• Nem Talált Eredményt

lunar lunar structural

N/A
N/A
Protected

Academic year: 2022

Ossza meg "lunar lunar structural"

Copied!
28
0
0

Teljes szövegt

(1)

TECHNOLOGY OF LUNAR EXPLORATION

R E N D E Z V O U S A N D D O C K I N G T E C H N I Q U E S J. H e i l f r o n and F . H . Kaufman 1 2 Space T e c h n o l o g y L a b o r a t o r i e s , I n c .

R e d o n d o B e a c h , C a l i f o r n i a A B S T R A C T

E n g i n e e r i n g techniques a p p l i c a b l e to the r e n d e z v o u s and docking of two c o o p e r a t i v e s p a c e c r a f t a r e t r e a t e d , starting f r o m a set of i n i t i a l conditions at a c q u i s i t i o n and f o l l o w e d by a m i d c o u r s e guidance p h a s e , a b r a k i n g phase, a t e r m i n a l guidance phase, and the act of final m e c h a n i c a l i n t e r c o n n e c - t i o n . A s p e c i f i c Earth o r b i t a l m i s s i o n p r o f i l e e n c o m p a s s i n g the e s s e n t i a l e l e m e n t s of any g e n e r a l r e n d e z v o u s m i s s i o n i s used as the f r a m e w o r k f o r d i s c u s s i n g the p r o b l e m s i n v o l v e d and p r e s e n t i n g techniques f o r t h e i r s o l u t i o n . T h e s e t e c h - niques, t h e r e f o r e , have g e n e r a l a p p l i c a t i o n although the n u m e r i c a l v a l u e s quoted a p p l y o n l y to the s e l e c t e d e x a m p l e . Both manual c o n t r o l and automatic m o d e s a r e p r e s e n t e d t o - g e t h e r w i t h s i m u l a t i o n r e s u l t s . F u e l e c o n o m y , e q u i p m e n t c o m p l e x i t y , and p r a c t i c a l c o n s t r a i n t s i m p o s e d by p r e s e n t d a y h a r d w a r e c a p a b i l i t i e s a r e c o n s i d e r e d . F i n a l l y , the d y n a m i c a s p e c t s of docking during the p e r i o d b e t w e e n i n i t i a l contact and final mating a r e d i s c u s s e d , including s t r u c t u r a l r e q u i r e - m e n t s i m p o s e d on the m e c h a n i s m s .

I N T R O D U C T I O N

T o i m p l e m e n t the p r i m a r y space m i s s i o n of this decade — manned lunar e x p l o r a t i o n — the o p e r a t i o n a l a s s i s t a n c e o f r e n d e z v o u s and docking i s being c o n s i d e r e d as an a l t e r n a t i v e to p o s s i b l e p r o b l e m s in obtaining a b o o s t v e h i c l e c a p a b l e of d i r e c t f l i g h t . T h i s paper c o n c e n t r a t e s on the m e c h a n i z a t i o n of the r e n d e z v o u s and docking phase of such a lunar m i s s i o n .

P r e s e n t e d at the A R S Lunar M i s s i o n s M e e t i n g , C l e v e l a n d , Ohio, July 17-19, 1962· T h i s w o r k w a s s p o n s o r e d in p a r t under N A S A C o n t r a c t N o . N A S 8-2635.

1 A s s o c i a t e D i r e c t o r , Guidance L a b o r a t o r y .

^ A s s o c i a t e M a n a g e r , S y s t e m s D e s i g n D e p a r t m e n t .

(2)

J . HEILFRON AND F. H. KAUFMAN

A s indicated in p r e v i o u s p a p e r s , r e n d e z v o u s can take p l a c e in e i t h e r an Earth o r lunar o r b i t ( o r on the lunar s u r f a c e ) ; it can i n v o l v e the mating of s t a g e s , t r a n s f e r of fuel, o r the r e t u r n of a shuttle to a " m o t h e r " ship; d i r e c t a s c e n t o r parking o r b i t s can be used; the o r b i t s can be c i r c u l a r o r m o r e g e n e r a l e l l i p s e s ; f i n a l l y , e i t h e r or both of the s p a c e c r a f t can p a r t i c i p a t e in the r e n d e z v o u s m a n e u v e r s . Since t h e r e i s no intent h e r e to d i s c u s s the p r o s and cons of e a c h a p p r o a c h o r to c o v e r a l l p o s s i b l e m i s s i o n p r o f i l e s , guidance s c h e m e s , and h a r d w a r e c o n f i g u r a - t i o n s , one p a r t i c u l a r p r o f i l e has b e e n s e l e c t e d to d i s p l a y the

significant f e a t u r e s of m o s t r e n d e z v o u s m i s s i o n s .

In m a n y r e s p e c t s , r e n d e z v o u s is l e s s difficult than a i r c r a f t i n t e r c e p t i o n since the t a r g e t is f r i e n d l y and t h e r e is no s e v e r e t i m e c o n s t r a i n t . T h e l a t t e r feature a l l o w s c o n s i d e r a b l e f r e e - d o m of d e s i g n , e s p e c i a l l y w i t h the g r e a t v e r s a t i l i t y of a human in the l o o p . T h i s r e m a i n s true e v e n f o r a p u r e l y automatic m o d e . P e r h a p s the l a r g e s t d e s i g n p r o b l e m c o n c e r n s the

s e l e c t i o n of the m i s s i o n to be i m p l e m e n t e d f o l l o w e d by the o p t i m i z a t i o n o r s y s t e m s e n g i n e e r i n g of a m e c h a n i z a t i o n f r o m the multitude of p o s s i b l e s c h e m e s and t e c h n i q u e s . A m o s t i m p o r t a n t f a c t o r in the o p t i m i z a t i o n is that of r e l i a b i l i t y and the redundancy, a l t e r n a t e or backup m o d e s , e t c . , a s s o c i a t e d w i t h the a p p r o a c h . Although a p r i m a r y s y s t e m can be r a t h e r e a s i l y m e c h a n i z e d with m o d e s t e q u i p m e n t r e q u i r e m e n t s , r e l i a b i l i t y c o n s i d e r a t i o n s w i l l r e s u l t in a d d i t i o n a l h a r d w a r e , t i g h t e r s p e c i f i c a t i o n s , and m o r e s a f e t y f a c t o r s ( e . g . , p r o p e l - lant m a r g i n ) . T h i s is a v e r y c o m p l e x a r e a and w i l l be m e n - tioned only b r i e f l y in the f o l l o w i n g d i s c u s s i o n .

M I S S I O N S E Q U E N C E

In m i s s i o n s i n v o l v i n g d i r e c t a s c e n t t r a j e c t o r i e s , the r e n - d e z v o u s and a s c e n t phases can be quite i n t e g r a t e d , e s p e c i a l l y for lunar o r b i t r e n d e z v o u s . The same i s true f o r r e n d e z v o u s w i t h a lunar surface base e x c e p t h e r e the d e s c e n t phase i s i n t e r t w i n e d . T h e r e f o r e , to d e s c r i b e m o r e c l e a r l y the f e a t u r e s b a s i c to r e n d e z v o u s only, a parking o r b i t m i s s i o n has b e e n s e l e c t e d to p r o v i d e the f r a m e w o r k f o r the f o l l o w i n g d i s c u s s i o n . The use of a parking o r b i t a l l o w s the range of t i m e a c c e p t a b l e f o r the launch of the second v e h i c l e to be extended f r o m s e v e r a l minutes to s e v e r a l hours p e r d a y .

The s e l e c t e d p r o f i l e , shown in F i g . 1, i n v o l v e s the r e n - d e z v o u s of two s p a c e c r a f t , one t e r m e d the " t a r g e t " and the other the " i n t e r c e p t o r , " both of w h i c h a r e i n i t i a l l y in c o - p l a n a r c i r c u l a r o r b i t s — 225 and 125 naut m i l e s , r e s p e c t i v e l y , above the Earth1 s surface ( f o r n u m e r i c a l c a l c u l a t i o n s ) . Questions as to the m a k e - u p of e a c h s p a c e c r a f t , how they w e r e p l a c e d in o r b i t , w h i c h w a s launched f i r s t , how long they have b e e n in

(3)

TECHNOLOGY OF LUNAR EXPLORATION

o r b i t , how the o r b i t s b e c a m e c o - p l a n a r , e t c . , c o m e under the j u r i s d i c t i o n of the o v e r a l l lunar m i s s i o n d e s i g n or the a s c e n t guidance phase and a r e not a n s w e r e d h e r e . The p a r t i c u l a r o r b i t s c h o s e n a r e r e a s o n a b l e f o r Earth o r b i t a l o p e r a t i o n s c o n s i d e r i n g the c o n s t r a i n t s i m p o s e d b y the Van A l l e n b e l t and a t m o s p h e r i c d r a g . C i r c u l a r o r b i t s have b e e n chosen f o r computational s i m p l i c i t y .

The r e n d e z v o u s i s a c c o m p l i s h e d by injecting the i n t e r c e p t o r into a Hohmann t r a n s f e r e l l i p s e at the t i m e of p r o p e r r e l a t i v e o r b i t a l phasing of the t w o v e h i c l e s . T h i s o c c u r s once e v e r y 36 hours (24 r e v o l u t i o n s ) f o r the 100 nant m i l e o r b i t s e p a r a - tion s e l e c t e d . F o l l o w i n g i n j e c t i o n , a m i d c o u r s e guidance phase e n s u e s to c o r r e c t i n j e c t i o n e r r o r s and p l a c e the i n t e r - c e p t o r on a c o l l i s i o n c o u r s e w i t h the t a r g e t . When the r e l a t i v e r a n g e has d e c r e a s e d to a suitable v a l u e , the r e l a t i v e v e l o c i t y i s r e d u c e d to e s s e n t i a l l y z e r o . T h i s phase i s t e r m e d " b r a k - i n g .4 1 A v e r n i e r phase is u t i l i z e d to p r o v i d e s m a l l t e r m i n a l c o r r e c t i o n s ( p r i m a r i l y l a t e r a l ) and, f i n a l l y , p h y s i c a l contact and m e c h a n i c a l i n t e r c o n n e c t i o n r e s u i t »

In m a n y situations t h e r e is no c l e a r d i v i d i n g line b e t w e e n p h a s e s . H o w e v e r , they have b e e n s e p a r a t e d h e r e to c o r r e - spond to t h r e e m a j o r functional r e q u i r e m e n t s of a r e n d e z v o u s s y s t e m . The f i r s t is to a c c o m p l i s h the m i s s i o n without undue fuel e x p e n d i t u r e . T h i s i s a c c o m p l i s h e d during the m i d c o u r s e phase w h e r e e r r o r s a r e d e t e c t e d e a r l y and c o r r e c t e d at the a p p r o p r i a t e t i m e . Second, r e n d e z v o u s should be a c c o m p l i s h e d as quick as i s r e a s o n a b l y p o s s i b l e . T h i s g i v e s r i s e to the b r a k i n g phase w h e r e i n the s p a c e c r a f t a r e a l l o w e d to c l o s e at a high rate until the end when the r e l a t i v e v e l o c i t y must be r e d u c e d to a v o i d c o l l i s i o n at t o o g r e a t a s p e e d . The third r e q u i r e m e n t is that a c c e p t a b l e t e r m i n a l conditions at i m p a c t m u s t r e s u l t . T h i s i s the task of the t e r m i n a l p h a s e .

A C Q U I S I T I O N A N D T R A N S F E R I N J E C T I O N

The r e l a t i v e g e o m e t r y at the t i m e f o r p r o p e r i n j e c t i o n i s shown in F i g . 1. The i n j e c t i o n can e i t h e r be based on ground c o m m a n d s o r c o n t r o l l e d e n t i r e l y f r o m the s p a c e c r a f t (with g e n e r a l e p h e m e r i s data p r e c o m p u t e d p r i o r to launch o r t r a n s m i t t e d f r o m the ground p r i o r to i n j e c t i o n ) . It w i l l be a s s u m e d h e r e that the t r a n s f e r i s i n i t i a t e d f r o m s p a c e c r a f t m e a s u r e m e n t s . In an actual m i s s i o n this m i g h t be e i t h e r the p r i m a r y o r a backup m o d e of o p e r a t i o n . T o obtain the n e c - e s s a r y data, a c q u i s i t i o n of one v e h i c l e by the other i s r e q u i r e d . A s indicated in F i g . 2, the a c q u i s i t i o n g e o m e t r y is c h a r a c t e r - i z e d by a r a t h e r long r a n g e (250 naut m i l e s ) but, as shall be shown b e l o w , quite s m a l l angular u n c e r t a i n t i e s . N a r r o w b e a m s e n s o r s and s m a l l s e a r c h c o n e s ( i f s e a r c h is used at a l l )

(4)

J . HEILFRON AND F. H. KAUFMAN

t h e r e f o r e can be e m p l o y e d . If i n j e c t i o n w e r e p a r t of the ascent phase and r e n d e z v o u s s e n s o r a c q u i s i t i o n d e l a y e d until l a t e r , the a c q u i s i t i o n range would d e c r e a s e and the angular u n c e r t a i n t y would c o r r e s p o n d i n g l y i n c r e a s e . Thus t h e r e a r e c e r t a i n t r a d e o f f s b e t w e e n the a s c e n t and r e n d e z v o u s phases aad r e l a t e d equipment r e q u i r e m e n t s .

A c q u i s i t i o n m a y be a c c o m p l i s h e d b y pointing the s e n s o r s ( r a d a r or o p t i c a l ) at the p r o p e r angle ( a p p r o x i m a t e l y 6 7 ° f r o m the l o c a l v e r t i c a l ) in the plane of the o r b i t and w a i t i n g until the two v e h i c l e s phase around to the d e s i r e d p o s i t i o n . Out-of- plane e r r o r s can a r i s e f r o m s e v e r a l s o u r c e s . F i r s t , t h e r e i s the u n c e r t a i n t y of the o r b i t a l plane of the f i r s t s p a c e c r a f t p r i o r to launch of the second ( l e s s than 1 naut m i l e with e x i s t i n g t r a c k i n g s y s t e m s ) . Second, there a r e a s c e n t guidance e r r o r s f o r the second v e h i c l e w h i c h m i g h t a l s o be e q u i v a l e n t to 1 naut m i l e . F i n a l l y , if, at initiation of a s c e n t of the s e c o n d v e h i c l e , no further t r a c k i n g data w e r e used and the p r e d i c t e d t i m e of p r o p e r phasing f o r a c q u i s i t i o n w a s u n c e r t a i n to one r e v o l u t i o n ^ (out of the p o s s i b l e 24 r e v o l u t i o n m a x i m u m parking o r b i t d u r a - tion) the d i f f e r e n t i a l nodal r e g r e s s i o n ( a s s u m i n g 3 0 ° o r b i t a l i n c l i n a t i o n ) would contribute another 1 naut m i l e . If these e r r o r s a r e independent, the total o u t - o f - p l a n e e r r o r would be r o u g h l y 2 naut m i l e s . A t a range of 250 naut m i l e s this amounts to a r a t h e r s m a l l angle — 0 . 5 ° . E v e n if a r e l a t i v e l y crude g y r o c o m p a s s i n g m o d e w e r e used f o r e s t a b l i s h i n g an in-plane d i r e c t i o n r e f e r e n c e and a f a i r l y inaccurate attitude c o n t r o l s y s t e m e m p l o y e d , it is a l m o s t i n c o n c e i v a b l e that m o r e than a 5 ° b e a m width s e n s o r would be r e q u i r e d .

The e f f e c t of i n - p l a n e e r r o r s depends on how i n j e c t i o n i s i n i t i a t e d . If a r a d a r is used f o r a c q u i s i t i o n , i n j e c t i o n can be c o n v e n i e n t l y initiated when the m e a s u r e d r a n g e c o r r e s p o n d s to a value p r e d e t e r m i n e d f r o m the n o m i n a l o r b i t a l r a d i i — 250 naut m i l e s in the s e l e c t e d c a s e . If a 2 - n a u t - m i l e u n c e r - tainty in r e l a t i v e altitude is a s s u m e d , r e s u l t i n g both f r o m t r a c k i n g and a s c e n t guidance e r r o r s , the angle at which the r e l a t i v e range i s the n o m i n a l v a l u e w i l l be u n c e r t a i n to 0. 5 ° . A g a i n , e v e n if only m o d e s t s p e c i f i c a t i o n s on the h o r i z o n scanner and c o n t r o l s y s t e m a r e set, a 5 ° b e a m width s e n s o r i s adequate. If a 0. 1% range e r r o r e x i s t s , i n j e c t i o n w i l l be started at the w r o n g t i m e and w i l l r e s u l t in a p p r o x i m a t e l y 0. 25 naut m i l e m i s s ( o n e - h a l f an o r b i t l a t e r ) w h i c h can be c o r r e c t e d e a s i l y during the c l o s e d l o o p guidance p h a s e .

Although this u n c e r t a i n t y in p r e d i c t i o n is quite l a r g e , the r e s u l t i n g e r r o r is s m a l l .

(5)

TECHNOLOGY OF LUNAR EXPLORATION

If o p t i c a l s e n s o r s a r e e m p l o y e d , angle m e a s u r e m e n t s o f f e r a m o r e c o n v e n i e n t s o u r c e of data f o r s t a r t i n g i n j e c t i o n . T h i s is a l s o true if an angle t r a c k i n g ( r a t h e r than r a n g e ) r a d a r i s used. H o w e v e r , the a c c u r a c y of the angle m e a s u r e m e n t

depends on the k n o w l e d g e of the l o c a l v e r t i c a l . E r r o r s ranging f r o m a v e r y s m a l l v a l u e to as much as 1 ° m a y r e s u l t depending on the d e t a i l e d m e c h a n i z a t i o n . F o r e x a m p l e , if a h o r i z o n scan- ner i s used, its e r r o r ( a p p r o x i m a t e l y 0. 5 ) c o m b i n e d with the e r r o r s of the b a s i c a c q u i s i t i o n s e n s o r , its g i m b a l angle t r a n s - d u c e r s , and s t r u c t u r a l m i s a l i g n m e n t s caused in p a r t by t h e r m a l e n v i r o n m e n t m a y l e a d to a 1 ° t o t a l . On the other hand, a

m e c h a n i z a t i o n u t i l i z i n g a star t r a c k e r ( s ) for p r e c i s e attitude r e f e r e n c e (in i n e r t i a l s p a c e ) and ground t r a c k i n g data f o r o r b i t a l p o s i t i o n r e l a t i v e to the e a r t h can l e a d to a v e r y s m a l l e r r o r e s p e c i a l l y if a c c u r a t e angle t r a n s d u c e r s a r e e m p l o y e d and the star t r a c k e r and a c q u i s i t i o n s e n s o r a r e mounted c l o s e t o g e t h e r to r e d u c e s t r u c t u r a l m i s a l i g n m e n t s . The w o r s t c a s e e r r o r of 1 ° i s e q u i v a l e n t to 12 naut m i l e m i s s w h i c h , w h i l e s i z a b l e , can be c o r r e c t e d during the c l o s e d l o o p p o r t i o n of the m i s s i o n with no g r e a t d i f f i c u l t y .

F o l l o w i n g a c q u i s i t i o n and d e t e r m i n a t i o n of the t i m e f o r Hohmann t r a n s f e r i n j e c t i o n , the i n t e r c e p t o r i s o r i e n t e d

h o r i z o n t a l l y and a x i a l thrust a p p l i e d until the r e q u i r e d 180 fps v e l o c i t y i n c r e m e n t has b e e n a c c u m u l a t e d . The r e n d e z v o u s guidance phase m a y then c o m m e n c e at any d e s i r e d t i m e .

The a p p r o p r i a t e i n i t i a l condition e r r o r s f o r the r e n d e z v o u s phase depend on a d e t a i l e d e r r o r a n a l y s i s of the m i s s i o n up to and including i n j e c t i o n . Although the a n a l y s i s is beyond the scope of this p a p e r , r e a s o n a b l e v a l u e s can be s e l e c t e d . A s a l r e a d y m e n t i o n e d , o u t - o f - p l a n e e r r o r s of 2 naut m i l e s a r e not u n r e a s o n a b l e . T h i s p o s i t i o n e r r o r is e q u i v a l e n t to a 14 fps o u t - o f - p l a n e v e l o c i t y e r r o r . In-plane v e r t i c a l p o s i t i o n and v e l o c i t y e r r o r s of these same amounts a r e a l s o quite r e a s o n - a b l e . P o s i t i o n e r r o r along the t r a j e c t o r y depends on the method of initiating t r a n s f e r and can v a r y f r o m 0. 25 naut m i l e to 12 naut m i l e s as d i s c u s s e d a b o v e . T h e v e l o c i t y

e r r o r along the t r a j e c t o r y depends p r i m a r i l y on the k n o w l e d g e of the d i f f e r e n t i a l altitude b e t w e e n o r b i t s and, f o r a 2-naut- m i l e uncertainty, is a p p r o x i m a t e l y 4 f p s .

N o t e : The m a x i m u m v e l o c i t y e r r o r o c c u r s at the line of nodes w h i c h is 9 0 ° r e m o v e d f r o m the point of m a x i m u m p o s i t i o n e r r o r . T h e r e f o r e , both e r r o r s cannot be a m a x - i m u m at the same t i m e , although at 4 5 ° they a r e both s i z a b l e .

(6)

J . HEILFRON A N D F. H. KAUFMAN

M I D C O U R S E G U I D A N C E

A s indicated e a r l i e r , the m i d c o u r s e phase s t a r t s s o m e t i m e after t r a n s f e r i n j e c t i o n and b r i n g s the two v e h i c l e s

t o g e t h e r on a c o l l i s i o n c o u r s e to a s m a l l r a n g e w h e r e b r a k i n g i s i n i t i a t e d . The m i d c o u r s e s c h e m e m u s t , t h e r e f o r e , c o r - r e c t the i n i t i a l t r a n s f e r e r r o r s . Many m i d c o u r s e guidance s c h e m e s have b e e n i n v e s t i g a t e d ranging f r o m o p t i m u m fuel u t i l i z a t i o n types to those e a s i e s t to m e c h a n i z e c o m p u t a t i o n a l l y . T h e y a r e b r i e f l y d i s c u s s e d b e l o w . In a p r a c t i c a l situation, one must e x a m i n e the t r a d e o f f s b e t w e e n fuel e c o n o m y and equipment c o m p l e x i t y and c o n s i d e r not o n l y the e x p e c t e d s o u r c e s and magnitudes of e r r o r s , but a l s o the f l e x i b i l i t y r e q u i r e d to a c c o m p l i s h the m i s s i o n in spite of unexpected trouble s.

O p t i m u m F u e l U t i l i z a t i o n

One of the m o r e i n t e r e s t i n g (and c o m p l e x ) guidance s c h e m e s ( 1 ) p a r t i a l l y m i n i m i z e s the total fuel r e q u i r e d (in the absence of m e a s u r e m e n t e r r o r s ) . F o r any p a r t i c u l a r type of i n i t i a l e r r o r , i . e . , i n - p l a n e o r o u t - o f - p l a n e p o s i t i o n o r v e l o c i t y e r r o r , the o p t i m u m m a n e u v e r i n v o l v e s the a p p l i c a t i o n of a step v e l o c i t y change ( i m p u l s i v e a c c e l e r a t i o n ) at a p a r t i c u l a r point along the o r b i t to e l i m i n a t e p o s i t i o n m i s s at the end, f o l l o w e d b y a second step v e l o c i t y change to a r r i v e f i n a l l y at z e r o r e l a t i v e v e l o c i t y . Both the t i m e of a p p l i c a t i o n of the f i r s t c o r r e c t i o n and the o p t i m u m r e n d e z v o u s point a r e d i f f e r - ent f o r e a c h type and s i z e of i n i t i a l e r r o r . F o r g e n e r a l c o m - binations of i n i t i a l e r r o r s , this t w o - i m p u l s e a p p r o a c h does not r e s u l t in a fuel m i n i m u m , but f r o m a p r a c t i c a l point of v i e w it i s about the m o s t c o m p l e x s c h e m e one would c a r e to m e c h a n i z e .

Using the c o o r d i n a t e s y s t e m shown in F i g . 3, the l i n e a r i z e d equations of thrust f r e e m o t i o n f o r e s s e n t i a l l y c i r c u l a r o r b i t s a r e

χ = Ζωγ

y = -Ζακ + 3co2y £lj

Ζ ζ = - α ) ζ

Solving these equations f o r the i n t e r c e p t o r v e l o c i t y V , r e q u i r e d at the p r e s e n t p o s i t i o n R^ to r e n d e z v o u s an angle Çf later y i e l d s

Numbers in parentheses indicate R e f e r e n c e s at end of paper.

(7)

T E C H N O L O G Y O F LUNAR EXPLORATION

χχ χχ sinpf + 2 γχ 7(1 - cos^f) - 3 ψ sinj/J

"ω 8(1 - cos0) - 3 p( sin0f

- 2 x ^ ( 1 - cospf) + y^ (4 sinßf - 3 ^ cos0

"ω 8(1 - c o s p ) - 3 (7 sinpf

ζ 1 _ cospf

Zl s i n ^

The d i f f e r e n c e b e t w e e n the p r e s e n t v e l o c i t y V and the

r e q u i r e d v e l o c i t y V j r e p r e s e n t s the v e l o c i t y c o r r e c t i o n needed if it is a p p l i e d at point 1. A s s u m i n g this is done, the v e l o c i t y change r e q u i r e d at i n t e r c e p t to m a t c h o r b i t s , i . e . , the braking v e l o c i t y , is g i v e n by

x^ x^ sinpf - 2 y ^ (1 - cosj/)

"05 8 ( 1 - c o s p ) - 3 ÇI sinpf

y2 2 χχ (1 - cospf) + yx (4 sinpi - 3 $

~ω 8(1 - cosj?) - 3 φ sinpi

z2 Zl

ω s inj?

The total v e l o c i t y change i s t h e r e f o r e

vT= | V j- v | + l v2|

W

T h e r e a r e two o p t i m i z a t i o n p o s s i b i l i t i e s . If the f i r s t c o r r e c t i o n is made i m m e d i a t e l y , the o p t i m u m r e n d e z v o u s point is d e t e r m i n e d by m i n i m i z i n g E q . 4 w i t h r e s p e c t to Çl and then computing the r e q u i r e d c o r r e c t i o n - V . How- e v e r , the f i r s t c o r r e c t i o n can be d e l a y e d . Eq. 1 m a y be integrated to predict the position and v e l o c i t y conditions which w i l l apply at some time in the future if no action is presently taken. Using the predicted data, Eq. 4 m a y be again m i n i m i z e d with r e s p e c t to Çf, B y examining a l l future t i m e s , the optimum point for f i r s t c o r r e c t i o n can be d e t e r - mined. This dual optimization r e q u i r e s considerable c o m - putation so a m o r e reasonable technique is to dispense with the prediction aspect and compute the optimum Vrp in r e a l t i m e . The f i r s t c o r r e c t i o n is made as soon as V,p starts to i n c r e a s e . A l s o , as a practical__matter, no c o r r e c t i o n would n o r m a l l y be made unless V·. - V e x c e e d e d its associated uncertainty ( e . g . , the 3cr value) due to m e a s u r e m e n t e r r o r s .

(8)

J. HEILFRON AND F. H. KAUFMAN

Since l i n e a r i z e d a p p r o x i m a t i o n s have b e e n used in the f o r e - g o i n g , it is of i n t e r e s t to e x a m i n e their range of v a l i d i t y . F i g . 4 shows the magnitude of the f i r s t , second, and total v e l o c i t y i n c r e m e n t s d e t e r m i n e d f r o m E q se 1-4 for p e r f e c t i n j e c t i o n . F o r the s e l e c t e d m i s s i o n , the equations a r e quite a c c u r a t e f o r r e n d e z v o u s a n g l e s l e s s than 1 2 0 ° . This p o s e s no g r e a t r e s t r i c t i o n since it is r e a s o n a b l e to a s s u m e that t r a n s f e r i n j e c t i o n ( $ = 180°) e r r o r s w i l l not be capable of d e t e c t i o n until s o m e t i m e l a t e r o r they would not have been m a d e in the f i r s t p l a c e ( e x c e p t f o r o u t - o f - p l a n e p o s i t i o n which cannot be c o r r e c t e d t h e n ) .

F i g . 5 shows the magnitude of the v a r i o u s v e l o c i t y i n c r e - ments f o r a 10,000-ft o u t - o f - p l a n e p o s i t i o n e r r o r at i n j e c t i o n as a function of when the f i r s t c o r r e c t i o n is a p p l i e d . The o p t i m u m t i m e is 3 0 ° f r o m n o m i n a l i n t e r c e p t and r e s u l t s in i n t e r c e p t 10° past the n o m i n a l point. A l t h o u g h the Vrp c u r v e shown is quite f l a t , l a r g e r i n i t i a l e r r o r s w i l l r e s u l t in a m o r e pronounced m i n i m u m .

Some of the p e c u l i a r i t i e s in both F i g s . 4 and 5 near $ = 0 a r e due to the fact that the equations a c t u a l l y s o l v e d to produce the c u r v e s accounted f o r n o n i m p u l s i v e and only a x i a l a c c e l e r a - t i o n . A n a c c e l e r a t i o n l e v e l of 1 f t / s e c ^ w a s used as w e l l as a turning r a t e l i m i t of 6 ° / s e c when r e o r i e n t i n g f r o m the d i r e c - tion r e q u i r e d f o r the f i r s t c o r r e c t i o n to that r e q u i r e d for the s e c o n d . T h i s has not a f f e c t e d the m a i n a s p e c t of the r e s u l t s since the V,p of F i g . 4 d o e s not i n c r e a s e near (jl equal z e r o . A i r b o r n e I n t e r c e p t S c h e m e s

T h e r e is an e x t e n s i v e body of k n o w l e d g e , d e v e l o p e d o v e r the past 15 y e a r s , r e l a t i n g to a i r c r a f t i n t e r c e p t i o n which can be a p p l i e d to space r e n d e z v o u s . T h e s e s c h e m e s , e . g . , p r o p o r t i o n a l and b i a s e d p r o p o r t i o n a l n a v i g a t i o n , r e l y only on r e l a t i v e p o s i t i o n and v e l o c i t y m e a s u r e m e n t s b e t w e e n v e h i c l e s and attempt to null the r a t e of r o t a t i o n of the l i n e - o f - s i g h t

( L O S ) . If the L O S r a t e i s z e r o , then, n e g l e c t i n g the d i f f e r e n t i a l g r a v i t y e f f e c t s , c o l l i s i o n w i l l o c c u r since the v e l o c i t y v e c t o r i s a l i g n e d along the L O S . In o r b i t a l r e n d e z v o u s , g r a v i t y d i f f e r e n c e s m a y not be n e g l i g i b l e depending on the o r b i t a l a n g l e s i n v o l v e d . F i g . 6 shows the L O S r a t e f o r the s e l e c t e d m i s s i o n v e r s u s angle f r o m i n t e r c e p t f o r p e r f e c t i n j e c t i o n . A l s o shown is the total v e l o c i t y c o r r e c t i o n r e q u i r e d to null the L O S rate v e r s u s when such a s c h e m e i s i n i t i a t e d . A s i n d i c a t e d , an a p p r e c i a b l e p e n a l t y i s paid f o r u t i l i z i n g such a technique when the o r b i t a l angle is g r e a t e r than 2 0 ° . T h e r e f o r e , t h e r e i s a t r a d e o f f b e t w e e n p e r f o r m a n c e l o s s on one hand and c o m - putational s i m p l i c i t y and independence of the k n o w l e d g e o f the o r b i t c h a r a c t e r i s t i c s on the other hand.

(9)

TECHNOLOGY OF LUNAR EXPLORATION

The p e r f o r m a n c e l o s s can be r e d u c e d g r e a t l y i f no a c t i o n i s taken until the L O S r a t e e x c e e d s a s p e c i f i e d t h r e s h o l d . If this t h r e s h o l d is set at 0 . 5 m r a d / s e c o r h i g h e r , then, at l e a s t for the n o m i n a l p e r f e c t i n j e c t i o n c a s e , no p e r f o r m a n c e l o s s is i n c u r r e d since F i g . 6 i n d i c a t e s that the L O S rate i s l e s s than this value (out to 1 2 0 ° ) .

A t the e x p e n s e of r e q u i r i n g k n o w l e d g e of the o r b i t a l plane d i r e c t i o n , the L O S rate e r r o r to be nulled m a y be d e t e r m i n e d by subtracting the n o m i n a l L O S r a t e (at, for e x a m p l e , the m e a s u r e d r a n g e ) for p e r f e c t i n j e c t i o n f r o m the i n - p l a n e c o m - ponent of the m e a s u r e d r a t e . In p r a c t i c e the r e s u l t i n g e r r o r would be c o m p a r e d to its u n c e r t a i n t y ( e . g . , 3σ v a l u e ) due to m e a s u r e m e n t e r r o r s and no a c t i o n taken unless this u n c e r t a i n t y was e x c e e d e d .

The standard a i r c r a f t i n t e r c e p t i o n p r o b l e m i n v o l v e d o n l y c o l l i s i o n and not z e r o t e r m i n a l v e l o c i t y . S c h e m e s have b e e n c o n s i d e r e d w h i c h produce both ( 2 ) . In this paper w e have a s s i g n e d a s e p a r a t e phase, " b r a k i n g , 11 to the z e r o t e r m i n a l v e l o c i t y a s p e c t although, as m e n t i o n e d e a r l i e r , t h e r e is often no c l e a r d i v i d i n g line b e t w e e n p h a s e s .

B R A K I N G

The m i d c o u r s e guidance s c h e m e s that have b e e n d e s c r i b e d a r e intended to p l a c e the i n t e r c e p t o r on e s s e n t i a l l y a c o l l i s i o n path with the t a r g e t . F o r the p e r f e c t i n j e c t i o n c a s e , an i n t e r - c e p t o r v e l o c i t y change of a p p r o x i m a t e l y 180 fps must be made p r i o r to c o n t a c t . Although this change a p p e a r s as a v e l o c i t y i n c r e a s e in Earth f i x e d o r s i m i l a r c o o r d i n a t e s y s t e m s , it a p p e a r s as a c l o s i n g v e l o c i t y d e c r e a s e in r e l a t i v e c o o r d i n a t e s ; thus, the t e r m " b r a k i n g . " If the t w o v e h i c l e s a r e on a c o l l i s i o n c o u r s e , the o p t i m u m b r a k i n g m a n e u v e r i n v o l v e s an i m p u l s e d e c e l e r a t i o n along the v e l o c i t y v e c t o r and the c o r r e s p o n d i n g step d e c r e a s e in v e l o c i t y . F o r those situations w h e r e l i m i t e d thrust is a v a i l a b l e , the o p t i m u m m a n e u v e r i s m o r e c o m p l e x . H o w e v e r , b r a k i n g n o r m a l l y o c c u r s when the s p a c e c r a f t a r e r e l a t i v e l y c l o s e t o g e t h e r and the t i m e for r e n d e z v o u s c o m p l e - tion s u f f i c i e n t l y s m a l l so that d i f f e r e n t i a l g r a v i t a t i o n a l e f f e c t s g e n e r a l l y can be s a f e l y i g n o r e d . In this e v e n t , w h e t h e r on a c o l l i s i o n c o u r s e o r not, the o p t i m u m a c t i o n i n v o l v e s thrusting at any d e s i r e d a c c e l e r a t i o n l e v e l along the v e l o c i t y v e c t o r to reduce it to z e r o e x c e p t f o r an a r b i t r a r i l y s m a l l value along the final L O S w h i c h w i l l cause the range to go to z e r o after an a p p r o p r i a t e t i m e has e l a p s e d .

If on a c o l l i s i o n c o u r s e ( V along the L O S ) , the a c t i o n must be initiated so as to r e d u c e V to e s s e n t i a l l y z e r o p r i o r to contact. If not on a c o l l i s i o n c o u r s e , the a c t i o n can s t a r t and end at any t i m e as long as the n e g l e c t of g r a v i t y is s t i l l v a l i d .

(10)

J . HEILFRON A N D F. H. KAUFMAN

In p r a c t i c e , t h e r e is a l w a y s a d e s i r e to r e n d e z v o u s as soon as is r e a s o n a b l y p o s s i b l e . T h e r e f o r e , m i n i m u m fuel u t i l i z a t i o n is not a l w a y s o p t i m u m . B e f o r e e x a m i n i n g the g e n e r a l situation at the s t a r t of b r a k i n g , c o n s i d e r the c o l l i s i o n c o u r s e c a s e . If R.£ and V£ a r e the final v a l u e s of range and c l o s i n g v e l o c i t y , r e s p e c t i v e l y , that a r e d e s i r e d after b r a k i n g , then the range Rq at which b r a k i n g should s t a r t is g i v e n by

R = R . + ° , f 5

o f 2a L J

w h e r e a = thrust a c c e l e r a t i o n . N o m i n a l l y no a c t i o n would be taken until the range e q u a l e d R q and then b r a k i n g i n i t i a t e d until the v e l o c i t y w a s r e d u c e d to V*£. H o w e v e r , unless thrust magnitude c o n t r o l is u t i l i z e d , t h e r e is no g u a r a n t e e , e i t h e r due to thrust o r m a s s u n c e r t a i n t y , that the a c c e l e r a t i o n w i l l be the c o r r e c t v a l u e . If the a c c e l e r a t i o n i s too l o w , c o l l i s i o n can o c c u r at an unacceptable v e l o c i t y ; i f it i s t o o high, the final range can be too g r e a t . T h e r e f o r e , one m u s t p r o v i d e a braking schedule w h i c h a l l o w s f o r the m a x i m u m and m i n i m u m a c c e l e r a t i o n p o s s i b l e and w h i c h s t i l l r e a c h e s the d e s i r e d final conditions in a r e a s o n a b l e t i m e . This can be done v i a t w o switching l i n e s as shown in F i g . 7. The " s t a r t b r a k i n g " c u r v e c o r r e s p o n d s to RQ ( VQ) g i v e n b y E q . 5 using the m i n i m u m a c c e l e r a t i o n . The " s t o p b r a k i n g " line can be s e l e c t e d in m a n y w a y s . The one shown c o r r e s p o n d s to a constant t i m e to g o , i . e . , b r a k i n g i s stopped when the t i m e to g o b e c o m e s e x c e s s i v e . Note that the r e g i o n to the left of the s t a r t line is f o r b i d d e n ; o t h e r w i s e c o l l i s i o n w i l l o c c u r (at l e a s t for m i n i m u m a c c e l e r a - tion) p r i o r to b r a k i n g c o m p l e t i o n .

In the g e n e r a l c a s e , the i n t e r c e p t o r w i l l not be on a c o l l i - sion c o u r s e p r i o r to the s t a r t of b r a k i n g . T h e r e f o r e , in a d d i - tion to a b r a k i n g schedule, one m u s t a l s o e m p l o y a guidance s c h e m e which nulls the l a t e r a l m i s s . A s a l r e a d y i n d i c a t e d , braking usually o c c u r s when both the r a n g e and t i m e to r e n d e z - vous a r e s m a l l so that g r a v i t y can be n e g l e c t e d . A n y of the v a r i o u s i n t e r c e p t i o n s c h e m e s can be used e f f i c i e n t l y to null the L O S r a t e , i . e . , the d e s i r e d c o n d i t i o n f o r z e r o l a t e r a l m i s s . T E R M I N A L P H A S E

The t e r m i n a l or v e r n i e r phase b r i n g s the v e h i c l e s t o g e t h e r f r o m the end of braking to final p h y s i c a l c o n t a c t . In m o s t

s y s t e m d e s i g n s , midcourse and b r a k i n g m a n e u v e r s a r e m a d e w i t h an a x i a l engine (with an a c c e l e r a t i o n c a p a b i l i t y b e t w e e n

1 and 3 f t / s e c f o r the s e l e c t e d m i s s i o n ) . During the t e r m i n a l phase it is usually u n d e s i r a b l e to rotate the i n t e r c e p t o r to m a k e v e c t o r c o r r e c t i o n s w i t h this a x i a l e n g i n e . T h e r e f o r e ,

(11)

TECHNOLOGY OF LUNAR EXPLORATION

s m a l l l a t e r a l v e r n i e r engines are added. Longitudinal control can still e m p l o y the main engine, so this dimension is r e a l l y an extension of the braking phase using a schedule as d e s c r i b e d in the f o r e g o i n g , plus c o n t r o l of the v e l o c i t y at impact to keep it within the bounds set by the docking structure. The l a t e r a l scheme must null the L O S r a t e . In c e r t a i n instances w h e r e the target is not attitude stabilized along the L O S , the L O S must be made to match one of the t a r g e t a x e s , e . g . , the r o l l axis or center l i n e . Acceptable values of l a t e r a l m i s s as w e l l as r e l a t i v e angular m i s a l i g n m e n t s must result.

One of the m o r e important aspects of the t e r m i n a l phase i n v o l v e s the "transfer function" of the human o p e r a t o r . S i m - ulation is usually n e c e s s a r y and c e r t a i n results a r e presented in a following section. F o r automatic operation, which might be a backup mode, g e n e r a l guidance r e q u i r e m e n t s can be obtained a n a l y t i c a l l y . In these automatic m o d e s , there is a l o w e r l i m i t of range after which the sensor data b e c o m e s invalid. F o r r a d a r s this is due to the near field of the antenna and, if pulse r a d a r s are used, the pulse width and transponder time d e l a y . F o r optical s e n s o r s , the source to be tracked can b e c o m e l a r g e with r e s p e c t to the field of v i e w . A s indicated in F i g . 8, which depicts the situation after the last c o r r e c t i o n at the m i n i m u m r a n g e , detailed attention must be g i v e n to the v a r i o u s dimensions of the v e h i c l e s , w h e r e the sensors a r e located and hence p r e c i s e l y what they m e a s u r e , the strong interaction of the attitude control s y s t e m , e t c . To simplify m a t t e r s , w e shall consider the degenerate case of point m a s s e s . H e r e the actual m i s s b e c o m e s equal to the distance labeled "d" in F i g . 8 and is given by

d = I T 9 / R a j a ^ a 1

w h e r e the subscript "a" r e f e r s to the actual value of the p a r a m e t e r as opposed to a subscript " m " used later to denote the m e a s u r e d v a l u e . A l s o , the subscript " 1 " r e f e r s to condi- tions after the last c o r r e c t i o n . Subscript " 2 " w i l l r e f e r to

conditions b e f o r e this c o r r e c t i o n . If the last c o r r e c t i o n i s made by measuring the l a t e r a l v e l o c i t y Rm2 ^ m 2 3u s t P r i o r t o the t i m e the m i n i m u m m e a s u r e d r a n g e i s r e a c h e d and thrust applied to null this m e a s u r e d v e l o c i t y , an e r r o r w i l l result as given by

R Ô = R 9 - R 9 = l a t e r a l v e l o c i t y e r r o r 7

al al a2 a2 m2 m2 L J To obtain a quantitative value for the m i s s , assume that the m e a s u r e m e n t e r r o r s in R, R , and Ô a r e j " 5 ft, j " 0.5 fps,

(12)

J. HEILFRON AND F. H. KAUFMAN

and t 0 . 5 m r a d / s e c , r e s p e c t i v e l y . F u r t h e r , a s s u m e that the m i n i m u m s e n s o r range is 10 ft so the l a s t c o r r e c t i o n i s m a d e at a m e a s u r e d value of 15 ft, the m e a s u r e d c l o s i n g v e l o c i t y is

1 fps, and the L O S r a t e nulling s c h e m e d e s i g n e d so that no a c t i o n is taken unless the m e a s u r e d value e x c e e d s a t h r e s h o l d of 1 m r a d / s e c . F o r this e x a m p l e , the w o r s t c a s e m i s s equals 0. 6 ft. In an actual situation other e r r o r s w h i c h have been n e g l e c t e d , such as attitude m i s a l i g n m e n t , w i l l cause a m i s s of s i m i l a r magnitude so that total capture d i s t a n c e s of a foot or so a r e r e a s o n a b l e . Specific attention m u s t be g i v e n to the d e s i g n of the attitude c o n t r o l s y s t e m to insure not only that its a s s o c i a t e d m i s s is s m a l l , but a l s o that its angular m i s a l i g n - m e n t is within the a c c e p t a b l e l i m i t s of the docking m e c h a n i s m . R E N D E Z V O U S SENSOR R E Q U I R E M E N T S

In a l l guidance s c h e m e s , m e a s u r e m e n t s of at l e a s t r e l a t i v e range and v e l o c i t y is r e q u i r e d . C e r t a i n of the s c h e m e s r e q u i r e additional i n f o r m a t i o n , usually the d i r e c t i o n of the l o c a l v e r - t i c a l and o r b i t a l plane n o r m a l , upon w h i c h to base a c o o r d i n a t e s y s t e m . T h e r e a r e a c c u r a c y c o n s t r a i n t s r e l a t i n g to e a c h of the v a r i o u s p i e c e s of data. T h e i n f o r m a t i o n must be g a t h e r e d o v e r a c o n s i d e r a b l e v a r i a t i o n in r e l a t i v e r a n g e , e . g . , f r o m Ζ50 naut m i l e s to 10 ft in the s e l e c t e d c a s e , and p o s s i b l y w h i l e the s p a c e c r a f t u n d e r g o l a r g e attitude e x c u r s i o n s w i t h r e s p e c t to the L O S . A l l of these c o n s i d e r a t i o n s a f f e c t the d e s i g n of the s e n s o r ( s ) . Note that the b a s i c s e n s o r s m a y be l o c a t e d e i t h e r in the i n t e r c e p t o r or in the t a r g e t . In the l a t t e r c a s e , the i n t e r c e p t o r must be capable of r e c e i v i n g and p r o p e r l y i n t e r - p r e t i n g the c o m m a n d s o r data t r a n s m i t t e d f r o m the t a r g e t . T o reduce e q u i p m e n t w e i g h t , s i z e , and p o w e r and to enhance a c c u r a c y , c o o p e r a t i v e t r a n s p o n d e r s , b e a c o n s , l i g h t s o u r c e s , e t c . , a r e p l a c e d in the v e h i c l e not containing the b a s i c s e n s o r s .

R a d a r o f f e r s the m o s t c o n v e n i e n t method of obtaining range i n f o r m a t i o n although o p t i c a l m e t h o d s ( e . g . , t r i a n g u l a t i o n m a y be e m p l o y e d at short r a n g e s . E i t h e r pulse o r C W techniques a r e u s a b l e . C W a p p e a r s to o f f e r r e l i a b i l i t y a d v a n t a g e s in that only s o l i d state d e v i c e s need be used ( 3 ) , C W a l s o can p r o v i d e h i g h e r a c c u r a c y at l e a s t at short r a n g e s v i a phase l o c k t e c h - niques and i s not b o t h e r e d by uncompensated t i m e d e l a y s i n h e r e n t in pulse a p p r o a c h e s . R a n g e r a t e can be obtained b y d i f f e r e n t i a t i n g range or by d i r e c t m e a s u r e m e n t of D o p p l e r shift. T h e r e a r e no p r o b l e m s in obtaining adequate r a n g e and range rate a c c u r a c i e s f o r v a l u e s + 0. 1% ± 5 ft ( b i a s ) and t 0. 5 fps can be a c h i e v e d .

The other t w o l a t e r a l v e l o c i t y c o m p o n e n t s depend on the d e t e r m i n a t i o n of the L O S r a t e s in i n e r t i a l space since the product of L O S rate with r a n g e g i v e s the d e s i r e d l a t e r a l

(13)

TECHNOLOGY OF LUNAR EXPLORATION

v e l o c i t i e s . A n a c c u r a c y of 0 . 5 m r a d / s e c is a c c e p t a b l e at short r a n g e s ; h o w e v e r , much l e s s e r r o r i s d e s i r e d at long r a n g e s . If guidance w e r e i n i t i a t e d at a range of 100 naut m i l e s (0 = 1 2 0 ° ) , then 0 . 0 1 m r a d / s e c i s d e s i r a b l e . T h i s a c c u r a c y can be r e l a x e d by initiating guidance l a t e r . H o w - e v e r , as a g e n e r a l r u l e , such a d e l a y i m p l i e s i n c r e a s e d fuel expenditure depending on the type and s i z e s of i n i t i a l e r r o r s . T h e r e a r e n u m e r o u s a p p r o a c h e s f o r d e t e r m i n i n g the L O S r a t e s u t i l i z i n g a g a i n e i t h e r o p t i c a l o r v a r i o u s r a d a r ( l o b i n g , m o n o p u l s e , or i n t e r f e r o m e t e r ) t e c h n i q u e s . T h e m o s t s t r a i g h t - f o r w a r d and usually l e a s t a c c u r a t e method i s to p r o v i d e a g i m b a l e d s e e k e r with g y r o s mounted on the g i m b a l e d m e m b e r to g i v e the d e s i r e d r a t e s d i r e c t l y . The a c c u r a c y is l i m i t e d by the fixed g y r o d r i f t s r e g a r d l e s s o f the smoothing t i m e used, and the e l e c t r i c a l p o w e r r e q u i r e m e n t s can be p r o h i b i t i v e . A v a r i a t i o n of the s e e k e r a p p r o a c h i n v o l v e s s t a b i l i z i n g the. v e h i - cle in s o m e known d i r e c t i o n and m e a s u r i n g the s e e k e r angle via g i m b a l angle t r a n s d u c e r s . A n g u l a r change d i v i d e d b y the o b s e r v a t i o n t i m e g i v e s the a v e r a g e r a t e although m o r e s o p h i s - t i c a t e d f i l t e r i n g can be d e v i s e d . The a c c u r a c y of the d e v i c e ( s ) which p r o v i d e the c o n t r o l s y s t e m r e f e r e n c e now b e c o m e s i m p o r t a n t .

The L O S s e n s o r can be f i x e d to the s p a c e c r a f t and p r o v i d e suitable e r r o r s i g n a l s ( a n g l e s b e t w e e n L O S and b o r e sight a x i s ) to the attitude c o n t r o l s y s t e m f o r use in a l i g n i n g the v e h i c l e along the L O S . H e r e the w h o l e v e h i c l e a c t s as a s e e k e r , and the s c h e m e i s no m o r e a c c u r a t e than the g i m b a l e d a p p r o a c h if the same type g y r o s a r e u s e d . If the f i x e d s e n s o r has a l a r g e enough f i e l d of v i e w o v e r w h i c h angle i n f o r m a t i o n i s a c c u r a t e , these data can r e p l a c e the s e e k e r g i m b a l angle i n f o r m a t i o n when the v e h i c l e i s not c o n t r o l l e d along the L O S .

An i n e r t i a l p l a t f o r m o f f e r s the m e a n s of p r o v i d i n g e i t h e r a p r e c i s e r e f e r e n c e if the v e h i c l e i s s t a b i l i z e d in i n e r t i a l space or can be used to d e t e r m i n e a c c u r a t e l y the angular change in the L O S if the v e h i c l e i s s e r v o e d to i t . A p l a t f o r m m i g h t be l e f t o v e r f r o m the a s c e n t phase o r d e s t i n e d to be used in a l a t e r p o r t i o n of the m i s s i o n . C o n s e q u e n t l y , it m a y not be d i r e c t l y c h a r g e a b l e as s p e c i a l r e n d e z v o u s e q u i p m e n t . The p l a t f o r m can be a s s u m e d to be suitably a l i g n e d p r i o r to i n j e c - tion, and its d r i f t up to the t i m e of docking i s n o r m a l l y n e g l i - g i b l e . It a l s o can be used to p r o v i d e any c o o r d i n a t e s y s t e m r e f e r e n c e that m a y be r e q u i r e d . If a p l a t f o r m is not u t i l i z e d and c o o r d i n a t e d i r e c t i o n s s t i l l d e s i r e d , the v e h i c l e m a y be aligned along the l o c a l v e r t i c a l b y h o r i z o n s c a n n e r s and a g y r o c o m p a s s m o d e used to d e t e c t o r b i t a l r a t e and the d i r e c - tion of the o r b i t . If this s c h e m e is s e l e c t e d , s e n s o r s a l w a y s r e q u i r i n g v e h i c l e a l i g n m e n t along the L O S cannot be e m p l o y e d .

(14)

J . HEILFRON AND F. H. KAUFMAN

The p r o p u l s i o n c o n f i g u r a t i o n a l s o i n t e r a c t s h e a v i l y w i t h the r e n d e z v o u s s e n s o r s . A s m e n t i o n e d e a r l i e r , n o r m a l l y a s i n g l e a x i a l engine (with two thrust c h a m b e r s canted f r o m the c e n t e r line so as not to i m p i n g e on the t a r g e t during the final docking p e r i o d ) is used for a l l v e l o c i t y c o r r e c t i o n s during the m i d - c o u r s e and b r a k i n g p e r i o d s . In g e n e r a l the s p a c e c r a f t m u s t be o r i e n t e d in the p r o p e r d i r e c t i o n to m a k e v e c t o r c o r r e c t i o n s . If data a r e d e s i r e d during these m a n e u v e r s , the s e n s o r s must have a suitable f i e l d of v i e w . I n e r t i a l c o o r d i n a t e s y s t e m i n f o r m a t i o n can be l o s t i f the h o r i z o n s c a n n e r - g y r o c o m p a s s a p p r o a c h is u s e d . H o w e v e r , it i s often f e a s i b l e to make m e a s - u r e m e n t s b e f o r e and after t h r u s t i n g s and to "dead r e c k o n " d u r - ing the actual m a n e u v e r s . T h i s e l i m i n a t e s c e r t a i n p r o b l e m s .

T h e r e a r e a multitude of s i m i l a r c o n s i d e r a t i o n s w h i c h affect the s e l e c t i o n of the r e n d e z v o u s s c h e m e including the s e n s o r a p p r o a c h . S c h e m e s can be d e v i s e d w h i c h r e q u i r e s e n s o r c h a r - a c t e r i s t i c s c o m p l e t e l y within the state of the t e c h n i c a l a r t . H o w e v e r , such equipment i s not " o f f - t h e - s h e l f . " The d e t a i l e d d e s i g n ( s ) m u s t be t a i l o r e d to the s p e c i f i c m i s s i o n and m e c h a n i - z a t i o n and, t h e r e f o r e , m u s t a w a i t c e r t a i n m a j o r d e c i s i o n s as to the w a y manned lunar e x p l o r a t i o n w i l l be a c c o m p l i s h e d . M A N N E D R E N D E Z V O U S A N D D O C K I N G S I M U L A T I O N S

A number of manned r e n d e z v o u s and docking simulations have b e e n r e p o r t e d t e s t i f y i n g to m a n ' s potential c a p a b i l i t y f o r

s k i l l f u l l y and r e l i a b l y p e r f o r m i n g these m a n e u v e r s . L e v i n and W a r d (4) f i r s t r e p o r t e d studies on m a n ' s c a p a b i l i t y f o r c o - p l a n a r o r b i t a l r e n d e z v o u s . Since then, e x t e n s i v e s i m u l a - tions of manned r e n d e z v o u s have b e e n conducted b y N A S A — f i r s t , c o - p l a n a r studies d e s c r i b e d in R e f . 5, and then six d e g r e e - o f - f r e e d o m s i m u l a t i o n s r e p o r t e d in R e f . 6. A d d i t i o n a l simulations (7) d e m o n s t r a t e that the data fundamental for conducting automatic r e n d e z v o u s a r e c o m p a t i b l e w i t h manned r e n d e z v o u s . A n y of the techniques d e s c r i b e d in these s i m u l a - tions a r e adequate f o r basing the a c c o m p l i s h m e n t of p r o j e c t e d lunar m i s s i o n s by manned r e n d e z v o u s .

A l l of these studies r e q u i r e an e x t e n s i o n in the r e g i o n of final t e r m i n a l c o n t r o l just p r i o r to docking contact, that i s , the l a s t f e w hundred f e e t . R e f . 8 r e p o r t s a s i m u l a t i o n which w a s conducted to d e t e r m i n e m a n1 s a b i l i t y to match v i s u a l l y his s p a c e c r a f t ' s p o s i t i o n , v e l o c i t y , and angular a l i g n m e n t with that of a t a r g e t s p a c e c r a f t . A m e a s u r e m e n t of the a c c u r a c y of man c o n t r o l l e d docking guidance s y s t e m is v i t a l in defining m a n ' s c a p a b i l i t i e s and f o r e s t a b l i s h i n g r e a l i s t i c r e q u i r e m e n t s on the docking structure and i t s m e c h a n i s m s . S p e c i f i c a l l y , this s i m u l a t i o n d e t e r m i n e d the 1) f e a s i b i l i t y of docking, 2) t e r m i n a l v a l u e s of range r a t e , L O S a n g l e , L O S

(15)

TECHNOLOGY OF LUNAR EXPLORATION

r a t e , l a t e r a l m i s s , r e l a t i v e r o l l angle e r r o r , and fuel u t i l i z a - tion, 3) t y p i c a l p i l o t p r o c e d u r e s and c a p a b i l i t i e s , and 4) m i n i - m u m d i s p l a y r e q u i r e m e n t s .

The t a r g e t v e h i c l e w a s a s s u m e d to be a t t i t u d e - s t a b i l i z e d in a c i r c u l a r o r b i t w i t h its longitudinal a x i s c o i n c i d e n t w i t h the i n e r t i a l v e l o c i t y v e c t o r , i . e . , not a l i g n e d along the t a r g e t - t o - i n t e r c e p t o r L O S . Using a s i m u l a t e d p e r i s c o p e v i e w of the t a r g e t plus r a d a r - d e r i v e d r a n g e and range r a t e i n f o r m a t i o n , the p i l o t w a s r e q u i r e d to m a n e u v e r his v e h i c l e (the i n t e r c e p t o r ) into the o r b i t plane, t o a l i g n his r o l l a x i s , to e s t a b l i s h a

s p e c i f i e d r e l a t i v e r o l l attitude ( a l l w i t h r e s p e c t to the t a r g e t ) , and in this o r i e n t a t i o n to dock the v e h i c l e s w i t h a d e s i r e d c l o s i n g r a t e of a p p r o a c h .

T w o c o n t r o l sticks w e r e p r o v i d e d in the c o c k p i t s i m u l a t o r so that the p i l o t could c o m m a n d t r a n s l a t i o n a l a c c e l e r a t i o n along e a c h b o d y a x i s and attitude c o n t r o l about e a c h b o d y a x i s . The i n t e r c e p t o r v e h i c l e w a s i n i t i a l l y 3000 ft a w a y f r o m the t a r g e t v e h i c l e w i t h a c l o s i n g r a n g e r a t e of 30 fps and w i t h n e g l i g i b l e L O S r a t e s (2 m r a d / s e c o r l e s s ) . V a r i o u s c o m b i n a - tions of i n t e r c e p t o r attitude e r r o r s w e r e a l s o included as i n i t i a l c o n d i t i o n s . T e r m i n a t i o n of e a c h f l i g h t o c c u r r e d when the docking f a c e s of the t w o v e h i c l e s r e a c h e d an 8-ft s e p a r a - t i o n .

A n o p t i c a l s e n s o r , such as a p e r i s c o p e or T V c a m e r a , w a s a s s u m e d mounted on and b o d y - f i x e d to the i n t e r c e p t o r docking face w i t h the o p t i c a l L O S c o l l i n e a r w i t h the r o l l a x i s . R e f e r - r i n g to F i g . 9, t h r e e docking f a c e m a r k e r s (such as l a m p s ) w e r e a s s u m e d to be mounted on the docking f a c e of the t a r g e t .

The m a r k e r s w e r e spaced 9 0 ° a p a r t so that a r e l a t i v e r o l l e r r o r b e t w e e n the i n t e r c e p t o r and the t a r g e t could be d e t e r - m i n e d f r o m the p i l o t ' s d i s p l a y .

In the f i x e d - b a s e s i m u l a t o r c o c k p i t , the p i l o t w a s p r e s e n t e d w i t h an o s c i l l o s c o p e d i s p l a y of the docking and r e a r f a c e s of the t a r g e t . In addition, l o g r a n g e and r a n g e r a t e m a r k e r s w e r e s u p e r i m p o s e d on the s a m e d i s p l a y surface d i r e c t l y b e l o w the p e r i s c o p e v i e w as shown in F i g . 9. The c i r c u l a r t a r g e t f a c e s w e r e e s s e n t i a l l y the s a m e s i z e . The t a r g e t docking f a c e was i d e n t i f i e d b y the r o l l a x i s m a r k e r s (not p r e s e n t on the r e a r f a c e ) . The d i s p l a y d i m e n s i o n s c o r r e s p o n d e d e x a c t l y to a t a r - get v i e w as seen through an a p e r t u r e on the i n t e r c e p t o r docking f a c e .

Attitude e r r o r s w e r e i n d i c a t e d in the d i s p l a y by the distance that the c e n t r o i d of the t w o t a r g e t c i r c l e s w a s d i s p l a c e d f r o m the c e n t e r of the s i m u l a t e d v i e w i n g s c r e e n . Guidance e r r o r s w e r e i n d i c a t e d by the r e l a t i v e d i s p l a c e m e n t of the f r o n t and r e a r c i r c l e s . T h i s d i s p l a c e m e n t w a s p r o p o r t i o n a l to the L O S

(16)

J . HEILFRON A N D F. H. K A U F M A N

angle in the c a s e of p e r f e c t attitude c o n t r o l ( i . e . , when the c e n t r o i d of the t a r g e t c o i n c i d e d w i t h the v i e w i n g p o r t c e n t e r ) .

F i v e p i l o t s ( r e f e r r e d to h e r e as p i l o t s A through E ) w e r e s e l e c t e d f o r s i m u l a t o r t r a i n i n g . S e l e c t i o n s w e r e m a d e on the b a s i s of n o n f a m i l i a r i t y with the o r b i t a l docking s y s t e m . H o w - e v e r , p i l o t s D and Ε w e r e s e l e c t e d b e c a u s e of t h e i r p r e v i o u s a i r c r a f t f l i g h t t r a i n i n g and e x p e r i e n c e . Each p i l o t made 12

s i m u l a t e d f l i g h t s after a t r a i n i n g p e r i o d of a p p r o x i m a t e l y 2 h r s . F r o m these 60 f l i g h t s , 52 w e r e used to p r o v i d e the individual p i l o t a v e r a g e s p r e s e n t e d in F i g . 10. E i g h t flights r e s u l t e d in data e x t r e m e s w h i c h w e r e not included in the a v e r a g e s . The o v e r a l l a v e r a g e i s indicated w i t h a dashed l i n e .

R e f e r r i n g to F i g s . 10-a and 10-b, the v a r i a t i o n of the individual a v e r a g e of the p i l o t s f r o m the o v e r a l l a v e r a g e is a p p r o x i m a t e l y 50% of the o v e r a l l a v e r a g e value f o r both L O S angle and L O S r a t e . Note that e x c l u d i n g p i l o t Ε data would l o w e r the o v e r a l l a v e r a g e v a l u e s s i g n i f i c a n t l y . The o v e r a l l a v e r a g e value of range r a t e ( 0 . 4 f t / s e c ) and the v a r i a t i o n of individual a v e r a g e s f r o m this value a r e s m a l l , a s shown in F i g . 1 0 - c . A l a r g e v a r i a t i o n b e t w e e n p i l o t s in l a t e r a l m i s s w a s r e c o r d e d ( F i g . 1 0 - d ) . It i s f e l t that these v a r i a t i o n s would be r e d u c e d w i t h i n c r e a s e d p i l o t t r a i n i n g .

A v e r a g e r o l l e r r o r s a r e shown in F i g . 1 0 - e . During the e a r l i e r f l i g h t s , s o m e of the p i l o t s c o n c e n t r a t e d on L O S c o r r e c - tions and n e g l e c t e d to c o r r e c t the r o l l e r r o r until a l m o s t the l a s t p o s s i b l e m o m e n t . A f t e r being i n s t r u c t e d to d e v o t e m o r e attention to r o l l angle e r r o r , the c o r r e c t i o n s w e r e made quite e a s i l y . A s shown in F i g . 10-f, four of the p i l o t s had s i m i l a r a v e r a g e f l i g h t t i m e s , w h i l e p i l o t B ' s a v e r a g e is s o m e w h a t l o w e r . P i l o t B!s data p e r h a p s g i v e an i n d i c a t i o n of the m i n i - m u m f l i g h t t i m e to be e x p e c t e d f o r the g i v e n set of i n i t i a l c o n d i t i o n s .

A s indicated by F i g . 10-g, the individual d e v i a t i o n s f r o m the o v e r a l l a v e r a g e of guidance fuel r e q u i r e d w a s s m a l l , indicating that a l l the p i l o t s e n c o u n t e r e d a p p r o x i m a t e l y the s a m e d e g r e e of d i f f i c u l t y in m a k i n g e f f i c i e n t guidance c o r r e c - t i o n s . The d e v i a t i o n s f r o m the o v e r a l l a v e r a g e of attitude c o n t r o l fuel in F i g . 10-h a p p e a r to be r e l a t i v e l y l a r g e . H o w - e v e r , if t y p i c a l v a l u e s of i n e r t i a s , m o m e n t a r m s , and s p e c i f i c i m p u l s e a r e a s s u m e d f o r the v e h i c l e , the individual a v e r a g e s of n o r m a l i z e d attitude c o n t r o l s y s t e m ( A C S ) fuel as w e l l as the o v e r a l l a v e r a g e can be shown to be s m a l l in t e r m s of w e i g h t .

The c o n c l u s i o n r e a c h e d that both the o v e r - a l l a v e r a g e t e r - m i n a l v a l u e s and the individual p e r c e n t d e v i a t i o n s f r o m the a v e r a g e v a l u e s could be l o w e r e d by a higher p i l o t t r a i n i n g l e v e l is j u s t i f i e d by the s i g n i f i c a n t i m p r o v e m e n t in the r e l a t i v e

(17)

TECHNOLOGY OF LUNAR EXPLORATION

s u c c e s s of the l a t e r s i m u l a t e d f l i g h t s . If the p i l o t s w e r e t r a i n e d f o r a l o n g e r p e r i o d , it i s r e a s o n a b l e to p r o j e c t that the L O S a n g l e , L O S r a t e , r e l a t i v e r o l l e r r o r , and l a t e r a l m i s s t e r m i n a l v a l u e s could be r e d u c e d by a f a c t o r of t w o .

S e v e r a l f l i g h t s w e r e m a d e w i t h no r a n g e and range r a t e i n f o r m a t i o n e x p l i c i t l y d i s p l a y e d to the p i l o t , i . e . , he m a n e u - v e r e d using the o p t i c a l d i s p l a y a l o n e . The f e w f l i g h t s made in this m a n n e r w e r e r e l a t i v e l y s u c c e s s f u l , c o m p a r e d to f l i g h t s m a d e w i t h r a d a r data. T h i s s u g g e s t s that, w i t h a s u f f i c i e n t l y high d e g r e e of p i l o t t r a i n i n g , the r a d a r - d e r i v e d i n f o r m a t i o n can be r e m o v e d without i m p a i r i n g the s u c c e s s of the m i s s i o n . One s u c c e s s f u l flight w a s m a d e w i t h the o p t i c a l d i s p l a y ,

e x c l u d i n g r a n g e and r a n g e r a t e i n f o r m a t i o n , but p r o v i d i n g a m e t e r e d L O S angle i n s t e a d . T i m e w a s not a v a i l a b l e to i n v e s - tigate a l l of the s i g n i f i c a n t a s p e c t s of m i n i m u m d i s p l a y r e q u i r e - m e n t s . The i n v e r s e r e l a t i o n b e t w e e n d i s p l a y r e q u i r e m e n t s and p i l o t t r a i n i n g l e v e l w a s c l e a r l y i n d i c a t e d although not s t a t i s - t i c a l l y d e t e r m i n e d .

D O C K I N G S T R U C T U R E A N D M E C H A N I S M S

B e c a u s e of u n c e r t a i n t i e s w h i c h o c c u r in the t e r m i n a l guidance, p r o p u l s i o n , and attitude c o n t r o l s y s t e m s f o r both manned and automatic c o n t r o l l e d d o c k i n g , a l l o w a n c e m u s t be m a d e in docking s t r u c t u r e and m e c h a n i s m d e s i g n s to a c c o m - m o d a t e the l a t e r a l docking m i s s , attitude m i s a l i g n m e n t be~

t w e e n the s p a c e c r a f t at d o c k i n g , and the n o m i n a l i m p a c t v e l o c i t y and its d i s p e r s i o n s . T y p i c a l d e s i g n g o a l s which e f f e c t a c c e p t a b l e c o m p r o m i s e s b e t w e e n docking a c c u r a c y i m p l i c a t i o n s and s t r u c t u r e s i z e and w e i g h t a r e

C l o s i n g r a t e 0 . 1 - 2 . 5 f t / s e c L a t e r a l m i s s (capture d i s t a n c e ) + 1.5 ft

Attitude m i s a l i g n m e n t (any a x i s ) ί 5 deg

C o m p a r i n g t h e s e d e s i g n c r i t e r i a w i t h the e x p e c t e d docking a c c u r a c i e s d i s c u s s e d e a r l i e r i n d i c a t e s that r e a s o n a b l e p r o v i - sion has b e e n m a d e f o r a b n o r m a l e v e n t s .

The i m p l i c a t i o n s of t h e s e i n i t i a l conditions a r e that the d e s i g n of the docking s t r u c t u r e and m e c h a n i s m s must p r o v i d e t h r e e m a j o r c a p a b i l i t i e s : a ) a capture and g e n e r a l a l i g n m e n t of the t w o s p a c e c r a f t ; b) a c o n t r o l l e d a b s o r p t i o n of the i m p a c t e n e r g y without d a m a g e ; c ) a latching of the d o c k e d s p a c e c r a f t to produce the r e q u i r e d s t r u c t u r a l i n t e g r i t y and fine a l i g n m e n t of the two v e h i c l e s .

Although p a r a l l e l o r s i d e - b y - s i d e docking techniques c e r t a i n l y can be e n g i n e e r e d , it i s b e l i e v e d that tandem d o c k - ing methods w i l l be the f i r s t used on e a r l y lunar m i s s i o n s .

(18)

J . HEILFRON AND F. H. KAUFMAN

T h e s e methods a r e at l e a s t as e a s i l y i m p l e m e n t e d as the p a r a l l e l d e s i g n a p p r o a c h e s , and docking i m p a c t loads a r e a b s o r b e d along the s p a c e c r a f t a x i s n o r m a l l y d e s i g n e d by l o a d s during the b o o s t p h a s e . F o r these r e a s o n s , the c o n f i g u - r a t i o n s shown a r e l i m i t e d to c o n c e p t s r e l a t e d to tandem d o c k - ing.

C o n s i d e r a t i o n s of connecting t o g e t h e r a t w o - s t a g e d i n j e c - tion r o c k e t in o r b i t f o r lunar m i s s i o n s as w e l l as p r o v i d i n g for p e r s o n n e l and p r o p e l l a n t t r a n s f e r l e a d s to the chosing of techniques that a l l o w c l o s e mating of the s p a c e c r a f t . T o a c c o m p l i s h capture and g e n e r a l a l i g n m e n t , t h e r e a r e at l e a s t t h r e e g e n e r a l c o n f i g u r a t i o n s ; matched c o n e s , unmatched

c o n e s , and s e l f - a l i g n i n g p r o b e s , which can a l l o w c l o s e m a t i n g . The m a t c h e d cone c o n f i g u r a t i o n , d i a g r a m m e d in F i g . 11-a, u t i l i z e s i d e n t i c a l " c o n i c a l " s u r f a c e s ; one r e c e s s e d , the other p r o t r u d i n g , to p r o v i d e capture and a l i g n i n g c a p a b i l i t y . The cone a n g l e s of both p o r t i o n s of the docking s t r u c t u r e a r e i d e n t i c a l . The c h o i c e of capture distance is p r i m a r i l y d e p e n d - ent upon the t e r m i n a l guidance s y s t e m a c c u r a c y including a judgment f a c t o r f o r s o m e a b n o r m a l c o n d i t i o n s . Capture d i s t a n c e s of 1.5 ft g e n e r a l l y a r e s u i t a b l e . The upper l i m i t on cone angle δ is a function of a c c e p t a b l e d e s i g n l o a d s and the r e l a t i v e m o t i o n f o l l o w i n g docking i m p a c t s . A r e a s o n a b l e upper l i m i t f o r δ is 3 0 ° . O v e r a l l v e h i c l e length as w e l l as docking s t r u c t u r e w e i g h t tend to a l l o w δ to be no l o w e r than 2 0 ° .

Matched c o n e s , when the v e h i c l e s have c o m p l e t e d docking, w i l l i n h e r e n t l y p r o v i d e the g e n e r a l a l i g n m e n t r e q u i r e d . H o w - e v e r , high s t r e s s l e v e l s can be e x p e c t e d to o c c u r along e i t h e r c o n i c a l surface at points A and Β shown in F i g . 11-a. Contact s t r e s s e s o c c u r f o r n o m i n a l o f f s e t conditions at point A and can o c c u r f o r n o m i n a l conditions of o f f s e t and angular m i s a l i g n - m e n t at point B . The angular m i s a l i g n m e n t conditions shown in F i g . 11-a a r e e x a g g e r a t e d f o r p i c t o r i a l p u r p o s e s . Simula- tions of m a t c h e d cone docking r e p o r t e d in R e f . 9 show that, e v e n f o r high c l o s i n g v e l o c i t i e s , f r i c t i o n and m e c h a n i s m d y n a m i c s can s t i l l p r e v e n t capture and a l i g n m e n t . This p r o b l e m is a g g r a v a t e d by l o w e r c l o s i n g v e l o c i t i e s . In f a c t , the m a t c h e d cone c o n f i g u r a t i o n r e q u i r e s a c a r e f u l c o n t r o l on both the l o w e r and upper l i m i t of c l o s i n g rate f o r successful d o c k i n g . Matched c o n e s n e v e r t h e l e s s can be made to w o r k .

The unmatched cone c o n f i g u r a t i o n shown in F i g . 11-b p r o v i d e s c o n s i d e r a b l e i m p r o v e m e n t in capture c a p a b i l i t y f o r a g i v e n r e c e s s e d cone depth, and the contact s t r e s s e s along the r e c e s s e d cone w a l l a r e no w o r s e than the m a t c h e d cone c o n f i g u r a t i o n . H o w e v e r , since the r e c e s s e d cone angle of about 3 0 ° i s l a r g e r than the p r o t r u d i n g cone angle of about 1 2 . 5 ° , contact s t r e s s p r o b l e m s due to i m p a c t s on the shoul-

(19)

TECHNOLOGY OF LUNAR EXPLORATION

d e r s of the r e c e s s e d cone ( s e e point B, F i g . 1 1 - a ) a r e virtually- e l i m i n a t e d . H o w e v e r , since the unmatched cone d o e s not have the a l i g n m e n t c a p a b i l i t y of the m a t c h e d c o n e , an a x i a l r o c k e t should be added to one ( o r both of the v e h i c l e s ) to a s s i s t final a l i g n m e n t .

The s e l f - a l i g n i n g p r o b e c o n f i g u r a t i o n u s e s the capture and g e n e r a l a l i g n i n g q u a l i t i e s of m a t c h e d c o n e s at i n i t i a l contact but a v o i d s the u n d e s i r a b l e contact s t r e s s e s and potential f r i c - tion p r o b l e m s b y capturing the t w o v e h i c l e s b e f o r e the s i g n i f i - cant docking l o a d s a r e a b s o r b e d . F i g . 12 shows the p r o b e , which i s capable of a b s o r b i n g i m p a c t l o a d s along the p r o b e a x i s , e n t e r i n g a s m a l l r e c e s s e d cone w h o s e capture c a p a b i l i t y can be m a d e equal to that of the other c o n f i g u r a t i o n s but f o r much s m a l l e r cone d i m e n s i o n s .

The s e l f - a l i g n i n g probe i s doubly a r t i c u l a t e d and as such v e r y l i t t l e f o r c e i s e x e r t e d b e t w e e n the two v e h i c l e s until the probe is seated and latched in the r e c e s s e d c o n e . F o r this r e a s o n , successful docking can o c c u r w i t h the s e l f - a l i g n i n g p r o b e f o r e v e n v e r y l o w c l o s i n g r a t e s . T h i s is p a r t i c u l a r l y valuable f o r m a n - c o n t r o l l e d docking since m a n i n h e r e n t l y tends to c l o s e s l o w l y as d i s c u s s e d in R e f . 8.

The m o m e n t s applied to e i t h e r v e h i c l e can be taken out by c o n t r o l l e d - c o n t a c t b u m p e r s on the outer s h e l l s t r u c t u r e of the v e h i c l e s . The s e l f - a l i g n i n g p r o b e c o n f i g u r a t i o n i s i d e a l l y suited to p r o p e l l a n t t r a n s f e r . H o w e v e r , v a r i a t i o n s on the b a s i c p r i n c i p l e can be a p p l i e d f o r connecting s t a g e s f o r m u l - t i p l e stage o p e r a t i o n or p e r s o n n e l t r a n s f e r . E n e r g y a b s o r p t i o n for the s e l f - a l i g n i n g p r o b e can be i m p l e m e n t e d b y a r a t c h e t e d

spring along the b o o m a x i s , b y b u m p e r s on the outer s h e l l s h o u l d e r s , and by the attitude c o n t r o l s y s t e m of the v e h i c l e s . The p r o b e can be d r a w n up f o r final stage latching w h e r e d e s i r e d .

A t y p i c a l s t r u c t u r a l d e s i g n f o r the e n e r g y a b s o r p t i o n and latching the unmatched (and m a t c h e d ) cone c o n f i g u r a t i o n is shown in F i g . 11. Supporting the r e c e s s e d cone by s p r i n g - d a m p e r s and w i t h latching d e v i c e s on the p e r i p h e r y of the v e h i c l e g i v e s a c o n f i g u r a t i o n w h i c h i s at l e a s t as c o m p l e x as the s e l f - a l i g n i n g p r o b e if the contact s t r e s s e s a r e e q u i v a l e n t l y l i m i t e d .

In a l l c a s e s c o a r s e r o l l a l i g n m e n t is a c c o m p l i s h e d by attitude c o n t r o l and guidance s e n s o r s . Fine r o l l a l i g n m e n t w h e r e n e c e s s a r y g e n e r a l l y can be e f f i c i e n t l y i m p l e m e n t e d by aligning s m a l l d e v i c e s r a t h e r than e n t i r e s t a g e s , although the s e l f - a l i g n i n g p r o b e can be r e a d i l y adapted to stage r o l l a l i g n - m e n t . A l l of these techniques r e t a i n a c a p a b i l i t y f o r m u l t i p l e docking and hence a f l e x i b i l i t y in o p e r a t i o n s planning.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

 There is an association between lunar cycles and objective sleep parameters (sleep efficiency, sleep latency, superficial sleep, deep sleep, night cycles of waking, REM sleep,

The first one is the direct mission, which is characterized by a launch from Earth's surface, a transfer to the vicinity of the moon, direct descent to the lunar surface, and direct

The three major schemes for the lunar mission were the direct approach involving no rendezvous, rendezvous of two parts of the mission payload in Earth orbit, and use of a

but for lunar or deeper space missions, even this is infeasible. For example, suppose that the primary power failed at the moon with a 66-hr time to return to earth. If the

4 Parameter b° for vertical polarization... 10 External noise

hemisphere. The shaded areas in Fig. 8 define the permissible variation in the position of the ascending node of the lunar orbit so as to achieve a satisfactory return flight over

This study has examined the propulsion requirements for aborting a lunar landing mission at any time from Earth escape to Earth return. Although the methods of calculation employed

The Chinese inserted after 19 lunar years another 7 lunar months (around 600 BC) [2]. At the end of the first millennium AD, Chinese mathematicians and astronomers devoted great