• Nem Talált Eredményt

Finally the numerial results should be again au- tomatiallymapped bak into themodeler's representation, so that the userof thetoolan interpret themin that ontext

N/A
N/A
Protected

Academic year: 2023

Ossza meg "Finally the numerial results should be again au- tomatiallymapped bak into themodeler's representation, so that the userof thetoolan interpret themin that ontext"

Copied!
16
0
0

Teljes szövegt

(1)

Generally Distributed Transition Times

Andrea Bobbioand MiklosTelek

Dipartimentodi Elettroniaperl'Automazione

Universita di Bresia, 25123Bresia, Italy

Department of Teleommuniations

Tehnial University of Budapest, Budapest, Hungary

February5, 2001

Abstrat

Theanalysisofstohastisystemswithnon-exponentialtimingrequiresthedevelopmentofsuit-

ablemodelingtools. Reently,someeorthasbeendevotedtogeneralizetheoneptofStohasti

Petrinets,byallowingtheringtimestobegenerallydistributed. TheevolutionofthePNintime

beomesastohasti proess,for whih ingeneral,noanalytialsolutionis available. Thepaper

desribessuitablerestritionsofthePNmodelwithgenerallydistributedtransitiontimes,thathave

appearedintheliterature,andomparesthesemodelsfromthepointofviewofthemodelingpower

andthenumerialomplexity.

1 Introdution

Thedesigner andtheanalystofasystemareinrstinstaneinterestedinthesolutionofthemodeling

problem, notin howthis solutionisatuallyderived. Theyshouldbeableto desribetheirsystemin

suhawaythatitiseasyandnaturaltouse. Themodeler'srepresentationshouldinludeenoughinfor-

mationtobuildupananalytialrepresentationsuitablefornumerialsolution,andshouldalsoontain

thespeiationofthe measuresofinterests. Themodeler'srepresentationshould thenautomatially

be transformed into the analytial representation. Finally the numerial results should be again au-

tomatiallymapped bak into themodeler's representation, so that the userof thetoolan interpret

themin that ontext. ForMarkoviansystemsseveraltoolshavebeendevelopedinreentyears,based

onvariousspeiationparadigms,assurveyedin[26℄.

Thereare,however,situationsthatarenotoveredbythesetools. Onetypialsituationourswhen

therandomtimesharateristiofthesystemarenotexponential. Aseondsituationourswhenthe

analyst requires the omputation of stohasti measures (like the distribution funtion of umulative

measures[34, 7℄)whosenumerialevaluationannotbeperformedbysolvingaset oflinearrstorder

equationstypialofMarkoviansystems.

InreentyearsseverallassesofStohastiPetriNet(SPN)modelshavebeenelaboratedwhihin-

orporatesomenon-exponentialharateristisintheirdenition. ThesemantisofSPN'swithgenerally

distributed transition timeshasbeendisussedin [1℄. Wereferto thismodel asGenerally Distributed

Transition SPN(GDTSPN).Ingeneral,thestohasti proessunderlying aGDT SPNdoesnothave

anumeriallytratableanalytialformulation,whileasimulativesolutionhasbeeninvestigatedin[24℄.

With theaim of providinga modeler's representation ableto automatially generate an analytial

representation,variousrestritionsofthegeneralGDT SPNmodelhavebeendisussedintheliterature.

Dugan et al. have studied the onditions under whih the stohasti realization of the GDT SPNis

a semi-Markovproess [21℄. Cumani [20℄ has realized a pakage in whih eah PN-transition anbe

assignedaPHdistributedringtime. Werefertothismodelin thefollowingasPHSPN.

Apartiularaseofnon-MarkovianSPN,isthelassofDeterministiandSPN(DSPN).ADSPNis

denedin[3℄asaMarkovianSPNwhere,ineahmarking,asingletransitionisallowedtohaveassoiated

(2)

state algorithm waspresentedin [29℄, and some strutural extensionswere investigatedin [15℄. Choi

et al. [13℄havedevelopedatehniqueforthetransientanalysisof thestateprobabilitiesof theDSPN

model. Reently,Choietal. [12℄andGermanandLindemann[23℄haveextendedthepotentialityofthe

modelbyallowingthepresenein eahmarkingofatransition withagenerallydistributedringtime.

In[12℄, theauthors haveshown that theunderlying stohastiproess isaSemi Markov Regenerative

proess, forwhih atransientaswellasasteady statesolutionanbegiven. Forthisreason,Choiet.

al. refertothismodelasMarkov RegenerativeSPN(MRSPN)[12℄. A lassiationofGDT SPNsand

oftherelatedunderlyingstohastiproessesisinCiardoet al. [14℄.

TheaimofthispaperistoomparetheavailableGDT SPNmodelsreentlyappearedinthelitera-

turefromtwodistintandonitingpointsofview: themodellingpowerandtheanalytialtratability.

Tothisend,themainfeaturesofthevariousrestritionsonsideredintheliteraturearebrieydesribed

withtheintentofstressingthebasimodelingassumptionsandtheomplexityoftherelatedanalytial

solution.

Analexample,basedonthetransientanalysisofalosedqueuingsystemwithdeterministiservie

timeandvariouskindsofpreemptiveserviepoliies,isdevelopedinlengthinordertoputinevidene

thelimitsandthepotentialitiesofthedierentapproahes.

TheGDT SPNmodelisformallydenedinSetion2. InSetion3abriefsurveyofthemostreent

restritionsappearedintheliteraureisreported. Tworestritionsaredesribedinmoredetails,namely

thePHSPN modelimplemented byCumani in [20℄ and theDSPN model desribed by Choiet al. in

[13℄. A omparativedisussion ofthe modeling powerofthe onsidered models isreportedin Setion

4. InSetion 5,startingfrom asimplequeuingsystem,inreasingmodelling omplexitiesareaddedin

ordertoshowhowtheonsideredmodelsreattotheseaddedstrutures. Thealgorithmialomplexity

ofthenumerialsolutionsisdisussedinSetion6.

2 Generally Distributed Transition SPN

AmarkedPetriNet(PN)isatuplePN =(P;T;I;O;H;M);where:

P =fp

1

;p

2

;:::;p

np

gisthesetofplaes(drawnasirles);

T =ft

1

;t

2

;:::;t

nt

gisthesetoftransitions(drawnasbars);

I,OandH aretheinput,theoutputandtheinhibitorfuntions,respetively. Theinputfuntion

I provides the multipliities of theinput ars from plaes to transitions; theoutput funtion O

providesthemultipliitiesoftheoutput arsfromtransitions toplaes;theinhibitorfuntion H

providesthemultipliityoftheinhibitorarsfrom plaestotransitions.

M =fm

1

;m

2

;:::;m

np

gisthemarking. Thegenerientrym

i

isthenumberoftokens(drawnas

blakdots) inplaep

i

,inmarkingM.

Inputandoutputarshaveanarrowheadontheirdestination,inhibitorarshaveasmallirle. A

transitionisenabledinamarkingifeahofitsordinaryinputplaesontainsatleastasmanytokensas

themultipliityoftheinputfuntionI andeahofitsinhibitorinputplaesontainsfewertokensthan

themultipliityoftheinhibitorfuntionH. An enabledtransitionresbyremovingasmanytokensas

themultipliityof theinputfuntion I fromeahordinaryinputplae,andadding asmanytokensas

themultipliity of theoutput funtion O to eah output plae. Thenumberoftokens in aninhibitor

inputplaeisnotaeted.

A marking M 0

is said to be immediately reahable from M, when is generated from M by ring

a singleenabled transition t

k

. The reahability set R(M

0

) is theset of allthe markingsthat anbe

generatedfromaninitialmarkingM

0

byrepeatedappliationoftheaboverules. IfthesetT omprises

bothtimedandimmediatetransitions,R(M

0

)ispartitionedintotangible(noimmediatetransitionsare

enabled)andvanishingmarkings,aordingto[2℄.

AtimedexeutionsequeneT

E

isaonnetedpathinthereahabilitygraphR(M

0

)augmentedbya

non-dereasingsequeneofrealnon-negativevaluesrepresentingtheepohsofringofeahtransition,

suhthatonseutivetransitionringsorrespondto orderedepohs

i

i+1 in T

E .

(3)

E 0

(0) 1

(1)

i

(i)

The time interval

i+1

i

betweenonseutive epohs representsthe period of time that thePN

sojourns inmarkingM

(i) .

A variety oftiming mehanismshavebeenproposed in the literature. The distinguishingfeatures

ofthetimingmehanismsarewhetherthedurationoftheeventsismodeledbydeterministivariables

or random variables, and whether the time is assoiated to the PN plaes, transitions or tokens. If

a probability measure is assigned to the duration of the events represented by a transition, a timed

exeutionsequeneT

E

is mappedintoastohastiproessX

T

(t);(t0),alled theMarking Proess.

PN'sin whihthetiming mehanismisstohastiare referredtoasStohastiPN(SPN).

ASPNwithstohastitimingassoiatedtothePNtransitionsandwithgenerallydistributedring

times was dened in [1℄, with partiular emphasis to thesemantial interpretation of the model. We

refertothismodelasGenerally DistributedTransitionSPN(GDTSPN).

Denition3 -A stohasti GDT SPNisamarkedSPNinwhih:

To any transition t

k

2 T is assoiated a random variable

k

modeling the time needed by the

ativityrepresentedby t

k

toomplete, whenonsideredinisolation.

Eah random variable

k

isharaterizedby the (possibly marking dependent) Cumulativedistri-

butionfuntion G

k (xjM).

A set of speiations are given for univoally dening the sstohasti proess assoiated to the

ensembleof allthetimedexeutionsequenesT

E

. Thissetofspeiationsisalledthe exeution

poliy.

A initial probability isgiven onthe reahability set.

An exeutionpoliy is a set of speiationsfor univoally dening the stohasti proess underlying

theGDT SPN, given thePN topologystruture andthe set ofCdf's G

k

(xjM). Indeed, theinlusion

of non-exponentialtimings destroysthe memorylessproperty and fores to speifyhowthe systemis

onditioneduponthepasthistory. Thesemantis of dierentexeutionpoliies hasbeen disussedin

[1℄. Theexeutionpoliyomprisestwospeiations: ariteriontohoosethenexttimedtransitionto

re(the ringpoliy), andariterionto keepmemoryofthepasthistoryofthe proess(the memory

poliy). Anaturalhoietoseletthenexttimedtransitiontoreisaordingtoaraepoliy: ifmore

thanonetransitionisenabledinagivenmarking,thetransitionreswhoseassoiatedrandomdelayis

statistially theminimum. TheMemory Poliyis thepartofthe setof speiationsof theexeution

poliythat deneshowtheproessisonditioneduponthepast. Weassoiatetoeahtransitiont

k an

agevariablea

k

. Thewayinwhiha

k

isrelatedtothepasthistoryZ

(j)

determinesthedierentmemory

poliies. Weonsider threealternatives:

Agememory -Theagevariablea

k

aountsfortheworkperformedbytheativityorresponding

to t

k

fromitslast ringuptotheurrentepoh. Theringdistribution dependsontheresidual

timeneededforthisativitytoompletegivena

k .

Enabling memory - Theage variable a

k

aountsfor the work performed by the ativity orre-

spondingtot

k

fromthelastepoh inwhih t

k

hasbeenenabled. Theringdistribution depends

ontheresidualtimeneededforthisativitytoompletegivena

k

. Whentransitiont

k

isdisabled

(evenwithoutring)theorrespondingenablingagevariableisreset.

Resampling-Theagevariablea

k

isresettozeroatanyhangeofmarking. Theringdistribution

dependsonlyonthetimeelapsedinthepresentmarking.

At the entrane in anew tangible marking, the residual ring time is omputed for eah enabled

timedtransition givenitsagevariable. Thenextmarkingisdeterminedbytheminimalresidualring

time among the enabled timed transitions (rae poliy). Under anenabling memory poliy thering

timeofatransitionisresampledfromtheoriginaldistributioneahtimethetransitionbeomesenabled

(4)

underlyingstoastiproessannotetendbeyondasingleyleofenable/disableofthetransition with

enabling memory poliy. On the ontrary, if a transition is assigned an age memory poliy, the age

variableaountsforalltheperiodsoftimein whihthetransitionhasbeenenabled,independentlyof

thenumberofenable/disableyles. Thememoryoftheproessextendsuptotherstepohinwhih

thetransitionhasbeenenabledforthersttimeafteraring.

3 Computational Restritions

The markingproess X

T

() does not have, in general, an analytially tratable formulation, while a

simulativeapproahhasbeendesribedin[24,25℄. Variousrestritionsofthegeneralmodelhavebeen

disussed in theliteraturesuhthat theunderlying markingproessX

T

()is onnedto belongto a

knownlassofanalytiallytratableproblems.

3.1 Exponentially Distributed SPN

Whentherandomvariables

k

assoiatedto thePN transitionsareexponentiallydistributed,thedy-

namibehaviourofthenetanbemappedintoaontinuoustimehomogeneousMarkovhain(CTMC),

withstatespaeisomorphitothereahabilitygraphofthenet. Thisrestritionisthemostpopularin

theliterature[31,22,2℄,andanumberofpakagesarebuiltonthismodel[11,16,30,28℄.

3.2 Semi-Markov SPN

When all the PN transitions are assigned a resampling poliy the marking proess beomes a semi-

Markovproess. Thisrestritionhasbeenstudiedin[32,5℄butisoflittleinterestinappliationswhere

itisdiÆulttoimagineasituationwheretheringofeahtransitionofthePNhastheeetofforing

aresamplingresettingtoalltheothertransitions. Onlytheaseinwhiheahtransitionisompeting

withalltheother onesseemsto beappropriateforthismodel.

A more interesting semi-Markov SPN model has been disussed in [21℄. In this denition, the

transitionsarepartitionedinto threelasses: exlusive,ompetitiveand onurrent. Providedthat the

ringtimeofallonurrenttransitionsisexponentiallydistributedandthatompetitivetransitionsare

resampledatthetimethetransitionisenabled,theassoiatedmarkingproessbeomesasemi-Markov

proess.

3.3 Phase Type SPN (PHSPN)

Anumeriallytratablerealizationof theGDT SPN,isobtainedbyrestritingtheringtime random

variables

k

tobePHdistributed[33℄, aordingtothefollowing:

Denition1 A PHSPNisaGDT SPNinwhih:

Toanytransitiont

k

2T isassoiatedaPHrandomvariable

k

withCdfG

k

(xjM). ThePHmodel

assigned to transition t

k has

k

stages with a single initial stage numbered stage 1 and a single

nal stage numberedstage

k .

Toany transition t

k

2T is assigned amemory poliy amongthe threedenedalternatives: age,

enabling orresamplingmemory.

Thedistinguishingfeatureofthismodel,isthatitispossibletodesignaompletelyautomatedtool

that responds to therequirementsstated in [26℄, and, at thesame time, inludes all the issues listed

in Denition 4. The non-markovian proess generated by the GDT SPN is onverted into a CTMC

denedoveranexpandedstatespae. Themeasurespertinenttotheoriginalproessanbeevaluated

bysolvingtheexpandedCTMC.

TheprogrampakageESP[20℄ realizesthePHSPNmodelaordingto Denition 4. Theprogram

allowstheusertoassignaspeimemory poliytoeahPNtransitionso thatthedierentexeution

poliies an be put to work. In the ESP tool, the expanded CTMC is generated from the model

(5)

algorithmisdrivenbythedierentexeutionpoliiesthattheuserassignesto eahtransition.

The expandedCTMC isrepresentedbyan orientedgraphH = (N

H

;A

H

) whereN

H

is thesetof

nodes(states oftheexpanded CTMC)andA

H

is thesetof orientedars(transitionsof theexpanded

CTMC). Thenodes in N

H

are pairs (M;W), where M 2 R (M

0

) is amarking and W is an integer

n

t

-dimensionalvetor,whosekthentryw

k

(1 w

k

k

)representsthestageofringoft

k

in itsPH

distribution.

Arsin A

H

are representedby5-tuples(N; N 0

; k;i;j), whereN is thesourenode,N 0

thedesti-

nationnode, and (i;j)is an ar in the PH model of transition t

k

. Therefore, (N;N 0

;k;i;j) 2 A

H

meansthatintheexpandedgraphtheproessgoesfromnodeN tonodeN 0

whenthestageofringof

t

k

goesfromstageito stagej.

The expanded graphH is generated by an iterative algorithm illlustrated in details in [20℄. The

markingM (`)

oftheoriginalreahabilityset,ismappedintoamarostateM (`)

formedbytheunionof

allthenodesN

H

(M;W)oftheexpandedgraphsuhthatM=M (`)

. Thismappingallowstheprogram

toredenethemeasuresalulatedassolutionofthemarkovequationovertheexpandedgraphinterms

ofthemarkingsoftheoriginalPN.

Theardinalityn

H

oftheexpandedstatespaeisoftheorderofmagnitudeoftherossprodutof

theardinality ofthereahabilityset of thebasiPN timestheardinalityofthe PH distributionsof

then

t

randomvariables

k .

An alternativeapproah for theimplementationof aPHSPN model ouldonsist in inluding the

PHmodelsforeahtransitionatthePNlevel,thusexpandingthePN.Thisapproahhasbeenstrongly

disouragedin[1℄onthebasisofthefollowingmotivations:

Theinlusionof asubnetforeahtransitionmakestheexpandedPNveryintriguedanddiÆult

tounderstandjust beausesomeprimitiveelements(plaes,transitionsandars)areadded,that

onlyrefertothestohastibehaviourofasingletransitionandhidenthegeneralstrutureofthe

model. The fasinating simpliity of thePN languageto representomplex logialinterations

betweenobjetsisdestroyed.

It seemshardly possibleto automatize aproedure forgenerating thePHSPN model exapnding

the basiPN andtaking into aountallthe possibleinteration amongtheintrodued memory

poliies.

3.4 Deterministi SPN

The Deterministi and Stohasti PN model has been introdued in [1℄, with the aim of providing a

tehniquefor onsideringstohastisystemsin whih sometimevariables assumeaonstantvalue. In

[1℄onlythesteady statesolutionhasbeenaddressed. An improvedalgorithmfortheevaluationofthe

steadystateprobabilitieshasbeensuessivelypresentedin [29℄. Reently,the DSPNmodelhasbeen

revisitedin [14℄and[13℄wherethetransientsolutionisprovided.

Denition5 -A DSPNisaGDT SPNin whih:

Toany transition t

k

2T isassoiatedanexponentiallydistributedrandom variable

k .

Atmost,asingledeterministitransition (DET)isallowedtobeenabledineahmarkingandthe

ringtimeof the deterministitransitionismarkingindependent.

The timeelapsed inaDET annot berememberedwhenthe transitionbeomes disabled; the only

allowedexeutionpoliyisthe raepoliywith enablingmemory.

Inorder toprovethatthe markingproess assoiatedto aDSPNis aMarkovregenerativeproess

(MRP),Choietal. [13℄haveintroduedthefollowingmodiedexeutionsequene:

T

E

= f(

0

;M

(0) );(

1

;M

(1)

);::: ;(

i

;M

(i)

); :::g (2)

Epoh

i+1

isderivedfrom

i

asfollows:

(6)

1. If noDET transition isenabled in markingM

(i)

,dene

i+1

to betherst timeafter

i

that a

statehangeours.

2. IfaDETtransitionisenabledinmarkingM

(i)

,dene

i+1

tobethetimewhentheDETtransition

resorisdisabled asaonsequeneoftheringof aompetitiveexponentialtransition.

Aordingto ase2) ofthe abovedenition,during [

i

;

i+1

),thePN anevolvein thesubsetof

R(M

0

)reahablefromM

(i)

,throughexponentialtransitionsonurrentwiththegivenDETtransition.

The markingproess during this time intervalis a CTMC alled the subordinated CTMC of marking

M

(i)

. Therefore, if a DET transition is enabled in M

(i)

, the sojourn time is given by the minimum

betweenthe rstpassagetime outof thesubordinated CTMC andthe onstantring timeassoiated

totheDETtransition.

Choi et al. show that the sequene [

i

forms a sequene of regenerativetime points, so that the

marking proess X

T

() is a Markovregenerative proess MRP. Aording to [12, 17℄, we dene the

followingmatrixvaluedfuntions:

V (t) = [V

ij

(t)℄ suhthat V

ij

(t) = PrfX

T

(t)=jjX

T

(0)=ig

K(t) = [K

ij

(t)℄ " K

ij

(t) = PrfM

(1)

=j;

1 tjX

T

(0)=ig

E(t) = [E

ij

(t)℄ " E

ij

(t) = PrfX

M

(t)=j;

1

>tjX

M

(0)=ig

(3)

Matrix V (t) is the transition probability matrix and provides the probability that the marking

proessX

T

(t)isinmarkingj attimetgivenitwasiniatt=0. ThematrixK(t)istheglobalkernelof

theMRPandprovidesthedf oftheregenerationintervalgiventhatthenextregenerationmarkingis

j,startinginmarkingi att=0. Finally,thematrixE(t)istheloal kernelanddesribesthebehavior

ofthe markingproessinside twoonseutiveregenerationtimepoints. The transientbehaviorof the

DSPNanbeevaluatedbysolvingthefollowinggeneralizedMarkovrenewalequation(inmatrixform)

[17,12℄:

V (t) = E(t) +K V (t) (4)

Equation(4) anbesolvednumeriallyin thetimedomain. An alternativeapproahsuggestedby

theauthorsonsists in transformingthetransientsolutionin theLaplaetransformdomain, andthen

derivingthetimesolutionbyanumerialinversiontehnique. ThepaperproposestousetheJagerman's

method[27℄, asadaptedbyChimento andTrivedi[10℄.

3.5 Markov Regenerative SPN (MRSPN)

Afurtherextension,alledMarkov RegenerativeSPN,hasbeendevelopedin [12℄andalassiationof

thestohastiproessunderlyingaGDT SPNhasbeendisussedin [15℄.

Denition2 A MRSPNisaGDT SPNinwhih:

Toany transition t

k

2T isassoiatedanexponentiallydistributedrandom variable

k .

At most, asingletransitionwith generally distributedringtimeisallowedtobe enabled ineah

marking.

The only allowed exeutionpoliyis the rae poliy with enablingmemory. This meansthat the

ring timeof the generally distributedtransition is sampled atthe timethe transition isenabled

andannothange untilthetransition eitherres orisdisabled.

The ringtimedistributionmaydependuponthe markingatthe timethe transitionisenabled.

The onvolution equation (4) still holds; however, the analyti kernel expressions depend on the

spei Cdf's assumed in the model. In [12℄, losed form expressions are derived when the Cdf of

thegenerally distributed transitions is theuniform distribution. A further approah, resortingto the

method of supplementary variables proposed by Cox [18℄, is disussed in [23, 15℄, where the use of

polyexponomialdistributions isinvestigated.

(7)

Theonsidered models dierbeauseof thedierent lassesofdistribution funtions they areableto

support,andbythewayinwhihthehistoryoftheproessistakenintoaounttoonditionthefuture

evolutionofthenet.

Under theenabling memorypoliythetimeaumulatedbyaPNtransitionisresetassoonasthe

transitionisdisabled,whileundertheagememorypoliythetimeaumulateswheneverthetransition

is enabled before ring. The enabling memory poliy is suited to realize the interation mehanism

among tasks in servie that in queueing theory orfault-tolerantsystems isalled apreemptive repeat

dierent (prd) poliy. Whenever the task in servie is preempted a orresponding PN transition is

disabledresettingtheaumulatedtime. Hene,whenthepreemptedtaskrestartsitsworkrequirement

should be resampled from the same distribution [6℄. On the other hand, the age memory poliy is

suitedtorepresentaninterationmehanismusuallyreferredtoaspreemptiveresumepoliy: theserver

doesnotloosememoryoftheworkalreadydoneevenifthetaskispreempted(andtheorresponding

PN transition disabled). When thetask isenabled againthe exeutionrestarts from thepointit was

interrupted.

TheDSPN model, ombining onstanttimes with exponentialrandom times, oersan innovative

approahinmanypratialappliations. ThemainlimitationoftheDSPNmodelinthepresentstateof

theart,isthatonlyenablingmemorypoliyissupported. Heneonlysystemswithaserviedisipline

ofpreemptivedierenttypeanberepresentedwiththisapproah. Moreover,there notoolsavailable

forthe automatigeneration ofthe matriesV (t), K(t) andE(t), and thesolutionoftheonvolution

equationisperformedbymeansofstandardpakagesforsymbolimanipulation.

Ontheontrary,thePHSPNmodelfullysupportsallthedenedmemorypoliies,and,inpartiular,

theagememorypoliy. Themodelerisallowedtorepresentinanaturalwayprsinterationmehanisms.

Moreover,iftherandomvariablesofthesystemtobemodeledarereallyofPHtype,thePHSPNprovides

exat results. Otherwise, a preliminary step is needed in whih the random times of the systemare

approximated by PH random variables resorting to asuitable estimation tehnique [8, 9℄. A tool is

oneivable[20℄forsupportingthegenerationandanalysis ofthemodelaordingto therequirements

speiedin[26℄. Theexpansionofthestatespaeis,ofourse,aauseofnonnegligiblediÆulties,sine

it worsens theproblem of the exponential growth ofthe statespae bothwith themodel omplexity,

andwiththeorderofthePHdistributionassigned toeahtransition.

5 Example - Finite Queue with Preemption

We arry ona omparison between themodeling power and the numerialresults obtainedfrom the

DSPNand thePHSPNmodelsthroughtheanalysis ofasimplenite queueingsystemswithdierent

kindsofpreemption. Weonsider,asabase example,theM/G/1/2/2(alosed queueingsystemwith

twobuerpositionsandtwoustomers)introduedin [3℄. Thenon-preemptiveserviemehanismhas

beenalreadyanalyzedin[3℄forwhatonernsthesteadystatemeasuresandrevisited in[13℄forwhat

onernsthetransientbehavior. Weinitially omparetheresultsobtainedbyapproximatingaDSPN

bymeansof aPHSPNandthenweintroduevariouskindsofpreemptivemehanisms.

5.1 Non Preemptive Queue

ThePNfortheM/G/1/2/2system,proposedin[3℄,isreportedinFigure1. Plaep

1

ontains"thinking"

ustomers (i.e. awaiting to submit a job) and transition t

a

represents the submission of jobs. Jobs

queueingforserviearerepresentedbytokensinp

2

. Atokeninp

3

meansthattheserverisbusywhilea

tokeninp

4

meansthattheserverisidle. Transitiont

g

isthejobservietime;whenthejobisompleted

theustomerreturnsin histhinkingstate. Transitiont

i

isanimmediatetransition modellingthestart

ofserviei.e. thetransferofthejob fromthequeuetotheserver.

In[3,13℄,thefollowingassumptionsweremade. t

a

isexponentiallydistributedwithratem

1

being

m

1

is thenumber oftokens in p

1

and =0:5 job/hour. t

g

is aDET transition modeling aonstant

servietimeofdurationd=1:0hour.

ThereduedreahabilitygraphofthePN(aftereliminatingthevanishingmarkingsarisingfromthe

immediate transitiont

i

[2℄) isomposedof three states,alled s

1

;s

2 and s

3

in Figure 1b. The PNof

(8)

r

r r

? 6

? 6 s

1

s

2

s

3 t

1 t

2

t

2 t

1 p

2

p

3

20

11

02

a) b)

p

4

?

?

?

?

?

?

6 -

r r

) A

A

A U

A A A K

2001

1010

0110 t

1

t

3 p

1

t

2

p

1

p

2 t

2 t

1

Figure1-a) -PNmodellingtheatomioperation ofa M/D/1/2/2(after

[3 ℄);b)-orrespondingreduedreahabilitygraph;)-simplied

PN.

Figure1isintendedtoshowindetailstheatomistepsbywhihaustomersubmitsajobandthejob

isservied. Figure2shows,however,asimplerPNisomorphitotheoneofFigure1.

Tokensinplae p

1

ofFigure2representustomersin thethinkingstate,whilep

2

ontainsthejobs

inthequeue(inluded theoneunder servie). t

1

isthesubmittingtimeandt

2

istheservietime. Itis

easyto verifythat theabovePN generatesthesamemarkingproessX

T

() of Figure1b)when t

1 is

exponentialwithrate m

1

and t

2

is DET. Theprobabilitiesversustimeof thetwostatess

1 and s

3

arereportedin Figure3in solidline.

ApproximatingtheDSPNofFigure2bymeansofthePHSPNmodelisstraightforward. Transition

t

2

isassignedaPHdistributionandanenablingmemorypoliy,inonformitywithpoint3)ofDenition

5. SinetheErlangdistributionisthePHwiththeminimumoeÆientofvariation[4℄itisappropriate

to approximate theDSPN by assigning t

2

anErlang distribution of inreasing order. In Figure 3we

omparetheresultsobtainedfromthePHSPNmodel,byreportingthebehaviorofthestateprobabilities

versustimeintwoases: whena)therandomringtimeassignedtot

2

isErlang(5)(dashedline),and

b)whenisErlang(100)(dottedline). InbothasestheexpetedvalueoftheErlangmatheswiththe

value d = 1:0hours of the DET model, being all the other parameters unhanged. It is interesting

to observethat withtheErlang(5)theloalmaxima andminimain theprobabilitybehaviordoesnot

appear, whilethevisualagreementisverysatisfatoryintheaseoftheErlang(100).

As a further omparison, Table I shows the values for the steady state probabilities alulated

from the DSPN model and from the PHSPN model when t

2

is assumed to be Erlang(5),Erlang(10),

Erlang(100)andErlang(1000),respetively. Itshouldbestressedthatthepresentaseanbeonsidered

asaworstase examplesineaDET type variablean be loselyapproximatedby aPH only asthe

numberofstages growsto1[19,9℄.

5.2 Preemptive Queue

Let us assume aM/G/1/2/2 with a preemptive servie and the samekind of ustomers. The job in

exeutionis preemptedassoonasanewjob joinsthequeue. Twoasesanbeonsidered depending

whetherthejobrestartedafterpreemptionisresampledfromthesamedistributionfuntion(preemptive

repeatdierent poliy- prd),orisresumed(preemptive resume poliy- prs).

5.2.1 prdpoliy

WithreferenetoFigure2,eahtimetransitiont

1

res(athinkingustomersubmitsajob)whilep

2 is

marked (a jobis urrently under servie)transitiont

2

should beresetand resampled. Inthe PHSPN

modelthismehanismanbesimplyrealizedbyassigningtot

2

aresamplingpoliy. Itiseasytoprove

(9)

PHSPN

State DSPN

Erl(5) Erl(10) Erl(100) Erl(1000)

TABLEI- Non preemptivepoliy

s

1

0.37754 0.38307 0.38039 0.37783 0.37757

s

2

0.48984 0.46773 0.47845 0.48867 0.48972

s

3

0.13262 0.14920 0.14116 0.13350 0.13271

TABLEII- Preemptiveprdpoliy

s

1

0.33942 0.35317 0.34642 0.34014 0.33950

s

2

0.44038 0.43122 0.43572 0.43991 0.44034

s

3

0.22019 0.21561 0.21786 0.21995 0.22017

TABLE III- Preemptiveprs poliy

s

1

0.35015 0.36194 0.35618 0.35076 0.35021

s

2 +s

3

0.45429 0.44193 0.44801 0.45365 0.45423

s

4

0.19556 0.19613 0.19582 0.19558 0.19556

thattheunderlyingproessX

T

()isasemi-Markovproess,sineeahtimethe(generallydistributed)

transitiont

2

isentered,aregenerationpointisprodued sineanewjob starts.

Evenifthelassofsemi-markovproessesisapropersublassoftheMarkovregenerativeproesses,

theabovepreemptivemehanismannot be naturallygeneratedfrom theurrentdenition ofDSPN.

Infat,sinet

1

isnotompetitivewithrespettot

2

,theringoftheformerdoesnotdisablethelatter,

thatindeedisnotresampled. ThePNinFigure4desribesthepreemptionwithoutthisanomaly. Plae

p

1

in Figure4ontainstheustomers thinking, whileplae p

2

ontainsthenumberof submittedjobs

(inluded theoneunderservie). Plaep

3

representsasinglejobgettingservie: servieisinterrupted

(t

2

is disabled)ifanew jobjoins thequeue(if transitiont

3

resbefore t

2 ). t

1 and t

3

areassigned the

exponentialsubmittingtimeandtransitionst

2 andt

4

thegenerallydistributedservietime. Assigning

anenablingmemorypoliyto t

2 andt

4

theM/G/1/2/2systemwithprdpreemptionisgenerated.

Table II ompares the steady state probabilitiesassuming thesubmitting and servie time distri-

butions idential to the non preemptivease. The transient behavior is ompared in Figure 5where

theresultsfrom theDSPNmodelaredrawnin solidlinewhiletheresultsfrom thePHSPNmodeland

withtheservietimegivenbyanErlang(5)andanErlang(100)aredrawnindashedandindottedline,

respetively.

5.2.2 prs poliy

Theprspoliymeansthatwhenanewjobjoins thequeuethejobunderservieispreempteduntilthe

newlyarrivedjob ompleteshis servie. Thepreemptedjob isresumedand putto exeutionfrom the

pointofpreemptionwithoutlossoftheworkpreviouslyperformed.

TheprsmehanismfortheM/G/1/2/2queueorrespondsto thePN ofFigure4whent

2 andt

4 is

assigned anagememorypoliy. Thepreemption mehanismdoesnott therulesofDenition 5and

thusannotbemodeled in theframeworkof theatualimplementation oftheDSPNmodel. Whent

2

(10)

tiveM/D/1/2/2

andt

4

arebothErlang(100)thenumerialresultsforthesteadystateprobabilitiesares

1

=0.4, s

2

=

0.4,s

3

=0.2. ThetransientbehaviourisdepitedinFigure 9asCase III.

5.3 Preemptive Queue with Dierent Classes of Customers

Ainterestingaseariseswhenthetwoustomersareofdierentlasses,andustomeroflass2preempts

ustomer of lass 1 but not vie versa. A PN illustrating the M/G/1/2/2 queue in whih the jobs

submitted by ustomer 2 have higher priority over the jobs submitted by ustomer 1 is reported in

Figure 6. Plae p

1 (p

3

) represents ustomer 1 (2) thinking, while plae p

2 (p

4

) represent job 1 (2)

under servie. Transitiont

1 (t

3

) is the submission of a job of type 1 (2), while transition t

2 (t

4 ) is

theompletion of servieof ajob oftype1(2). Theinhibitor arfrom p

4 tot

2

models thedesribed

preemptionmehanism: as soonasatype2jobjoins thequeuethetype1jobeventuallyunderservie

isinterrupted.

Ifweassumethattheservietimeisnotexponentiallydistributed,twopossiblepreemptionpoliies

anbeonsidered dependingwhether the job oftype 1,restarted after preemption, is resampled(prd

ase) or is resumed (prs ase). In the PHSPN model, the two poliies an be naturally realized by

assigning to the servie transitions t

2 and t

4

an enabling memory poliy in the prd ase and a age

memorypoliy intheprsase.

SineintheDSPNonlytheprdpoliyissupportedthetransientresultsforprdpoliybythedierent

methodsarereportedinFigure7andinTableIIIforwhatonernsthesteadystateprobabilityvalues.

The eet of the dierent kinds of preemptions are ompared for the DSPN in Figure 8and for the

PHSPNinFigure9. (CaseIreferstothenonpreemptivesystem,CaseIItothepreemptivesystemwith

identialustomersandprdpoliy,CaseIIItothepreemptivesystemwithidentialustomersandprs

poliy, CaseIV to thepreemptivesystemwith dierent ustomers andprd poliy, andCase V to the

preemptivesystemwith dierent ustomersand prs poliy). Inthe DSPNmodel onlyasesI,II and

IVanbeomputed.

6 Computational omplexity

Let us briey summarize the elementary omputational steps for the two onsidered methodologies

(DSPN and PHSPN), taking into aount that the DSPN solution requires manual and automati

manipulation,whilethePHSPNsolutionisfullysupportedbyatool.

(11)

r r r

A

A

A U

A

A

A U

A

A

A U

A

A

A U

A

A

A U

6 6

-

?

?

? 6

? 6 s

1

s

2

s

3 t

1 t

2

t

4 t

3 t

1 t

3

t

2 t

4

2001

1110

0201

a) b)

p

1

p

2

p

3

p

4

Figure3-PreemptiveM/D/1/2/2ithidentialustomers

6.1 Evaluation of DSPN model

Aordingto[13℄, weandividetheomputationalmethodin thefollowingsteps:

1. generation ofthereahabilitytree;

2. manualderivationoftheentries oftheK(t) andE(t)matriessymboliallyin Laplaetransform

domain;

3. symbolialmatrixinversionand matrixmultipliationbyusingastandardpakage(e.g. MATH-

EMATICA)in ordertoobtaintheV (t)(Equation4)matrixintheLTdomain;

4. time domain solution obtained by a numerial inversion of the entries of the V (t), resorting

to the Jagerman's method [27℄. Forthe sake of uniformity, this step has been implemented in

MATHEMATICAlanguage.

Step1)anbeperformedwithanyPNpakage. Step2)isdonemanually,anditsdiÆultydepends

on the non-zeroentries of the involved matries, and on the omplexity of the CTMCs subordinated

to the dierent deterministi transitions. The omputational omplexity of step 3) depends on the

dimensionof the matries(i.e. the numberof tangible markings)and theomplexityof theelements

of the kernels (whih is similar to the diÆulty of the rst step). The omplexity of the numerial

inversion at step 4) also depends on two fators; the omplexity of the funtion to invert, and the

presribedauray.

Fortheexampledesribedintheprevioussetion,theomputationaltimeforthesymboliinversion

wasnotsigniant,while thenumerialinversionrequiredabout30sonanIBMRISC 6000mahine,

foreah pointofthegraph.

6.2 Evaluation of PHSPN model

Forthe evaluation of this model weused theESPtool([20℄). Theproedure anbedevided into the

followingsteps:

1. generation ofthereahabilitytree;

2. generation oftheexpandedCTMC;

3. solutionoftheresultingCTMC.

Step 1) is standard. The omputational omplexity of steps 2) and 3) depends on the number

of tangible states and on the order of the PH distribution assoiated to eah transition. With PH

(12)

M/D/1/2/2withidentialustomers.

transitions of order n theardinality of the expanded CTMC is 2n+1in Case I,2n+1 in Case II,

n 2

+n+1in CaseIII,3n+1in CaseIV,n 2

+2n+1inCaseV.Inthistrivialexample,withn=100

(Erl100) thegenerationoftheCTMCtakes2m forCaesII andV,andthewhole analysistwofurther

minutesonthesameIBMRISC6000omputer.

7 Conlusion

Thedevelopmentofmethodologiesabletoaommodatenonexponentialrandomvariablesisofinreas-

ing interest in the analysis of stohasti systems. The paper has examined and ompared PN based

modelswhose denitionallowsthemodelertoassoiate,tosomeextent, nonexponentialdistributions

totimed PNtransitions.

Themodelingpowerandthenumerialapabilitiesareinvestigated,withpartiularreferenetothe

DSPNmodel, inwhihasingledeterministitransition anbeassigned ineahmarking(beingallthe

other transitions exponential), andthe PHSPN model in whih eah transition anbeassigned aPH

distributed ringtime.

Asimplequeueingsystemisompletelyanalysed. Evenifthedeterministidistribution istypially

non PH, anapproximationerror for the steady stateprobabilities of the order of 10 2

is reahed by

modelingthedeterministitransitionwithanErlang(5)andanerroroftheorderof10 4

bymodeling

the deterministi transition with an Erlang(1000). However, the use of PH distribution and of the

PHSPNmodeloersthemodeleramoreexibletoolfordeningamoreextendedinterationsbetween

theserverandthejobin progress.

Referenes

[1℄ M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and A. Cumani. The eet of

exeution poliies on the semantis and analysis of stohasti Petri nets. IEEE Transations on

Software Engineering,SE-15:832{846,1989.

(13)

r

s

1

s

2

s

4 t

1

t

3

t

2

t

4

1010

1001

0101

a) b)

p

1

p

2

p

4 p

3

r

?

?

?

?

?

?

s

3

J

J

J

J

^ J J J J

J

J

J

J

^ J J J J

/ 0110

t

1

t

1 t

2

t

3

t

3 t

4 t

4

Figure5-PreemptiveM/D/1/2/2queuewithtwolassesofustomers

[2℄ M. Ajmone Marsan, G. Balbo, and G. Conte. A lass of generalized stohasti Petri nets for

theperformaneevaluation ofmultiproessorsystems. ACMTransations onComputer Systems,

2:93{122,1984.

[3℄ M.AjmoneMarsanandG.Chiola. OnPetrinetswithdeterministiandexponentiallydistributed

ringtimes. InLeture Notesin Computer Siene, volume 266,pages132{145.Springer Verlag,

1987.

[4℄ D. Aldousand L.Shepp. Theleastvariable phasetypedistribution isErlang. Stohasti Models,

3:467{473,1987.

[5℄ A.BertoniandM.Torelli.ProbabilistiPetrinetsandsemiMarkovproesses.InProeedings2-nd

EuropeanWorkshop on PetriNets,1981.

[6℄ A. Bobbio. Petri nets generating Markov reward models for performane/reliability analysis of

degradablesystems. InR. Puigjaner and D. Poitier, editors, Modeling Tehniques and Tools for

ComputerPerformane Evaluation,pages353{365.PlenumPress,1989.

[7℄ A.Bobbio. Stohastirewardmodelsinperformane/reliabilityanalysis. Journalon Communia-

tions,XLIII:27{35, January1992.

[8℄ A. Bobbio and A. Cumani. ML estimation of theparameters of aPH distribution in triangular

anonial form. In G. Balbo and G. Serazzi, editors, Computer Performane Evaluation, pages

33{46.ElsevierSienePublishers,1992.

[9℄ A.BobbioandM.Telek.ParameterestimationofPhasetypedistributions.Tehnialreport,R.T.

423, Istituto Elettrotenio Nazionale Galileo Ferraris, 20-th European Meeting of Statistiians,

August1992.

[10℄ P.F.ChimentoandK.S.Trivedi. Theompletiontimeofprogramsonproessorssubjettofailure

andrepair. IEEETransations onComputers,42:1184{1194,1993.

[11℄ G. Chiola. GreatSPN 1.5 Software arhiteture. In G. Balboand G.Serazzi, editors, Computer

PerformaneEvaluation,pages121{136.ElsevierSienePublishers,1992.

[12℄ HoonChoi,V.G.Kulkarni,andK.Trivedi.MarkovregenerativestohastiPetrinets.InGIazeolla

ansS.S.Lavenberg,editor,Proeedings InternationalConferenePERFORMANCE'93,pages339{

356,1993.

(14)

M/D/1/2/2withprdpoliyandtwolassesofustomers.

[13℄ HoonChoi,V.G.Kulkarni,andK.Trivedi.TransientanalysisofdeterministiandstohastiPetri

nets.InProeedingsofthe14-thInternationalConfereneonAppliationandTheoryofPetriNets,

Chiago,June1993.

[14℄ G.Ciardo,R.German,andC.Lindemann. Aharaterizationofthestohastiproessunderlying

a stohasti Petri net. In Proeedings International Workshop on Petri Nets and Performane

Models -PNPM93, pages170{179.IEEEComputerSoiety,1993.

[15℄ G.Ciardoand C.Lindemann. Analysisof deterministiandstohasti Petrinets. InProeedings

InternationalWorkshop onPetri NetsandPerformane Models - PNPM93,pages160{169.IEEE

ComputerSoiety,1993.

[16℄ G.Ciardo,J. Muppala,andK.S. Trivedi. OnthesolutionofGSPN rewardmodels. Performane

Evaluation,12:237{253,1991.

[17℄ E.Cinlar. IntrodutiontoStohasti Proesses. Prentie-Hall,EnglewoodClis,1975.

[18℄ D.R.Cox. The analysisof non-markovianstohastiproessesby theinlusion of supplementary

variables. Proeedings of the Cambridge Phylosophial Soiety,51:433{440,1955.

[19℄ D.R.CoxandH.D.Miller. The theoryof stohasti proesses. ChapmanandHall,London,1965.

[20℄ A.Cumani.Esp-ApakagefortheevaluationofstohastiPetrinetswithphase-typedistributed

transitiontimes. InProeedings International Workshop TimedPetriNets,pages144{151,Torino

(Italy),1985.IEEEComputerSoietyPressno.674.

[21℄ J.BehtaDugan,K.Trivedi,R.Geist,andV.F.Niola.ExtendedstohastiPetrinets:appliations

andanalysis. InProeedings PERFORMANCE'84,Paris,1984.

[22℄ G.Florinand S. Natkin. Lesreseauxde Petristohastiques. Tehnique etSieneInformatique,

4:143{160,1985.

[23℄ R. German and C. Lindemann. Analysis of SPN by the method of supplementary variables. In

GIazeollaansS.S.Lavenberg,editor, Proeedings International ConferenePERFORMANCE'93,

pages320{338,1993.

(15)

modelwithdierentkindsofpreemption.

[24℄ P.J.HaasandG.S.Shedler.RegenerativestohastiPetrinets.PerformaneEvaluation,6:189{204,

1986.

[25℄ P.J.HaasandG.S.Shedler.StohastiPetrinetswithsimultaneoustransitionrings.InProeedings

International Workshop on Petri Nets and Performane Models - PNPM87, pages 24{32. IEEE

ComputerSoiety,1987.

[26℄ B.R.HaverkortandK.Trivedi.SpeiationtehniquesforMarkovRewardModels.DisreteEvent

DynamiSystems: Theory andAppliations, 3:219{247,1993.

[27℄ D.L. Jagerman. An inversion tehnique for the Laplae transform. The Bell System Tehnial

Journal,61:1995{2002,Otober1982.

[28℄ R.Lepold. PEPNET:AnewapproahtoperformabilitymodellingusingstohastiPetrinets. In

Proeedings 1stInternational Workshop on Performability Modellingof Computer andCommuni-

ationSystems,pages3{17,UniversityofTwente-Enshede(NL),1991.

[29℄ C.Lindemann. An improved numerialalgorithm for alulating steady-statesolutionsof deter-

ministiandstohastiPetrinetmodels. PerformaneEvaluation,18:75{95,1993.

[30℄ J.F. Meyer, A. Movaghar, and W.H. Sanders. Stohasti ativity networks: struture, behavior

andappliation. InProeedings International Workshop TimedPetri Nets,pages106{115,Torino

(Italy),1985.IEEEComputerSoietyPressno.674.

[31℄ M.K.Molloy. PerformaneanalysisusingstohastiPetrinets. IEEETransations onComputers,

C-31:913{917,1982.

[32℄ S.Natkin. LesreseauxdePetristohastiqueset leurappliational'evaluationdessystemesinfor-

matiques. Tehnialreport,ThesedeDoteur Ingegneur,CNAM,Paris,1980.

[33℄ M.F.Neuts. Matrix Geometri Solutionsin Stohasti Models. Johns Hopkins University Press,

Baltimore,1981.

(16)

modelwithdierentkindsofpreemption.

[34℄ A.Reibman,R.Smith,andK.S.Trivedi. MarkovandMarkovrewardmodeltransientanalysis: an

overviewofnumerialapproahes. EuropeanJournalof Operational Researh,40:257{267,1989.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Flowering of plants growing in short days can be produced by either the phytochrome system—a night break of red or white light in the middle of the dark period, or the

It appears that all of the chlorophyll molecules in the plant are not actually sites at which the quantum conversion occurs, but the excitation of one chlorophyll molecule allows

In reply to the former question Z i r k l e stated that the site of irradiation was routinely selected to be as close as possible to the spindle fibres without actually

It may be summarized that the case for biogenic origin of the carbonaceous complex of any of the meteorites examined in detail so far, has not been proved or strongly indicated ;

might be expected to evoke little response, because the cloak of melanin is habitually adequate for protection; in other words, without special exposure the epidermal units of

Other hypotheses (summaries in refs. 1, 2) suppose that the whole core consists of rock and that the boundary of the inner core is a result of a change in phase of the

1 The Rümker formation in Sinus Roris of the Oceanus Procellarum (Pic-du-Midi Observatory photograph; Manchester Lunar Programme)... 2 Lunar domes in the region of Copernicus

It is interesting to note that the balloon-borne camera of Stratoscope II, above much of Earth 1 s atmosphere, would have a resolution (400 ft) about that of the television.