• Nem Talált Eredményt

lunar lunar lunar lunar antenna antenna lunar

N/A
N/A
Protected

Academic year: 2022

Ossza meg "lunar lunar lunar lunar antenna antenna lunar"

Copied!
27
0
0

Teljes szövegt

(1)

L U N A R P O I N T - T O - P O I N T C O M M U N I C A T I O N L . Eo V o g l e r1

N a t i o n a l B u r e a u of S t a n d a r d s , B o u l d e r , C o l o0 A B S T R A C T

A p r e l i m i n a r y study of p o i n t - t o - p o i n t c o m m u n i c a t i o n s y s t e m s on the s u r f a c e of the m o o n is p r e s e n t e d in which ground w a v e p r o p a g a t i o n is a s s u m e d o v e r a lunar m o d e l c o n - sisting of a s m o o t h s p h e r e of h o m o g e n e o u s m a t e r i a l with no surrounding a t m o s p h e r e . The c o m m u n i c a t i o n s y s t e m is d e s c r i b e d in t e r m s of the p o w e r r e q u i r e d at the input t e r m - inals of the t r a n s m i t t i n g antenna in o r d e r to obtain a g i v e n s i g n a l - t o - n o i s e r a t i o at the r e c e i v e r , , Antenna c o n s i d e r a t i o n s and n o i s e e f f e c t s a r e d i s c u s s e d , and an e x a m p l e is g i v e n of a s y s t e m c o m p o s e d of a B e v e r a g e w a v e antenna t r a n s m i t t i n g t o w a r d s a v e r t i c a l e l e c t r i c dipole«,

I N T R O D U C T I O N

The p r o b l e m of d e t e r m i n i n g the r e q u i r e m e n t s n e c e s s a r y for adequate p o i n t - t o - p o i n t c o m m u n i c a t i o n s y s t e m s on the s u r f a c e of the m o o n i s , at the p r e s e n t t i m e , c o m p l i c a t e d by a l a c k of i n f o r m a t i o n c o n c e r n i n g lunar c o m p o s i t i o n and e n v i - ronment,, T h e p r e s e n c e or a b s e n c e of an i o n o s p h e r e , the v a l u e s to a s s u m e f o r c o n d u c t i v i t y , p e r m e a b i l i t y , and p e r m i t - t i v i t y of the lunar s u r f a c e m a t e r i a l , and the p o s s i b i l i t y of l a y e r i n g b e l o w the s u r f a c e a r e f a c t o r s affecting any c o n s i d e r - ation of c o m m u n i c a t i o n r e q u i r e m e n t s „ The e f f e c t of e x t r a - lunar n o i s e s o u r c e s on s i g n a l r e c e p t i o n can only be e s t i m a t e d using i n f o r m a t i o n g a i n e d f r o m E a r t h - b a s e d m e a s u r e m e n t s , Until such t i m e as actual e x p e r i m e n t s on the m o o n can be undertaken to p r o v i d e the n e e d e d i n f o r m a t i o n , lunar c o m m u -

Manuscript r e c e i v e d September 1 7 , 1962. The research reported in t h i s study has been sponsored by the Jet Propulsion Laboratory.

^ M a t h e m a t i c i a n , E l e c t r o m a g n e t i c R e s e a r c h G r o u p , R a d i o P r o p a g a t i o n E n g i n e e r i n g D i v i s i o n , C e n t r a l R a d i o P r o p a g a t i o n L a b o r a t o r y .

(2)

n i c a t i o n studies can g i v e only a g e n e r a l i n d i c a t i o n of what m a y be e x p e c t e d in the w a y of p o w e r r e q u i r e m e n t s and a n t e n - na t y p e sο

The lunar m o d e l a s s u m e d f o r the p u r p o s e s of the p r e s e n t paper is a s m o o t h s p h e r e of radius rQ( = 1738 k m ) c o n s i s t - ing of a h o m o g e n e o u s m a t e r i a l c h a r a c t e r i z e d by a r e l a t i v e d i e l e c t r i c constant er, c o n d u c t i v i t y cr i n m h o s / m , and m a g n e t i c p e r m e a b i l i t y equal to that of f r e e s p a c e . The effects of any a t m o s p h e r e or i o n o s p h e r e surrounding the s p h e r e a r e n e g l e c t e d , which is p r o b a b l y j u s t i f i a b l e during the lunar night, but not n e c e s s a r i l y the d a y t i m e . The p r i - m a r y m e c h a n i s m of p r o p a g a t i o n is c o n s i d e r e d t o be the ground w a v e , the solution of which is w e l l known and m a y be e x p r e s s e d b y the Van der P o l - B r e m m e r r e s i d u e s e r i e s f o r d i f f r a c t e d w a v e s around a s m o o t h h o m o g e n e o u s s p h e r e ( 3 ) . ^ B e c a u s e of the d i f f i c u l t i e s inherent in the c o n s t r u c t i o n of any c o m p l e x antenna s t r u c t u r e s on the m o o n , l o w antenna heights a r e a s s u m e d , and, c o n s e q u e n t l y , height gain e f f e c t s a r e c o n s i d e r e d n e g l i g i b l e .

S Y S T E M LOSS

The concept of s y s t e m l o s s ( 1 6 , 17, 25) w i l l be used to d e s c r i b e the e f f e c t s of the v a r i o u s s y s t e m p a r a m e t e r s . S y s t e m l o s s Ls i s defined as the r a t i o , e x p r e s s e d in d e c i - b e l s , of the p o w e r pt d e l i v e r e d to the input t e r m i n a l s of the t r a n s m i t t i n g antenna to the a v a i l a b l e p o w e r pv at the r e c e i v - m g antenna t e r m i n a l s :J

The s y s t e m l o s s m a y be d i v i d e d further into a f r e e space or i n v e r s e distance component that would be the l o s s e x p e c t e d b e t w e e n t w o i s o t r o p i c antennas situated in f r e e s p a c e , an attenuation At r e l a t i v e to f r e e space w h i c h accounts for the effects on p r o p a g a t i o n of the i n t e r v e n i n g t e r r a i n , and two t r a n s m i t t i n g and r e c e i v i n g antenna c o m p o n e n t s , L^. - Gj- and

N u m b e r s in p a r e n t h e s e s indicate R e f e r e n c e s at end of p a p e r .

^In this paper capital l e t t e r s a r e used to d e s i g n a t e the d e c i b e l e q u i v a l e n t of the c o r r e s p o n d i n g l o w e r c a s e l e t t e r s ,

Ls = 10 l o g ( pt/ pr) = Pt - Pr [ 1 ]

e . g. , Ρ

t 51 0 * t

(3)

Lr- Gr> w h i c h d e s c r i b e the e f f e c t s of the p a r t i c u l a r antennas used. T h u s , E q . 1 m a y be w r i t t e n as

Pt = Ls + Pr = 1 0 1 o g ( 41r do/ \ )2 + At + ( Lt - + ( Lr - Gr> + Pr [ 2 ] w h e r e dQ is the a r c distance s e p a r a t i n g the t w o antennas ( i n the f r e e s p a c e t e r m i t is a s s u m e d that a r c distance a p p r o x i - m a t e s the c h o r d d i s t a n c e ) , and λ is the f r e e space w a v e - length e x p r e s s e d in the s a m e units as dQ. r is the

t r a n s m i t t i n g or r e c e i v i n g antenna gain r e l a t i v e to an i s o t r o p i c antenna, and r i s an antenna l o s s a r i s i n g f r o m its p r o x - i m i t y to the ground: Lt j r = 10 l o g r / r f , w h e r e r denotes the t e r m i n a l r e s i s t a n c e and r£ the r a d i a t i o n r e s i s t a n c e in f r e e s p a c e . N o t i c e that, in o r d e r to c a l c u l a t e the a v a i l a b l e p o w e r f r o m the output t e r m i n a l of the t r a n s m i t t e r , any t r a n s m i t t e r t r a n s m i s s i o n l i n e and i m p e d a n c e matching l o s s should be added to the r i g h t side of E q . 2. H o w e v e r , with c a r e f u l d e s i g n the e f f e c t of these l o s s e s m a y be m a d e n e g l i g i b l e .

Eq. 2 p r o v i d e s a f o r m u l a to find the t r a n s m i t t e r p o w e r n e c e s s a r y to obtain a g i v e n a v a i l a b l e p o w e r at the r e c e i v i n g antenna t e r m i n a l s . H o w e v e r , the p o w e r r e c e i v e d c o n s i s t s not only of the d e s i r e d s i g n a l but a l s o of r a d i o n o i s e s a r i s i n g f r o m both within and without the r e c e i v i n g s y s t e m . If r denotes the d e s i r e d m i n i m u m s i g n a l - t o - n o i s e p o w e r r a t i o that w i l l p r o v i d e a g i v e n g r a d e of r e c e p t i o n as m e a s u r e d at the r e c e i v e r p r e d e t e c t i o n output, and an e f f e c t i v e n o i s e f i g u r e f is defined as the r a t i o of the s i g n a l t o a r e f e r e n c e Johnson- n o i s e p o w e r r a t i o that is a v a i l a b l e f r o m a l o s s - f r e e r e c e i v i n g antenna to the r e c e i v e r p r e d e t e c t i o n output s i g n a l - t o - n o i s e r a t i o , then the r e c e i v e d p o w e r m a y be e x p r e s s e d ( 1 7 ) as

ρ = r f k t b / i [ 3 ]

*r Β ο c

w h e r e k g tQb is the r e f e r e n c e Johnson-noise p o w e r , k g is B o l t z m a n n ' s constant (= 1.38044 Χ I O "2 3) , tQ is a r e f e r e n c e t e m p e r a t u r e in d e g r e e s K e l v i n , b is the e f f e c t i v e n o i s e bandwidth in c y c l e s p e r s e c o n d , and iQ = r / rr, with rr d e - noting the r a d i a t i o n r e s i s t a n c e of an e q u i v a l e n t l o s s l e s s antenna. The d e f i n i t i o n of f in t e r m s of n o i s e f i g u r e s of the component p a r t s of the r e c e i v i n g n e t w o r k can be shown t o be ( 1 )

f = f - 1 + f [ 4 ] e ctr

(4)

where fe is the "noise f i g u r e " of the external noise and fc t r is the noise figure of the antenna c i r c u i t , t r a n s m i s s i o n line and impedance matching c i r c u i t , and the r e c e i v e r .

Using the foregoing definitions and assuming a poorly- conducting ground such that rr ~ r^, the t r a n s m i t t e r power may now be e x p r e s s e d as

Ρ = 20 1οβ(4πά / λ ) + A - (G^ + G ) + L t ο t t r t

+ R + F + B + 1 0 log(k_ t ) [ 5 ] Β ο

The following sections w i l l discuss the v a r i o u s components of E qc 5o

N O R T O N S U R F A C E W A V E A T T E N U A T I O N A

N u m e r i c a l p r o c e d u r e s for the calculation of e l e c t r o m a g - netic fields diffracted around a smooth sphere have been developed by various authors ( 6 , 15, 3 )0 The ground wave may be e x p r e s s e d as a s e r i e s of residues that, if the func- tions of antenna height are equal to unity, depend on the radius of the sphere rQ, the a r c distance dQ separating the antennas, the f r e e space wavelength λ, the r e l a t i v e d i e l e c - t r i c constant er and conductivity <r of the ground, and the p o l a r i z a t i o n of the w a v e , T o e m p h a s i z e the fact that no height gain effects a r e included in the analysis presented in this paper, the t e r m " N o r t o n surface w a v e " (15) is used to denote the ground wave with antenna heights set equal to z e r o , In p a r a m e t r i c f o r m the Norton surface wave attenuation r e l a t i v e to an i n v e r s e distance field A ^ is conveniently plotted as a function of three p a r a m e t e r s : K , be , and x ^0

For horizontal p o l a r i z a t i o n ( K = K ^ ) and v e r t i c a l p o l a r i - zation ( K = Κ )

ι

Κ = ( 2 u r / λ )3

|τ I

Ι , κ =

h

L

ο 1 h' I ν ' < 2 π Γο/ λ ) *

| Τ

ν

| 1

_ 1

[ 6 ]

where [ Τ ^ | and JTvj a r e plotted as functions of er and s = 60 λ σ ( m h o s / m ) in F i g s , 1 and 2« Values of € r > 10 a r e not shown because present information indicates that the r e l a t i v e d i e l e c t r i c constant of the moon is considerably l e s s than 10o H o w e v e r , JTjJ and J TV| a r e e a s i l y obtained for other € ' s , since

r

(5)

] Th|

2 2"

(e - 1 ) + s

r M

2 2 / 2 2 ' (€ - 1 ) + S / ( e + S )

r r 7 ] L i m i t i n g f o r m s of t h e s e functions f o r s m a l l s b e y o n d the r a n g e of the graphs a r e

| T I ^ N/ T ~ - X | T U ΝΓ Γ ~ Τ /6 , s - Ο [ 7 a ]

1 h1 r 1 ν ' r r

and f o r l a r g e s

[ TJ - N/ T , | τ ] ~ 1/\ΓΤ, s — oo [ 7 b ]

S i m i l a r plots of b ° and b ° (the s u b s c r i p t s h and v a g a i n r e f e r r i n g to h o r i z o n t a l and v e r t i c a l p o l a r i z a t i o n , h v

r e s p e c t i v e l y ) as functions of €r and s a r e shown in F i g se 3 and 4. E x p r e s s i o n s f o r b ° and b ° a r e

h ν

b ° = 1 8 0 ° - t a n "h X[ ( € - l ) / s ] , b ° = 2 t a n "r v r1 [ € / s j - t a n "1^ - l ) / s ]

J L > r / j

[ 8 ] F i g s . 5 - 8 v s the distance p a r a m e t e r χ , w h e r e

x' = f3 d ( k m )

The N o r t o n s u r f a c e w a v e attenuation At i s g r a p h e d in

[ 9 ] o m c ο

with fm c denoting the f r e q u e n c y in m e g a c y c l e s p e r s e c o n d and d0( k m ) the distance m e a s u r e d in k i l o m e t e r s . It should be n o t i c e d that, in g e n e r a l , does not v a r y much with b , and l i n e a r i n t e r p o l a t i o n m a y be used f o r v a l u e s of b ° other than those shown. A l s o it can be s e e n that, f o r Κ > 10, A ^ a p p r o a c h e s a l i m i t i n g function that is p l o t t e d as the top c u r v e on e a c h g r a p h .

E q s . 2 and 5 a r e s t r i c t l y a p p l i c a b l e only f o r the c a s e of antennas s e p a r a t e d a sufficient d i s t a n c e a p a r t ( dQ > > \ ) such that the magnitude of t h e i r mutual i m p e d a n c e is s m a l l c o m p a r e d to the s e l f r e s i s t a n c e s of the antennas ( 1 7 ) .

B e c a u s e of this r e s t r i c t i o n , A ^ is not shown in the f i g u r e s for v a l u e s of X Q < 1. A s dQ ( o r X Q ) g o e s to z e r o , At a p p r o a c h e s 20 l o g = - 6 . 0 2 , w h i c h w o u l d c o r r e s p o n d to the s u r f a c e w a v e f i e l d intensity e x p e c t e d b e t w e e n s h o r t v e r t i - cal e l e c t r i c d i p o l e s situated n e a r e a c h other on a p e r f e c t l y conducting p l a n e .

(6)

A N T E N N A E F F E C T S A N D T H E W A V E A N T E N N A

The t e r m s L. and Gt _ (the subscript t, r r e f e r r i n g to either transmitting or r e c e i v i n g antenna) in E q . 2 d e s c r i b e the effects of the particular transmitting and r e c e i v i n g anten- nas used in the communication s y s t e m under considération»

Lj^ r is defined as the r a t i o e x p r e s s e d in decibels of the t e r m i n a l resistance of the antenna to its f r e e space radiation r e s i s t a n c e . Thus, as the height of the antenna above the surface is i n c r e a s e d , the r a t i o of the r e s i s t a n c e s approaches unity, and or Lr e f f e c t i v e l y b e c o m e z e r o . F o r heights near the surface, the r e s i s t a n c e is a function of the e l e c t r o - magnetic ground constants, €r and r j -, and for p o o r l y con- ducting grounds r may b e c o m e v e r y l a r g e ( 2 1 ) , Gt r denotes the free space gain of an optimally oriented l o s s l e s s antenna above an i s o t r o p i c antenna; e. g„ , G^. = Gr = 101og(3/2)

= lo76 for e l e c t r i c current elements or e l e m e n t a r y d i p o l e s , and Gf = G = 2 . 1 5 for half-wave antennas.

L r

Although the separation of antenna effects into a free

space gain and a ground p r o x i m i t y loss is somewhat arbitrary, e s p e c i a l l y in the case of surface wave propagation, it is possible to reduce the effect of the ground and at least

approach a f r e e space condition for low antennas through the use of an appropriate ground s c r e e n . Discussions of antenna c h a r a c t e r i s t i c s and their modifications by ground s c r e e n s w i l l be found in R e f s . 18, 23, and 24. The r e s t of this s e c - tion w i l l be devoted to a discussion of the B e v e r a g e wave antenna ( 2 ) and d i p o l e - t y p e antennas.

The wave antenna in its s i m p l e s t f o r m consists of a long horizontal w i r e situated a short height above the ground and terminated at one end through its c h a r a c t e r i s t i c impedance.

It is a unidirectional antenna with the m a x i m u m gain in the direction of the antenna axis and toward the terminated end.

Wait (22) has shown that the v e r t i c a l e l e c t r i c field component of a wave antenna is proportional to a c o m p l e x factor Tv, t e r m e d the "wave t i l t " and defined by

Τ = ν ( e r- l ) - is

1

2 / ( « r - i s ) [ 1 0 ]

and a function S1* that depends on w a v e l e n g t h , e l e c t r o m a g - netic ground constants, antenna length and height, and an angle φ m e a s u r i n g the d i r e c t i o n in which the antenna is

(7)

pointing. S!, obtained by integrating the contributions of all the elements along the antenna, is g i v e n by

1 - e x p[ - ( r- i ß cos φ) I ] r

( Γ - iß cos φ) a 1 J

w h e r e β = 2 π/ λ , S. is the antenna l e n g t h , and Γ i s the p r o p - agation constant of the w i r e w h i c h f o r l a r g e antenna heights a p p r o a c h e s the p r o p a g a t i o n constant of plane w a v e s in f r e e s p a c e , iß. In t e r m s of the w a v e antenna p o w e r gain (13) r e f e r r e d to an i s o t r o p i c antenna (p / p . ) , this b e c o m e s

wa is ο

( ρ / p . ) = ( β 4 ο ο 3 ψ )2 J S ' L 2 IT Ι 2 ( 1 2 0 R / | Z IZ) [ I Z ]

wa I S O r T ' ι ι ' ν ο 1 o1 J

w h e r e ZQ = R Q + i XQ is the c h a r a c t e r i s t i c i m p e d a n c e of the w a v e antenna. T h e t h e o r e t i c a l d e t e r m i n a t i o n of Lj. - Gt or

Lr - Gr f o r a w a v e antenna in t e r m s of its t e r m i n a l r e s i s t - ance is quite d i f f i c u l t . H o w e v e r , s i n c e these quantities a r e e s s e n t i a l l y e q u i v a l e n t to p o w e r r a t i o s m e a s u r i n g the e f f e c - t i v e n e s s of the antenna, an e s t i m a t e of t h e i r magnitude m a y be obtained b y setting

L - G„ ^ - 10 l o g ( p / p . ) [ 1 3 ]

t, r t, r w a i s o L J

The f a c t o r | TV| in E q . 12 is shown in F i g . 2 , and JS'| i s g r a p h e d in F i g . 9 as a function of the t w o p a r a m e t e r s (ai) and (β I) ( m - c o s φ ) , with the p r o p a g a t i o n constant Γ defined as

Γ = a + i ß m [ 14 ]

w h e r e a and m a r e r e a l . Thus, when the antenna height h is sufficiently l a r g e , a = 0 and m = 1. A t l o w e r heights an approximate e x p r e s s i o n for the values of a and m has been given by C a r s o n ( 7 ) :

a/ß ~ m - 1 ~ 23 / Z( ß h ) J € 2+ s 2 i n ( 4 h / dA) J [ 1 5 ]

w h e r e do is the d i a m e t e r of the antenna w i r e . F o r an antenna actually lying on the ground, Γ m a y be e x p r e s s e d as ( 9 )

R = « + i ß m = ß j m2- j ( *r+ l ) + ΐ | - J ( €R + l )2+ s2+ (€ r + l ) ^ [ 1 6 ]

(8)

It should be n o t i c e d f r o m E q . 16 that the p r o p a g a t i o n constant of a w a v e antenna l y i n g on the ground m a y approach its f r e e space value if the r e l a t i v e d i e l e c t r i c constant is v e r y near unity and the conductivity is e x t r e m e l y s m a l l . T h e s e c o n d i - tions appear to hold f o r lunar s u r f a c e m a t e r i a l .

The e f f e c t of finite ground conductivity is quite pronounced on d i p o l e - t y p e antennas of s m a l l heights at the l o w e r f r e - q u e n c i e s . S o m m e r f e l d and R e n n e r ( 2 0 ) have i n v e s t i g a t e d ground p r o x i m i t y e f f e c t s f o r the c a s e of h o r i z o n t a l and v e r t i - cal e l e c t r i c d i p o l e s , and, using t h e i r e x p r e s s i o n f o r the antenna t e r m i n a l r e s i s t a n c e r , the quantity L^. r= 10 l o g ( r/ r ^ ) has b e e n c a l c u l a t e d and plotted v s s in F i g s . 1 1 - 1 4 for a v e r t i c a l e l e c t r i c d i p o l e . The c u r v e s show Lf v f o r v a r i o u s values of €r and the height p a r a m e t e r a = 4ττη/λ, w h e r e h is the height in m e t e r s of the dipole above the ground; r , e x p r e s s e d in i n t e g r a l f o r m in the S o m m e r f e l d and R e n n e r p a p e r , was n u m e r i c a l l y e v a l u a t e d using an e l e c t r o n i c c o m - p u t e r .

E F F E C T I V E N O I S E F I G U R E

The e f f e c t i v e n o i s e f i g u r e f ( 1 ) d e s c r i b e s the n o i s e of the total r e c e i v i n g s y s t e m in t e r m s of the n o i s e f i g u r e s of its component p a r t s :

w h e r e ( 12)

and

f - 1 + f [ 1 7 ]

e ctr L J

ctr c c t c t r

£c= l + ( !c- l) ( tc/ to) . £t= 1 + ( it- D( tt/ to) [ 1 8 b ]

4

ic and it a r e the l o s s f a c t o r s ( i . e . , the r a t i o of the a v a i l - able input to output p o w e r s of the c o m p o n e n t ) of the antenna c i r c u i t and the t r a n s m i s s i o n line plus i m p e d a n c e matching c i r c u i t , r e s p e c t i v e l y , with tQ and t^. being t h e i r c o r r e - sponding absolute t e m p e r a t u r e s ; fr d e s i g n a t e s the r e c e i v e r n o i s e f i g u r e , and t is a r e f e r e n c e t e m p e r a t u r e . G e n e r a l l y

4

N o t i c e that the s y m b o l used in this s e c t i o n is not the s a m e as the t r a n s m i t t i n g antenna l o s s JL^ d i s c u s s e d in the s e c t i o n on t r a n s m i s s i o n l o s s .

(9)

speaking, the f a c t o r s fe and fc w i l l p r e d o m i n a t e in c a l c u - lating v a l u e s of f, e s p e c i a l l y at the l o w e r f r e q u e n c i e s ( 1 0 ) ; at high f r e q u e n c i e s f depends m o r e on ft and fr, w h i c h a r e b e s t obtained by d i r e c t m e a s u r e m e n t . With c a r e in the i m p e d a n c e matching c i r c u i t , one m a y w r i t e E q . 17 as

f = f + ( i - l ) ( f - 1 + t It ) + (f - 1 ) , 1 = 1 [ 19 ]

e c r c o r t

The e f f e c t i v e n o i s e f i g u r e now depends on the l o s s a s s o c i a t e d with the antenna c i r c u i t ic, the absolute t e m p e r a t u r e of the antenna tc, the r e c e i v e r n o i s e f i g u r e fr, and the m e a s u r e of the e x t e r n a l n o i s e f .

e

A t the p r e s e n t t i m e , of c o u r s e , and until actual m e a s u r e - ments can be undertaken, the amount of e x t e r n a l n o i s e r e c e i v e d b y an antenna l o c a t e d on the m o o n can be only r o u g h l y e s t i m a t e d . It is l i k e l y that the p r e d o m i n a n t s o u r c e w i l l be g a l a c t i c ; h o w e v e r , c o n s i d e r a t i o n a l s o should be g i v e n to s o l a r n o i s e and n o i s e a r i s i n g f r o m the n e a r b y E a r t h . A n e s t i m a t e of g a l a c t i c n o i s e can be obtained f r o m r a d i o n o i s e maps p r e p a r e d by M e n z e l of the H a r v a r d C o l l e g e O b s e r v a t o r y ( 1 4 ) . T h e s e maps a l s o g i v e n o i s e i n t e n s i t i e s of d i s c r e t e g a l a c t i c s o u r c e s f o r v a r i o u s f r e q u e n c i e s . Using the f r e - quency v a r i a t i o n i n d i c a t e d in the text a c c o m p a n y i n g these m a p s , Fe = 10 l o g fe ( c o n s i d e r i n g g a l a c t i c n o i s e o n l y ) i s plotted v s f r e q u e n c y in F i g . 10 f o r a r e f e r e n c e t e m p e r a t u r e tQ = 288.39° K . Until data f r o m n o i s e m e a s u r e m e n t s taken a b o v e E a r t h ' s i o n o s p h e r e a r e a v a i l a b l e , it can be a s s u m e d only that the f r e q u e n c y v a r i a t i o n is as i n d i c a t e d in the f i g u r e for f r e q u e n c i e s l e s s than the p l a s m a f r e q u e n c y of about 20 M c / s e c ; h o w e v e r , it is p h y s i c a l l y apparent that the e x t e r - nal n o i s e f i g u r e c u r v e w i l l at l e a s t l e v e l off at s o m e l o w e r f r e q u e n c y . T h e e m p i r i c a l e x p r e s s i o n used to plot the g a l a c - tic n o i s e c u r v e is

f = 1.585 X 1 05 f "2"3, f < 200 e m c m c

f = 6.467 X 1 06 f "3 , f > 200 [ 2 0 ] e m c m c

In the c a s e of s o l a r n o i s e and n o i s e s f r o m t e r r e s t r i a l s o u r c e s , it is p r o b a b l e that n o t i c e a b l e e f f e c t s g e n e r a l l y w i l l occur only at the l o w e r f r e q u e n c i e s , e x c e p t during p e r i o d s of e x t r e m e s o l a r a c t i v i t y when c o n s i d e r a b l e n o i s e at a l l f r e q u e n c i e s m a y be e x p e c t e d ( 4 ) . A l s o , of c o u r s e , s o m e r a d i o n o i s e w i l l be

(10)

g e n e r a t e d by the s u r f a c e of the m o o n i t s e l f . N o attempt is made in the p r e s e n t paper to i n v e s t i g a t e these a s p e c t s of the p r o b l e m .

The antenna c i r c u i t n o i s e f i g u r e fc > depending as it does on the antenna l o s s and absolute t e m p e r a t u r e of the antenna, w i l l v a r y a c c o r d i n g to the type of antenna used, the e l e m e n t s of the c i r c u i t , and whether the antenna is in d i r e c t sunlight or not. Antenna l o s s is b e s t obtained by d i r e c t m e a s u r e m e n t ; h o w e v e r , if m e a s u r e m e n t s a r e i m p r a c t i c a l , iQ m a y be

a p p r o x i m a t e d by the " g r o u n d - p r o x i m i t y " l o s s ir d i s c u s s e d in the s e c t i o n on antenna e f f e c t s .

C A L C U L A T I O N O F R E Q U I R E D P O W E R

A t t e m p t s have b e e n m a d e r e c e n t l y to deduce the e l e c t r o - m a g n e t i c p r o p e r t i e s of the m o o n1 s s u r f a c e m a t e r i a l through the use of r a d a r data (19)« Although d i f f e r e n c e s e x i s t c o n - c e r n i n g the e x a c t i n t e r p r e t a t i o n of the data (5, 11), t h e r e is g e n e r a l a g r e e m e n t that the r e l a t i v e p e r m i t t i v i t y is not far a b o v e unity and that the conductivity is quite l o w . In any c a s e the graphs d i s c u s s e d in the p r e c e d i n g s e c t i o n s a r e a p p l i c a b l e to a w i d e r a n g e of v a l u e s of € r and cr .

Senior and S i e g e l ( 1 9 ) e s t i m a t e the r e l a t i v e p e r m i t t i v i t y and c o n d u c t i v i t y of lunar s u r f a c e m a t e r i a l to be € = 1.1

—4 /

and ο- = 3,4 X 10" m h o s / m . M a t e r i a l s constituting E a r t h ' s c r u s t have l a r g e r v a l u e s , although s o m e substances such as e x t r e m e l y d r y , c o a r s e q u a r t z i t i c sand a r e s o m e w h a t this o r d e r of m a g n i t u d e . F o r the purpose of a r r i v i n g at s o m e e s t i m a t e of lunar p r o p a g a t i o n c o n d i t i o n s , it w i l l be a s s u m e d that €r r a n g e s f r o m 1.1 to 2.0 and σ l i e s b e t w e e n 10"^

and 10 m h o s / m .

If one m e a s u r e s the a r c distance d in k i l o m e t e r s and ο

c h o o s e s a r e f e r e n c e t e m p e r a t u r e tQ = 288.39° Κ (as in the s e c t i o n on e f f e c t i v e n o i s e f i g u r e ) , the r e q u i r e d t r a n s m i t t e r p o w e r g i v e n by E q . 5 m a y be r e w r i t t e n as

w h e r e L is c a l l e d the b a s i c t r a n s m i s s i o n l o s s and is g i v e n [ 2 1 ]

by

U = 32.45 + 20 l o g d ( k m ) + 20 l o g f + A

b ° ο m c ' ο x ' 6 m c t [ 2 2 ]

(11)

F i g . 15 shows c u r v e s of f o r v e r t i c a l l y p o l a r i z e d w a v e s as a function of f r e q u e n c y and f o r the d i s t a n c e s i n d i c a t e d . V a l u e s of A^. w e r e obtained f r o m F i g s . 5 - 8 b y l i n e a r i n t e r - polation in both the Κγ and b ° d i r e c t i o n s , K v b e i n g g i v e n by F i g . 2 and E q . 6, and b ^ being r e a d f r o m F i g . 4. N o t i c e that the b a s i c t r a n s m i s s i o n l o s s v a r i e s i n v e r s e l y with c o n - ductivity at the l o w e r f r e q u e n c i e s , w h e r e a s at high f r e q u e n - c i e s , the e f f e c t of v a r i a t i o n with <r b e c o m e s n e g l i g i b l e .

If one now a s s u m e s a c o m m u n i c a t i o n s y s t e m c o n s i s t i n g of, for e x a m p l e , a h o r i z o n t a l t r a v e l i n g w a v e antenna of length i = λ / 4 l y i n g on the m o o n ' s s u r f a c e and t r a n s m i t t i n g t o w a r d s a s h o r t v e r t i c a l e l e c t r i c d i p o l e at a height h = λ / 1 6 p l a c e d s o m e distance away and in an o p t i m u m d i r e c t i o n f r o m the t r a n s m i t t e r (φ ~ 0 ° ) , one m a y e s t i m a t e the p o w e r r e q u i r e - ments f r o m E q . 2 1 . A n e s t i m a t e of Lt - G^- as a function of f r e q u e n c y m a y be obtained f r o m E q s . 12 and 13 by a s s u m i n g the f r e e s p a c e value for the w a v e antenna c h a r a c t e r i s t i c i m p e d a n c e JZo|^ RQ = 120 π and using E q . 16 and F i g s . 2 and 9.

F i g s . 11 and 12 with a - π/4 g i v e s an e s t i m a t e of ^c( ^ Hr\ and, by c o m p a r i s o n with F i g . 10, it can be s e e n that in this e x a m p l e the e x t e r n a l n o i s e tends to "blanket out" the e f f e c t of the r e c e i v i n g antenna c i r c u i t l o s s . Thus, if one a s s u m e s the e f f e c t i v e n o i s e f i g u r e to be a function only of the e x t e r n a l n o i s e fe and a r e c e i v e r n o i s e f i g u r e of, say, fr = 4

F = 10 l o g ( fe+ 3 ) , it = ic = 1 [ 2 3 ] the r e q u i r e d t r a n s m i t t e r p o w e r f o r a g i v e n type of s e r v i c e

under the f o r e g o i n g r e s t r i c t i o n s can be c a l c u l a t e d f r o m E q . 21 by setting Gr = 1.76 and making use of F i g s . 10 and 15 and E q . 23. F i g . 16 shows v a l u e s of Pt - ( R + B ) as a function of f r e q u e n c y f o r antenna s e p a r a t i o n distances of 10,

100, and 500 k m . The w a v e antenna length of ί = λ / 4 and v e r t i c a l d i p o l e height of h = λ / 1 6 w e r e a r b i t r a r i l y c h o s e n , the m a i n c o n s i d e r a t i o n being the c o m p l e x i t y of the p h y s i c a l s t r u c t u r e s of the antennas. Of c o u r s e , at l o w f r e q u e n c i e s e v e n antennas of these d i m e n s i o n s m i g h t be v e r y difficult to construct under w o r k i n g conditions on the m o o n . N o t i c e that at v e r y s h o r t d i s t a n c e s p r o p a g a t i o n w i l l be by l i n e - o f - s i g h t r a t h e r than s u r f a c e w a v e due to the d i p o l e being at a height other than z e r o . The t r a n s m i s s i o n l o s s in this c a s e should

(12)

be c a l c u l a t e d b y the standard g e o m e t r i c a l optics m e t h o d . It should be e m p h a s i z e d that this p a r t i c u l a r c o m b i n a t i o n of antennas is meant m e r e l y to i l l u s t r a t e the use of E q . 21 in e s t i m a t i n g p o w e r r e q u i r e m e n t s . Other antenna c o m b i n a t i o n s must be i n v e s t i g a t e d b e f o r e a d e c i s i o n is made as to what w i l l constitute the m o s t e f f i c i e n t lunar c o m m u n i c a t i o n s y s t e m .

Now to e s t i m a t e the r e q u i r e d p o w e r supplied to the input t e r m i n a l s of the t r a n s m i t t e r , one needs only to d e s i g n a t e the type of c o m m u n i c a t i o n s e r v i c e d e s i r e d , thus s p e c i f y i n g R and B . F o r e x a m p l e with standard b r o a d c a s t s e r v i c e and a bandwidth of 10 k c , R is g i v e n the value 39 db ( 8 ) and Β = 40 db, so that 79 db should be added to the c u r v e s of F i g . 16 to obtain the r e q u i r e d p o w e r in d e c i b e l s a b o v e 1 w . Thus the p o w e r r e q u i r e d for this type of s e r v i c e at a r a n g e of 10 k m and f o r a f r e q u e n c y of 300 k c / s e c w o u l d be about 10 db or

10 w . F o r a l o w - g r a d e v o i c e c o m m u n i c a t i o n s e r v i c e and 6 kc bandwidth, R = 9 db ( 8 ) , Β = 38 db, and 47 db would b e added to the c u r v e s . The r e q u i r e d p o w e r in this c a s e at a distance of 100 km and f o r a f r e q u e n c y of 100 k c / s e c would be about

16 w . A t the f o r e g o i n g f r e q u e n c i e s , the s t r u c t u r a l d i m e n - sions of both antennas w o u l d , of c o u r s e , be quite l a r g e . F o r s m a l l e r antennas p o w e r r e q u i r e m e n t s m a y be e s t i m a t e d f r o m F i g . 16 b y r e a d i n g the c u r v e s at h i g h e r f r e q u e n c i e s .

In the p a r t i c u l a r i d e a l i z e d s y s t e m d e s c r i b e d by F i g . 16, a number of points should be noted: 1) the r e q u i r e d p o w e r does not v a r y a p p r e c i a b l y o v e r the r a n g e of €^ a s s u m e d , and, thus, f o r this m o d e l the r e l a t i v e p e r m i t t i v i t y of the lunar s u r - f a c e is not e s p e c i a l l y c r i t i c a l f o r p r o p a g a t i o n c o n s i d e r a t i o n s ;

2) p r o p a g a t i o n out to s o m e w h a t b e y o n d 100 k m is p r a c t i c a l for m o s t types of s e r v i c e , at l e a s t at M F or b e l o w ; 3) the c u r v e s indicate an o p t i m u m f r e q u e n c y e x i s t s , depending on the conductivity of the lunar s u r f a c e and the r a n g e of p r o p a - gation; f o r the c o n d u c t i v i t i e s and d i s t a n c e s shown, the o p t i - m u m f r e q u e n c y l i e s in the L F band. It should be kept in mind that the e f f e c t i v e n o i s e f i g u r e of the r e c e i v i n g s y s t e m w a s c o n s i d e r e d to be only a function of g a l a c t i c n o i s e ( w h i c h , of c o u r s e , is e x t r a p o l a t e d at the l o w e r f r e q u e n c i e s ) and a r a t h e r low r e c e i v e r n o i s e f i g u r e . If the r e c e i v i n g antenna l o s s J ?C w e r e l a r g e enough, it is apparent f r o m E q . 19 that F w o u l d have h i g h e r v a l u e s than those a s s u m e d . A l s o , during the lunar day, the antenna t e m p e r a t u r e t w o u l d i n c r e a s e , thus

(13)

making the e f f e c t i v e n o i s e f i g u r e e v e n h i g h e r » A C K N O W L E D G M E N T S

The author g r a t e f u l l y a c k n o w l e d g e s the a s s i s t a n c e of the f o l l o w i n g p e r s o n n e l in the p r e p a r a t i o n of this r e p o r t :

J. E . H e r m a n , J. L0 N o b l e , Pe G, R a t c l i f f e , and R . E . W i l k e r s o n0 S p e c i a l thanks g o to J. L . N o b l e f o r his a s s i s t - ance in the c a l c u l a t i o n and plotting of the attenuation c u r v e s and to L . A . C h a r l e s f o r the typing of the m a n u s c r i p t . The author a l s o thanks K , A , N o r t o n and J. R . W a i t of the

N a t i o n a l B u r e a u of Standards B o u l d e r L a b o r a t o r i e s and P a u l S. Goodwin of Jet P r o p u l s i o n L a b o r a t o r y f o r t h e i r s u g g e s t i o n s and g u i d a n c e .

R E F E R E N C E S

1 B a r s i s , A . P . , N o r t o n , K . A . , R i c e , P . L . , and E l d e r , P . Η . , " P e r f o r m a n c e p r e d i c t i o n s f o r s i n g l e t r o p o s p h e r i c c o m m u n i c a t i o n links and f o r s e v e r a l links in t a n d e m , 11 N a t l . B u r . Standards T N 102 ( A u g u s t 1961), s e e A p p e n d i x I I L

2 B e v e r a g e , H . Hc , R i c e , C . W . , and K e l l o g g , E . W , ,

" T h e w a v e antenna, M T r a n s . A m . Inst. E l e c . E n g r s . 42, 215 ( 1 9 2 3 ) .

3 B r e m m e r , Η . , T e r r e s t r i a l R a d i o W a v e s ( E l s e v i e r P u b l i s h i n g C o . , A m s t e r d a m , 1949).

4 B r o w n , R . H . and L o v e l l , A . C . Β . , T h e E x p l o r a t i o n of Space by R a d i o ( C h a p m a n and Hall L t d . , L o n d o n , 19 57).

5 B r o w n , W . Ε . , " A lunar and p l a n e t a r y e c h o t h e o r y , 11 J. G e o p h y s . R e s e a r c h 6_5, 3087 ( 1 9 6 0 ) .

6 B u r r o w s , C R . and G r a y , M . C . , " T h e e f f e c t of the e a r t h ' s c u r v a t u r e on g r o u n d - w a v e p r o p a g a t i o n , " P r o c . Inst.

R a d i o E n g r s . 29_, 16 ( 1 9 4 1 ) .

7 C a r s o n , J. R . , " W a v e p r o p a g a t i o n in o v e r h e a d w i r e s with ground r e t u r n , " B e l l S y s t e m T e c h . J. 5, 539 ( 1 9 2 6 ) .

8 C o m i t é Consultatif International des R a d i o c o m m u n i c a - tions, "Bandwidths and s i g n a l - t o - n o i s e ratios in c o m p l e t e s y s t e m s , " V I P l e n a r y A s s e m b l y , Internatl. R a d i o Consulta- tive C o m m i t t e e ( G e n e v a ) 1, 30 (1951).

9 C o l e m a n , B . L . , " P r o p a g a t i o n of e l e c t r o m a g n e t i c d i s - turbances along a thin w i r e in a h o r i z o n t a l l y stratified

(14)

m e d i u m , " P h i l . M a g . 41_, 276 ( 1 9 5 0 ) .

10 C r i c h l o w , W . Q . , Smith, D . F . , M o r t o n , R . Ν . , and C o r l i s s , W . R . , " W o r l d w i d e r a d i o n o i s e l e v e l s e x p e c t e d in the f r e q u e n c y band 10 kc to 100 M c , " N a t l . B u r . Standards C i r c u l a r 557 ( A u g u s t 1955).

11 D a n i e l s , F . Β . , " A t h e o r y of r a d a r r e f l e c t i o n f r o m the m o o n and p l a n e t s , " J0 G e o p h y s . R e s e a r c h 66, 1781 ( 1 9 6 1 ) .

12 F r i i s , Η . Τ . , " N o i s e f i g u r e s of r a d i o r e c e i v e r s , "

P r o c . Inst. R a d i o E n g r se 32^, 419 ( 1 9 4 4 ) .

13 M a r t i n , C . A . and W i c k i z e r , G. S. , "Study of B e v e r a g e w a v e antenna f o r use with l o w - f r e q u e n c y L o r a n , " R C A , F i n a l E n g . R e p . on C o n t r a c t W - 2 8 - 0 9 9 - a c - 3 1 5 ( 1949).

14 M e n z e l , D, Η . , " C o s m i c n o i s e s u r v e y , " H a r v a r d C o l l e g e O b s e r v a t o r y , C a m b r i d g e , M a s s .

15 N o r t o n , Κ . A . , " G r o u n d - w a v e f i e l d i n t e n s i t y , " P r o c . Inst. R a d i o E n g r s . 29, 623 ( 1 9 4 1 ) .

16 N o r t o n , Κ . A . , " T r a n s m i s s i o n l o s s in r a d i o p r o p a g a - t i o n , " P r o c . Inst. R a d i o E n g r s . 146 ( 1 9 5 3 ) .

17 N o r t o n , Κ . A . , " S y s t e m l o s s in r a d i o w a v e p r o p a g a - tion, " J. R e s e a r c h N a t l . B u r . Standards 63D, 53 (July - A u g u s t 1959)o

18 Schelkunoff, S . A . and F r i i s , Η . Τ . , A n t e n n a s : T h e o r y and P r a c t i c e (John W i l e y and Sons I n c . , N e w Y o r k , 1952).

19 S e n i o r , T . B . A . and S i e g e l , K . M . , " A t h e o r y of r a d a r s c a t t e r i n g by the m o o n , " J. R e s e a r c h N a t l . B u r . Standards 64D, 217 ( M a y - June I 9 6 0 ) .

20 S o m m e r f e l d , A . and R e n n e r , F . , " S t r a h l u n g s e n e r g i e und e r d - a b s o r p t i o n b e i dipolantennen, " A n n . P h y s . 4 1 , 1 ( 1 9 4 2 ) .

21 W a i t , J. R . , " R a d i a t i o n r e s i s t a n c e of a s m a l l c i r c u l a r l o o p in the p r e s e n c e of a conducting ground, " J. A p p l . P h y s . 24, 646 ( 1 9 5 3 ) .

22 W a i t , J. R . , " R a d i a t i o n f r o m a ground antenna, " Can.

J. T e c h n o l . 32, 1 (19 54).

23 W a i t , J. R . and S u r t e e s , W . J. , " I m p e d a n c e of a t o p - l o a d e d antenna of a r b i t r a r y length o v e r a c i r c u l a r grounded

(15)

s c r e e n , " J. A p p l . P h y s . 25, 553 (1954).

24 Wait, J. R . , "Effect of the ground s c r e e n on the field radiated f r o m a m o n o p o l e , " Inst. R a d i o E n g r s . T r a n s , on Antennas and P r o p a g a t i o n A P - 4 , 179 (1956).

25 Wait, J. R . , " T r a n s m i s s i o n of power in r a d i o p r o p a - gation, " E l e c . R a d i o E n g r . 36, 146 (1959).

0.1,

I t

10 7

1 5 y s

1 3 F u k L A K b t b : | l y s

2.5' 2

I7j 1/2

" |T1 " n | L vV t r >i h|s[V(e -l)* + S° T2 1/2

-

Ï2

" Kh- [ ( 2 τ τ ΓΛ/ λ )ι /3 1"' = 3.02 χ I0~2 / | Th| ' f m c / s -

" Kh- [ VC II ι ο / /ν/ J. = 3.02 χ I0~2 / | Th| ' f m c I.I . ro : MOON'S RADIUS = 1738 km. î"

. ro :

FOR SMALL

!

S

! 1

! 1

0.01 0.05 0.1 0.5 1.0 5 10 50 100

S = 6 0\ c r( m h o s / m ) = 1.8 χ IO4 a( m h o s / m) / fmc

F i g . 1 P a r a m e t e r | T j J f o r h o r i z o n t a l p o l a r i z a t i o n

(16)

ι.οι—ι ι ι 11 im—ι ι ι ι um—ι ι ι 11 mm—ι ι ι 11 ni

Q g _ ( ( s

K^ = [{2irr0/\y/5\Tjyl = ^02%\0-z/\Tw\-imc/3

r0 MOON'S RADIUS = 1738 km 0 7 4—4 μ -

Ι ILΓι 1

M v lu o — γ τ ~ : : ^ ^ p r a g^ ^ y ^ ^

ι

FOR S M A L L S | TV| ^ ' "

FOR LARGE S= | TV| ~ I A / S

0

I I i 11 ilill 1 I M Hill 1 ι 11 nui ι ι 11 Mil

0.01 0.05 0.1 0.5 1.0 5 10 50 100 S = 6 0 X c r( m h o s / m ) = l. 8 x Ι Ο4 ó ( m h o s / m ) / fm c

F i g o 2 P a r a m e t e r | Τγ[ f o r v e r t i c a l p o l a r i z a t i o n

(17)

I80( 1 ι ι ι IM 1 ι ι ι ι.πι 1 ι ι min 1 ι Ι Ι llliL^Jgü^M^JJ^PB^I Ι Ι I 111II

™ 1111 1 lllH^SffHr ~ F

120

i l # ^

0.0001 0.001 0.01 0.1 1.0 10 100 1000 S = 60 Xa(mhos/m) = 1.8 χ loV(mhos/m) /fmc Figo 3 Parameter b° for horizontal polarization

(18)

180— ~J~" J Τ

Γ vs 2ton-'(er/S)-tan-'(^i) j

1 ji^^v j

v

9 0 j ==::;;=3ΔeSl =P^^^! |

"— —Ι 0.0001 Φ.00I 0.01 0.1 1.0 10 100 1000 S = 60 Xa(mhos/m)= 1.8 χ ΙΟ4 ó{ m hos /m)/fmc Fig. 4 Parameter b° for vertical polarization

(19)

-20 r 1 1 ι ι ι ι ι Μ 1 1 Ι | | | 1 I I 1 1 Ι Ι Ι Ι Ι I Ι 1 1 — Γ ~

80 1 ^ ^ ^ ^ - - - - ^ ^ ^ ^ ^

ιοο — ^ - Ξ = - ^ ^ " ^ ^ Λ ν Γ - \ " Λ \ :

1.0 2 3 4 5 7 10 20 30 40 50 70 100 200 300 500 1000 2000 5000 Χο= f i u f d o ( k m )

F i g . 5 N o r t o n s u r f a c e w a v e attenuation A ^ , b = 0 °

(20)

- " 1

ι ι ι

Ί ΐ ι ι ι — ι

ι ι m u h — I ι

!

M I H I — Γ Τ Π

^ = _^K^IO

10 2 3 4 5 7 10 20 30 4050 70 100 200 300 500 1000 2000 5000

*o,= Wc/5d0 ( k m )

F i g o 6 N o r t o n s u r f a c e w a v e attenuation A ^ , b = 4 5 °

(21)

K £ l O

10 2 3 4 5 7 10 20 30 40 50 70 100 200 300 500 1000 2000 5000

xo = W ^ o ( k m )

F i g . 7 N o r t o n s u r f a c e w a v e attenuation A , b = 9 0 °

(22)

Ë ι ι ι h i h i — ι ι Μ Ι Ι Η Ι — ι ι ι n u n — π ~ Π

0 " ^ ^ ^ ^ ^ ^

^ ^ ^ ^ ^

2 8 0

1.0 2 3 4 5 7 10 20 30 40 50 70 100 200 300 500 1000 2000 5000

: ΐ ΐ ^ β

*ο = ÚìΓ Cl0 ( k m )

F i g o 8 N o r t o n s u r f a c e w a v e attenuation A^_, b = 180°

(23)

1.0

0.5

0.1

0.05 I S ' I

0.005

( / 3/ ) ( m - c o s

FOR S M A L L i a / ) : l S l " | 2^ G 4^ rF* L' ^ H h h F O R L A R G E ( a / ) : i S ' l - l / i a f )

0.001 0.005 0.01 0.05 0.1 0.5 1.0

ai

5 10 50 100

Figo 9 P a t t e r n factor ] S ' | for a horizontal t r a v e l i n g wave antenna of length ϋ

110 100 90 80 70 60 . <»>

- 50 en

2 40

- 3 0 - L

0.020.03 0.05 01 0.2 0.3 0.5 0.7 I 2 3 5 7 10 20 30 50 70 100 200300 500 1000

F i g . 10 External noise figure F

(24)

j ^ α π 4 ι

ο.οοι 0.01 0.1 I 10 100 1000 10000

S = 6 o \ a ( m h o s / m ) = 1 . 8 χ ΙΟ4 σ(mhos/m)/fkt

Me

F i g , 11 Ground p r o x i m i t y effect ^ for v e r t i c a l e l e c t r i c d i p o l e , € = L O I '

r

j —j

0.001 0 . 0 1 0 . 1 I 10 100 1 0 0 0 1 0 0 0 0

S = 60 ë cr ( m ho s / m ) = 1.8 χ I O4 a ( m h o s / m ) / f Mc

F i g , 12 Ground p r o x i m i t y e f f e c t ^ for v e r t i c a l e l e c t r i c d i p o l e , € = 2 '

(25)

F i g . 13 Ground p r o x i m i t y e f f e c t ^ for v e r t i c a l e l e c t r i c d i p o l e , € = 5 '

r

IOo.ooi ooi οι ι '* ιο loo = 1000 10000

s = 6 0 X a ( m h o s / m ) = ι 8 χ ι ο4 c r ( m h o s / m ) / fM

F i g . 14 Ground p r o x i m i t y e f f e c t ^ for v e r t i c a l e l e c t r i c d i p o l e , € = 10 '

(26)

οι ι ι ι ΜΙΝΙ—ι ι ι Μ Ι Ν Ι — Γ τ π π π ι — ι ι | | i | | | | —ι ι ι m u

2 0 — 1 - L — — ' ' ' ' ' 1 1 ' ' — I 1

^5;. VERTICAL POLARIZATION

loo

1 2 0

— V \ " ' t \ ^ " t w ^ —

l

140

V p t t r w " T ^ W

V t ï f t t i — - f r ^ J 11 l l l l -

180

> vP ^"~H 1 " m i "

200 \ — r V i H — f \ — I — ~ i :

220 U 4 M - i — - ^ x — I !—U--

240 H i f t H i r — » — f

Vb>d0=500km \ V

260

4 . Hill ^ i f

280

1 j l -

sopi

11iiiiiii 11 iiiiiii w min 1 1 i i i i m ^ ι m i n i

0.01 002 003 005 00701 0.2 0 3 05 0.7 I 2 3 5 7 10 20 30 50 70 100 200 300 5007001000

F i g , 15 B a s i c t r a n s m i s s i o n l o s s f o r v e r t i c a l l y p o l a r i z e d N o r t o n s u r f a c e w a v e s

(27)

F i g . 16 Ρ - ( R + B ) for w a v e antenna and v e r t i c a l dipole

Ábra

Figo 9  P a t t e r n factor  ] S ' | for a horizontal  t r a v e l i n g wave  antenna of length ϋ  110  100  90  80  70  60

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

 There is an association between lunar cycles and objective sleep parameters (sleep efficiency, sleep latency, superficial sleep, deep sleep, night cycles of waking, REM sleep,

9 Viewing geometry and optical display TECHNOLOGY OF LUNAR EXPLORATION... 11 Docking cone configurations TECHNOLOGY OF

The three major schemes for the lunar mission were the direct approach involving no rendezvous, rendezvous of two parts of the mission payload in Earth orbit, and use of a

but for lunar or deeper space missions, even this is infeasible. For example, suppose that the primary power failed at the moon with a 66-hr time to return to earth. If the

hemisphere. The shaded areas in Fig. 8 define the permissible variation in the position of the ascending node of the lunar orbit so as to achieve a satisfactory return flight over

This study has examined the propulsion requirements for aborting a lunar landing mission at any time from Earth escape to Earth return. Although the methods of calculation employed

The Chinese inserted after 19 lunar years another 7 lunar months (around 600 BC) [2]. At the end of the first millennium AD, Chinese mathematicians and astronomers devoted great

A disszertációban közölt numerikus eredmények (pl. ábra, vagy [4]) azt jelzik, hogy a Meijer G függvény numerikus kiértékelése futási időben még 500 antenna esetén sem