math. Anal.

Appl., 238 (1999), 341–352.

[4] K. INAYAT NOOR, On subclasses of close-to-convex functions of higher order, Internat. J. Math. Math. Sci., 15(1992), 279–290.

[5] K.S. PADMANABHAN AND R. PARVATHAM, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975), 311–323.

[6] B. PINCHUK, Functions with bounded boundary rotation, Isr. J. Math., 10 (1971), 7–16.

[7] S. PONNUSAMY, Differential subordination and Bazilevic functions, Preprint.

[8] S. RUSCHEWEYH, New criteria for univalent functions, Proc. Amer. Math.

Soc., 49 (1975), 109–115.

[9] R. SINGH AND S. SINGH, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106 (1989), 145–152.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

2000 Mathematics Subject Classification: Primary 26D15, 46D05 Secondary 46C99 Key words: Grüss’ Inequality, Inner products, Integral inequalities, Discrete

We derive some spectral results relating to corresponding properties with more than two positive numbers.. 2000 Mathematics Subject Classification: 26E60, 26D15 Key words:

J. Pure and Appl. Some similar inequalities are also considered. The results are applied to inequalities of Ky Fan’s type... 2000 Mathematics Subject Classification: Primary

In this paper, we study several new inequalities of Hadamard’s type for Lips- chitzian mappings.. 2000 Mathematics Subject Classification: Primary 26D07; Secondary

In this short paper we derive new and interesting upper and lower bounds for the Euler’s gamma function in terms of the digamma function ψ(x) = Γ 0 (x)/Γ(x).. 2000 Mathematics

A generalization of an inequality involving the generalized elementary symmet- ric mean and its elementary proof are given.. 2000 Mathematics Subject Classification: Primary 26D15

These are sharper than some known generalizations of the Hilbert integral inequality including a recent result of Yang.. 2000 Mathematics Subject

Some interesting inequalities proved by Dragomir and van der Hoek are gener- alized with some remarks on the results.. 2000 Mathematics Subject