• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
19
0
0

Teljes szövegt

(1)

volume 4, issue 5, article 85, 2003.

Received 12 May, 2003;

accepted 27 June, 2003.

Communicated by:D. Hinton

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

BEURLING VECTORS OF QUASIELLIPTIC SYSTEMS OF DIFFERENTIAL OPERATORS

RACHID CHAILI

Dépatement de Mathématiques, U.S.T.O. Oran, Algérie.

EMail:chaili@univ-usto.dz

c

2000Victoria University ISSN (electronic): 1443-5756 061-03

(2)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

Abstract

We show the iterate property in Beurling classes for quasielliptic systems of differential operators.

2000 Mathematics Subject Classification:35H30, 35H10

Key words: Beurling vectors, Quasielliptic systems, Differential operators

Contents

1 Introduction. . . 3

2 Preliminary Lemmas. . . 6

3 Local Estimates. . . 9

4 The Main Result . . . 14 References

(3)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

1. Introduction

The aim of this work is to show the iterate property in Beurling classes for quasielliptic systems of differential operators. This property is proved for el- liptic systems in [2]. A synthesis of results on the iterate problem is given in [1].

Let(m1, . . . , mn) ∈ Zn+, mj ≥ 1,1 ≤ j ≤ n , we setµ =Qn

j=1mj, m = max{mj}, qj = mm

j andq = (q1, . . . , qn).Ifα ∈ Zn+ andβ ∈ Zn+ , we denote

|α| = α12 +· · · +αn, Dα = D1α1 ◦ · · · ◦ Dαnn, where Dj = 1i · ∂x

j, hα, qi=Pn

j=1αjqj and α

β

=Qn j=1

α

j

βj

.

Let(Mp)+∞p=0 be a sequence of real positive numbers such that (1.1) M0 = 1, ∃a >0, 1≤ Mp

Mp−1

≤ Mp+1 Mp

≤ap, p∈Z+,

(1.2) ∃b >0,∃c > 0, c p

j

Mp−jMj

≤Mp ≤bpMp−jMj, p, j ∈Z+, j ≤p, (1.3) ∀m≥2, ∃d >0, ∀p, h∈Z+, h≤m;

(Mpm)m−h(Mpm+m)h ≤d(Mpm+h)m,

(1.4) ∀m≥2,∃H >0,∀p, h∈Z+, h≤p; Mpm

Mhm ≤Hp−h Mp

Mh m

.

(4)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

Let (Pj(x, D))Nj=1 be q−quasihomogeneous differential operators of order mwithCcoefficients in an open subsetΩofRn, i.e.

Pj(x, D) = X

hα,qi≤m

a(x)Dα.

We define the quasiprincipal symbol of the operatorPj(x, D)by Pjm(x, ξ) = X

hα,qi=m

a(x)ξα.

Definition 1.1. The system(Pj)Nj=1is saidq−quasielliptic inΩif for eachx0 ∈ Ωwe have

(1.5)

N

X

j=1

|Pjm(x0, ξ)| 6= 0, ∀ξ∈Rn\{0}.

Definition 1.2. LetM = (Mp)be a sequence satisfying (1.1) – (1.4), the space of Beurling vectors of the system(Pj(x, D))Nj=1inΩ,denotedBM

Ω,(Pj)Nj=1 , is the space ofu∈C(Ω)such that∀Kcompact ofΩ,∀L >0,∃C >0,∀k∈ Z+,

(1.6) kPi1. . . , PikukL2(K) ≤CLkmMkm, where1≤il≤N, l ≤k.

(5)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

Definition 1.3. Letl = (l1, . . . , ln)∈Rn+andM be a sequence satisfying (1.1) – (1.4), we call anisotropic Beurling space inΩ,denotedBMl (Ω), the space of u∈C(Ω)such that∀K compact ofΩ,∀L >0,∃C > 0,∀α∈Z+n,

(1.7) kDαuk

L2(K) ≤CL<α,l>

n

Y

j=1

Mαjlj

.

Remark 1.1. Iflj = 1, j = 1, . . . , n,we obtain, thanks to (1.2) the definition of isotropic Beurling spaceBM(Ω), (see [4]).

The principal result of this work is the following theorem:

Theorem 1.1. LetM andM0be two sequences satisfying (1.1) – (1.4) and

(1.8) lim

p→+∞

p

X

h=0

Mhm0 Mhm

Mpm+m Mpm+m0 = 0.

Let(Pj)Nj=1 beq−quasielliptic system withBqM(Ω)coefficients, then BM0

Ω,(Pj)Nj=1

⊂BMq 0(Ω).

(6)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

2. Preliminary Lemmas

Letωbe an open neighbourhood of the origin, we setK=

k =hα, qi, α∈Zn+

and we define

|u|k,ω = X

hα,qi=k

kDαukL2(ω), u∈C(ω), k ∈ K.

Ifρ >0we set

Bρ=

x∈Rn,

n

X

j=1

(xj)

2 qj

!12

< ρ

 .

The two following lemmas are in [6].

Lemma 2.1. Letu∈C(Ω),r∈ Kandp∈Z+,then

(2.1) |u|pm+r,ω ≤ X

hα,qi=pm

|Dαu|r,ω.

Lemma 2.2. Letk =pm+r < pm+jm,wherek, r∈ Kandp, j ∈Z+,then

∃c(j)>0,∀Bρ⊂ω,∀ε∈]0,1[,∀u∈C(ω),

(2.2) |u|k,B

ρ ≤ε|u|(p+j)m,B

ρ+c(j)εjm−rr |u|pm,B

ρ.

If a ∈ C(ω), we denote [a, Dα]u = Dα(au) −aDαu and if P is a differential operator, we define[P, Dα]u=Dα(P u)−P (Dαu).

(7)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

Lemma 2.3. Let B be a bounded subset of Rn anda ∈ BMq B

,then∀L >

0,∃C >0,∀u∈C B

,∀p∈Z+,

(2.3) X

hα,qi=pm

|[a, Dα]u|0,B ≤C X

k≤pm−1 k∈K

Lpm−k

Mpmµ M

µ1

|u|k,B.

Proof. LetL >0,asa∈BMq B

,there existsC1 >0such that

|Dαa| ≤C1Lhα,qi

n

Y

j=1

Mαjqj

, ∀α∈Zn+,

therefore, with the Leibniz formula, we get (2.4) |[a, Dα]u|0,B ≤X

β<α

α β

Dβu

0,BC1Lhα−β,qi

n

Y

j=1

Mαj−βjqj

.

We need the following easy inequality

(2.5)

α β

n

Y

j=1

αj βj

qjµ!µ1

hα, qiµ hβ, qiµ

µ1 .

It is easy to check that from condition (1.2) we have

(2.6) cl−1

l

Y

j=1

Mhj ≤MPl

j=1hj ≤b(l−1)Plj=1hj

l

Y

j=1

Mhj,

(8)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

hence

n

Y

j=1

Mαj−βj

qjµ

≤ 1

c

Pnj=1qjµ−1

M.

This inequality with (1.2) and(2.5)imply (2.7)

α β

n Y

j=1

Mαj−βj

qj

≤ 1

c

Plj=1qjMhα,qiµ Mhβ,qiµ

1µ

|u|k,B.

As the number of α ∈ Z+ satisfyinghα, qi = pm and α > β, is limited by C2pm−hβ,qi,whereC2 depends only ofn,then(2.4)and(2.7)give

X

hα,qi=pm

|[a, Dα]u|0,B ≤ X

k≤pm−1 k∈K

C1 1

c

Plj=1qj

(C2L)pm−k

Mpmµ M

µ1

|u|k,B,

from which the desired estimate is obtained.

(9)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

3. Local Estimates

Let(Pj)Nj=1 be aq−quasielliptic system with coefficients inBMq B

,whereB is a neighbourhood of the origin. The following lemma is a light modification of an analogous lemma in [6, Lemma 2.3].

Lemma 3.1. Letωbe a small neighbourhood of the origin,ρ >0andδ∈]0,1[, such thatBρ+δ ⊂ ω. Then there existsC >0, not depending onρandδ, such that for anyu∈C(ω),

(3.1) |u|m,B

ρ ≤C

N

X

j=1

|Pju|0,B

ρ+δ + X

k≤m−1 k∈K

δ−m+k|u|k,B

ρ+δ

.

Lemma 3.2. Let ω, ρandδ be as in Lemma3.1, then∃C > 0,∀L > 0,∃A >

0,∀p∈Z+,∀u∈C(ω) (3.2) |u|(p+1)m,B

ρ

≤C

N

X

j=1

|Pju|pm,B

ρ+δ−m|u|pm,B

ρ+δ + 1

(4e)m |u|(p+1)m,B

ρ+δ

+A

p

X

h=0

L(p+1−h)mMpm+m

Mhm |u|hm,B

ρ+δ

! , and

(3.3) |u|m,B

ρ ≤C

N

X

j=1

|Pju|0,B

ρ+δ−m|u|0,B

ρ+δ + 1

(4e)m|u|m,B

ρ+δ

! .

(10)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

Proof. From(2.1)and(3.1)we obtain

(3.4) |u|(p+1)m,B

ρ ≤C

N

X

j=1

|Pju|pm,B

ρ+δ +

N

X

j=1

X

hα,qi=pm

|[Pj, Dα]u|0,B

ρ+δ

+ X

k≤m−1 k∈K

δ−m+k|u|pm+k,B

ρ+δ

,

Following the same idea as in the proof of Lemma 2.2 of [2], we get

(3.5) X

hα,qi=pm

|[Pj, Dα]u|0,B

ρ+δ

≤C0 X

s≤pm+m−1 s∈K

Lpm+m−s

M(pm+m)µ M

µ1

|u|s,B

ρ+δ. On the other hand, there exists h ∈ Z+ and r ∈ K such that s = hm +r, r < nm−n, (see [6, (1.3)]). Ass ≤pm+m−1,thenh ≤p.From(2.2)we have

(3.6) |u|s,B

ρ+δ ≤ε|u|(h+n)m,B

ρ+δ+C2εnm−rr |u|hm,B

ρ+δ

ifs=hm+r,where0≤h≤p−n+ 1and0≤r < nm−n,and (3.7) |u|s,B

ρ+δ ≤ε|u|pm+m,B

ρ+δ +C2εjm−rr |u|hm,B

ρ+δ

(11)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

ifs=hm+rwhereh=p+ 1−j, 1≤j ≤n−1and0≤r≤jm−1.

Letε0 ∈]0,1[and put ε=ε0

M M(h+n)mµ

µ1

L−nm+rin (3.6) and

ε=ε0

M M(p+1)mµ

µ1

L−jm+r in (3.7). According to (1.3) we obtain for anyssatisfying(3.6),

L−s (M)1µ

|u|s,B

ρ+δ ≤ε0 L−(h+n)m

M(h+n)mµ1µ |u|(h+n)m,B

ρ+δ

+C2d0ε0−m L−hm (Mhmµ)1µ

|u|hm,B

ρ+δ

and for anyssatisfying(3.7), L−s

(M)1µ

|u|s,B

ρ+δ ≤ε0 L−(p+1)m

M(p+1)mµµ1 |u|(p+1)m,B

ρ+δ

+C2d00ε0−nm L−hm (Mhmµ)µ1

|u|hm,B

ρ+δ.

(12)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

These inequalities and(3.5)give X

hα,qi=pm

|[Pj, Dα]u|0,B

ρ+δ ≤C0

0|u|(p+1)m,B

ρ+δ

+c(ε0)

p

X

h=0

L(p+1−h)m

M(pm+m)µ Mhmµ

1µ

|u|hm,B

ρ+δ

! . Choosingε0 = (2CC0N n(4e)m)−1,then we obtain, with (1.4),

N

X

J=1

X

hα,qi=pm

|[Pj, Dα]u|0,B

ρ+δ ≤ 1 2C

1

(4e)m |u|(p+1)m,B

ρ+δ

+A

p

X

h=0

(HL)(p+1−h)m Mpm+m

Mhm |u|hm,B

ρ+δ. It follows from this inequality: ∀L >0, ∃A >0,

(3.8)

N

X

J=1

X

hα,qi=pm

|[Pj, Dα]u|0,B

ρ+δ ≤ 1 2C

1

(4e)m |u|(p+1)m,B

ρ+δ

+A

p

X

h=0

L(p+1−h)mMpm+m

Mhm |u|hm,B

ρ+δ. It remains the estimate of the third term of the right-hand side of (3.4). From (2.2),we have

|u|pm+k,B

ρ+δ ≤ε|u|pm+m,B

ρ+δ +C2εm−kk |u|pm,B

ρ+δ.

(13)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

Settingε=ε0δm−kand choosingε0 = (2C1C(4e)m)−1,then we obtain

(3.9) X

k≤m−1 k∈K

δ−m+k|u|pm+k,B

ρ+δ

≤ 1 2C

1

(4e)m |u|(p+1)m,B

ρ+δ +C20δ−m|u|pm,B

ρ+δ. The estimates(3.4), (3.8)and(3.9)imply(3.2).The estimate(3.3)is obtained from(3.1)and(3.9)withp= 0.

(14)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

4. The Main Result

LetR >0,to every sequenceM satisfying (1.1) – (1.4) we define σMp (u) = 1

Mpm sup

R/2≤ρ<R

(R−ρ)pm|u|pm,B

ρ. The following lemma is in [2].

Lemma 4.1. Letωbe as in Lemma3.1,R ∈]0,1[such thatBR⊂ω, M, M0two sequences satisfying (1.1) – (1.4) andu∈BM0

ω,(Pj)Nj=1

, then for anyL >

0,there exists an increasing positive sequence(Cp)+∞p=0 such that ∀p, l ∈Z+, (4.1) σMp 0(Pi0· · ·Pilu)≤CpMpm+lm0

Mpm0 Lpm+lm. where the sequence(Cp)is constructed by recurrence,

Cp+1 =Cp N C+A

p

X

h=0

Mhm0 Mhm

Mpm+m

Mpm+m0

! ,

whereCandAare the constants of Lemma3.2andC0is the constant satisfying kPi0· · ·PilukL2(BR)≤C0LlmMlm0 .

Theorem 4.2. LetM andM0be two sequences satisfying (1.1) – (1.4) and

(4.2) lim

p→+∞

p

X

h=0

Mhm0 Mhm

Mpm+m Mpm+m0 = 0.

(15)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

Let(Pj)Nj=1 beq-quasielliptic system with coefficients inBMq (Ω),then BM0

Ω,(Pj)Nj=1

⊂BMq 0(Ω).

Proof. We must verify (1.7) near every point x of Ω. By a translation of xat the origin, there exists a neighbourhoodωof the origin for which the precedent lemmas are true. Let L > 0 and let (Cp)+∞p=0 be as in Lemma4.1, then from (4.2)there existsp0 ∈Z+such thatCp+1 ≤2N CCp, p≥p0,hence

Cp ≤Cp0(2N C)p−p0 ≤Cp0(2N C)pm+lm, ∀l∈Z+.

Forp≤p0,this inequality is true because the sequence(Cp)+∞p=0is increasing.

LetR∈]0.1[such thatBR⊂ω,from(4.1)we obtain σMp 0(Pi0· · ·Pilu)≤Cp0Mpm+lm0

Mpm0 (2N CL)pm+lm, ∀p, l∈Z+. In particular forl = 0,

R 2

pm

1

Mpm0 |u|pm,B

R/2 ≤σMp 0(u)≤Cp0(2N CL)pm, hence

|u|pm,B

R/2 ≤Cp0

4N C R L

pm

Mpm0 , which can be rewritten as

(4.3) ∀L >0, ∃C >0, |u|pm,B

R/2 ≤CLpmMpm0 .

(16)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

The last inequality will allow us to conclude. In fact letk ∈ K,then there exists p∈Z+andr∈ K, r < nm−n,such thatk=pm+r.From(2.2),(4.3)and (2.6),we obtain

|u|k,B

R/2 ≤εC0L(p+n)mM(p+n)m0 +C0C00εnm−rr LpmMpm0

≤εC0L(p+n)m1

c M(p+n)mµ0 1µ

+C0C00εnm−rr Lpm1

c Mpmµ0 µ1 . Setting

ε= M(pm+r)µ0 M(p+n)mµ0

!1µ

L−nm+r, then from (1.3) we get

(4.4) |u|k,B

R/2 ≤C1Lk M0 µ1 .

By an imbedding theorem of anisotropic Sobolev spaces (see [5]), from (4.4) and (1.2) we obtain

sup

BR/2

|Dαu(x)| ≤C2(bL)hα,qi Mhα,qiµ0 µ1 .

The last estimate, with(2.6)gives

sup

BR/2

|Dαu(x)| ≤C3(bL)hα,qi bhα,qinµ

n

Y

j=1

Mα0

jqjµ

!µ1

(17)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

≤C3(bL)hα,qi bhα,qinµ

n

Y

j=1

bqjµ(αjqjµ) Mα0

j

qjµ!µ1

≤C3 b(1+n+mµ)Lhα,qi

n

Y

j=1

Mα0

j

qj

,

from thereu∈BMq 0 BR/2 .

As a corollary we obtain from Theorem1.1, the principal result of [2]. The- orem1.1also gives a result of regularity of solutions of differential equations in Beurling classes.

Corollary 4.3. Under the assumptions of Theorem1.1, the following assertions are equivalent:

i) u∈D0(Ω)andPju∈BMq 0(Ω), ii) u∈BMq 0(Ω).

For anisotropic projective Gevrey classesG{s},q(Ω) =BMq (Ω),Mp = (p!)s, s ≥1,we have the same result.

Corollary 4.4. Let s, s0 be such that s0 > s ≥ 1 and(Pj)Nj=1 q−quasielliptic system with coefficients inG{s},q(Ω),then

G{s}

Ω,(Pj)Nj=1

⊂G{s},q(Ω).

(18)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

Corollary 4.5. LetM andM0be two sequences satisfying (1.1) – (1.4) and

(4.5) lim

p→+∞

p

X

h=0

Mhm0 Mhm

Mpm+m Mpm+m0 = 0,

and let(Pj)Nj=1be an elliptic system with coefficients inBM (Ω),then BM0

Ω,(Pj)Nj=1

⊂BM0(Ω).

(19)

Beurling Vectors of Quasielliptic Systems of

Differential Operators Rachid Chaili

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of19

J. Ineq. Pure and Appl. Math. 4(5) Art. 85, 2003

http://jipam.vu.edu.au

References

[1] P. BOLLEY, J. CAMUS AND L. RODINO, Hypoellipticité analytique- Gevrey et itérés d’opérateurs, Ren. Sem. Mat. Univers. Politec. Torino, 45(3) (1989), 1–61.

[2] C. BOUZARANDR. CHAILI, Régularité des vecteurs de Beurling de sys- tèmes elliptiques, Maghreb Math. Rev., 9(1-2) (2000), 43–53.

[3] C. BOUZAR AND R. CHAILI, Vecteurs Gevrey d’opérateurs différentiels qusihomogènes, Bull. Belg. Math. Soc., 9 (2002), 299–310.

[4] J.L. LIONS AND E. MAGENES, Problèmes aux Limites Non Homogènes et Applications, t. 3, Dunod Paris, 1970.

[5] P.I. LIZORKIN, Nonisotropic Bessel potentials. Imbedding theorems for Sobolev spaces L(rp1,...,rn) with fractional derivatives, Soviet Math. Dokl., 7(5) (1966), 1222–1226.

[6] L. ZANGHIRATI, Iterati di operatori quasi-ellittici e classi di Gevrey, Boll.

U.M.I., 5(18-B) (1981), 411–428.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper, we study several new inequalities of Hadamard’s type for Lips- chitzian mappings.. 2000 Mathematics Subject Classification: Primary 26D07; Secondary

Using the inclusions between the unit balls for the p-norms, we obtain a new inequality for the gamma function.. 2000 Mathematics Subject Classification: 33B15,

More specific, we find best constants for the corresponding inequalities in the special case when the differential operator is the p-Laplace operator.. 2000 Mathematics

We give an explicit Mertens type formula for primes in arithmetic progressions using mean values of Dirichlet L-functions at s = 1.. 2000 Mathematics Subject Classification:

In this paper, we discuss the case of equality of this Young’s inequality, and obtain a characterization for compact normal operators.. 2000 Mathematics Subject Classification:

In the present paper, by introducing some parameters, new forms of Hardy- Hilbert’s inequalities are given.. 2000 Mathematics Subject

In this paper we obtain a generalization of Ozaki-Nunokawa’s univalence crite- rion using the method of Loewner chains.. 2000 Mathematics Subject

In this paper, using Grüss’ and Chebyshev’s inequalities we prove several in- equalities involving Taylor’s remainder.. 2000 Mathematics Subject