• Nem Talált Eredményt

New scientific results of my dissertation can be summarized hereinafter:

1. I developed a population balance equation model for the analysis and modeling of the heat transfer processes of perfectly mixed particle-fluid systems, which allows us to describe particle-particle, particle-wall, wall-gas, particle-gas and wall-environment heat transfer processes.

1.1. By applying the description given by Lakatos and coauthors (2004; 2006), I specified the activity and conversion functions describing heat transfer processes. These functions are fundamentals of the mathematical model and essential tools of the examination of heat transfer processes with population balance equation.

1.2. Among other important process segments of the general population balance equation I developed the mathematical description of the particle-wall and particle-gas heat transfer, which allows to analyze the heat transfer processes between the components under consideration.

1.3. I complemented the balance equation system with the connections of gas and environment. This way, I got a mathematical model which is able to describe decisive heat transfer processes of particle-fluid systems.

Additionally with the help of this model, it is possible to analyze the heat properties of the components of particle-fluid systems.

[P2], [P4], [P12]

2. With the momentum method, I defined the momentum-equations describing the full heat transfer process of the particle-fluid systems. I analyzed the

system's properties by means of these equations in addition to the developed computational algorithm.

2.1. With the use of the momentum method I specified a closed hierarchy of ordinary differential equations for computing the momentum of particle-fluid systems. I generalized the previous results of Lakatos and coauthors (2004; 2006) by the analysis of other (particle-wall, particle-gas, gas-wall and wall-environment) heat transfer processes apart from the particle-particle heat transfer processes.

2.2. With the developed computational algorithm, I solved and with simulation I analyzed the properties of the specified mathematical model and hereby the particle-fluid system. I defined the results of the momentum equation system derived from the population balance equation, which describe the main heat properties of a perfectly mixed particle-fluid system.

[P2], [P4], [P11], [P12]

3. With the help of a cells-in-series model, I extended the constructed population model for the spatial heat distribution analysis of the particles, furthermore I specified the momentum equations of this modeling approach.

3.1. I introduced the elements of the general cells-in-series model for particle-fluid system modeling, and analyzed its properties with computational simulation. I have showed that the introduced cellular model is an adequate tool for modeling the one-dimensional heat distribution of the particles.

3.2. I specified a cells-in-series model for the analysis of the turbulent fludization and I examined its properties in particle-fluid systems with computational simulation.

3.3. I applied the cells-in-series models constructed on the basis of the population balance equation for the modeling of heat exchanger systems.

My results indicate the heat transfer properties of the heat exchanger systems in case of a counter-current liquid phase.

3.4. I have compared the results of the mathematical model for describing heat exchanger systems and the results of the momentum equation model derived from it with the results of the real life experiments (Rodriguez et al., 2002;

Pécora et al., 2006) published in literature. This comparison proves the applicability of modeling with population balance equation and the constructed model.

[P1], [P2], [P4], [P5], [P6], [P7]

4. I developed an axial dispersion/population balance model for the description of the heat transfer processes of turbulent fluidization.

4.1. I specified an axial dispersion/population model for modeling and analyzing the heat transfer processes of turbulent fluidization. By means of the model I described and analyzed the heat distribution of the different components of the particle-fluid system along the axial coordinate: namely the average temperature of the particles in addition to the heat properties of the gas, the wall and the environment.

4.2. I introduced the dimensionless variables and parameters, and by applying the momentum method I transformed the constructed balance equations into momentum equations. I solved this partial differential equation system with the developed computational program support.

4.3. I have analyzed the properties of the axial dispersion/population balance equation with computational simulation, furthermore I have showed the decisive role of the particle heat transfer properties of the particle-fluid systems.

[P1], [P3], [P8]

Irodalomjegyzék

Baskakov, A.P., Suprun, V.M.: The determination of the convective component of the coefficient of heat transfer to a gas in a fluidized bed, Int. Chem. Eng. 12, (1972), 53-62.

Berlemont, A., Desjonqueres, P., Gouesbet, G.: Particle Lagrangian simulation in turbulent flows, Int. J. Multiphase Flow 16, (1990), 19–34

Bi, H.T., Ellis, N., Abba, A., Grace, J.R.: A state-of-the-art review of gas–solid turbulent fluidization, Chem. Eng. Sci., 55, (2000), 4789-4825.

Blickle T.: A fluidizációs eljárás készülékei alkalmazásai és számításai, Akadémiai Kiadó, Budapest, 1963

Blickle T., Lakatos G.B., Mihálykó Cs.: Szemcsés rendszerek matematikai modelljei, A kémia újabb eredményei, Akadémiai Kiadó, Budapest, 2001

Blickle, T., Mihálykó, Cs., Süle, Z., Lakatos, B.G.: Hőátadási modellek összehasonlító vizsgálata, a Műszaki Kémiai Napok'04 konferencia kiadványa, Veszprém, (2004), 335-338.

Burgschweiger, J., Tsotas, E.: Experimental investigation and modelling of continuous fluidized drying under steady-state and dynamic conditions, Chem. Eng. Sci., 57, (2002), 5021-5038.

Chagras, V., Osterlé, B., Boulet, P.: On heat transfer in gas-solid pipe flows: Effects of collision induced alterations on the flow dynamics, Int. J. Heat Mass Transfer, 48, (2005), 1649-1661.

Coulson J.M., Richardson J.F., Backhurst J.R., Harker J.H.: Chemical Engineering Volume 2 – Particle Technology and Separation Processes, Pergamon Press, 1993 Delvosalle, C., Vanderschuren, J.: Gas-to-particle and particle-to-particle heat transfer in fluidized beds of large particles, Chem. Eng. Sci. 40 (5), (1985), 769-779.

Fan, L. T., Chiu, Y.Y., Schlup, J.R., Chou, S.T.: The Master Equation for Linear Adsorption and Desorption of Gases on Solid Surfaces, Chem. Eng. Comm., 108, (1991), 127-146.

Foka, M., Chaouki, J., Guy, C., Klvana, D.: Gas phase hydrodynamics of a gas-solid turbulent fluidized bed reactor, Chem. Eng. Sci., 51, (1996), 713-723.

Frain, M.: Investigation of the Influence of Gas and Solid Particle Interaction ont he Heat Transfer Effectiveness of a Falling-Bed Heat Exchanger, PhD disszertáció, University of Massachusetts Amherst, (2004)

Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer, Berlin, 1983

Geldart, D.: Types of gas fluidization, Powder Technology, 7, (1973), 285-292.

Geldart, D.: Estimation of basic particle properties for use in fluid-particle process calculations, Powder Technology, 60, (1990) 1.

Gidaspow, D.: Multiphase Flow and Fluidization, Academic Press, San Diego, (1994) Hamidipour, M., Mostoufi, N., Sotudeh-Gharebagh, R., Chaouki, J.: Monitoring the particle-wall contact in a gas fluidized bed by RPT, Powder Technology, 153, (2005a) 119-126.

Hamidipour, M., Mostoufi, N., Sotudeh-Gharebagh, R., Chaouki, J.: Experimental invest-igation of particle contact time at thewall of gas fluidized beds, Chem. Eng. Sci.

60, (2005b), 4349–4357.

Hulburt, H.M., Katz, S.: Some problems in particle technology: a statistical mechanical formulation, Chem.Eng.Sci., 19, (1964), 555-574.

Kaneko, Y., Shiojima, T., Horio, M.: DEM simulation of fluidized beds for gas-phase olefin polymerization, Chem. Eng. Sci., 54, (1999), 5809-5821.

Kettenring, K.N., Manderfield, E.L., Smidth, J.M.: Heat and Mass Transfer in Fluidized System, Chem. Engng. Progr., 46., (1950), 139-145.

Kölbel, H., Borchers, E., Martins, J.: Wärmeübergang in Blasensäulen III.

Messungen an gasdurchströmten Suspensionen, Chem.-Ing.-Techn., 32, (1960), 84-88.

Lakatos, G.B., Blickle, T.: Effect of particle size distribution on liquid–solid reaction kinetics in solutions, Acta Chim. Hung. - Models in Chemistry, 127, (1990), 395-405.

Lakatos, B.G., Mihálykó, Cs., Blickle, T.: Modelling of interactive populations of dis-perse systems, Proc. 2nd Int. Conf. Population Balance Modelling, Valencia, (2004), 72-86.

Lakatos, B.G., Mihálykó, Cs., Blickle, T.: Modelling of interactive populations of disperse systems, Chem.Eng.Sci., 61, (2006), 54-62.

Lakatos, B.G., Süle, Z., Mihálykó, Cs.: Population Balance Model of Heat Transfer in Gas-Solid Particulate Systems, International Journal of Heat and Mass Transfer, 51, (2008), 1633-1645.

Lathouwers, D., Bellan, J.:Modeling of dense gas-solid reactive mixtures applied to biomass pyrolysis in a fluidized bed, Int. J. Multiphase Flow, 27, (2001), 2155-2187.

Le Blanc, S.E., Fogler, H.S.: Population balance modeling of the dissolution of polydisperse solids: rate limiting regimes. AIChE J., 33, (1987), 54-63.

Li, J., Mason, D.J.: A computational investigation of transient heat transfer in pneumatic transport of granular particles, Powder Technology 112, (2002), 273-282.

Mansoori, Z., Saffar-Avval, M., Basirat-Tabrizi, H., Ahmadi, G., Lain, S.: Thermo-mechanical modeling of turbulent heat transfer in gas-solid flows including particle col-lisions, Int. J. Heat Fluid Flow Transfer, 23, (2002), 792-806.

Mansoori, Z., Saffar-Avval, M., Basirat-Tabrizi, H., Dabir, B., Ahmadi, G.: Inter-particle heat transfer in a riser of gas-solid turbulent flows, Powder Technology, 159, (2005), 35-45.

Martin, H.: Heat transfer between gas fluidized bed of solid particles and the surfaces of immersed heat transfer exchanger elements, Chem. Eng. Proc., 18, (1984), 199-223.

Molerus, O.: Heat transfer in moving beds with a stagnant interstitial gas, Int. J. Heat Mass Transfer 40, (1997), 4151-4159.

Mihálykó Cs., Blickle T.: A szakaszos őrlés modelljének matematikai vizsgálata, Magyar Kémikusok Lapja, 51, (1996), 150-152.

Mihálykó, Cs., Lakatos, B.G., Matejdesz, A., Blickle, T.: Population balance model for particle-to-particle heat transfer in gas-solid systems, Int. J. Heat Mass Transfer, 47, (2004a), 1325-1334.

Mihálykó, Cs., Lakatos, B.G., Süle, Z., Blickle, T.: Szilárd-fluidum rendszer hőátadási folyamatainak elemzése momentumok segítségével I. Kvalitatív vizsgálat, a Műszaki Kémiai Napok'04 konferencia kiadványa, Veszprém, (2004b), 339-342.

Naumann, E.B., Buffham, B.A.: Mixing in Continuous Flow Systems, J. Wiley, New York, 1983

Nigmatulin R. I.: Spatial averaging in the mechanics of heterogeneous and dispersed systems, Int. J. Multiphase Flow, 5, (1979), 353-385.

Pécora A.A.B., Parise M.R.: Heat transfer coefficient in a shallow fluidized bed heat exchanger with a continuous flow of solid particles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28, (2006).

Ramkrishna, D.: The status of population balance, Rev. Chem. Engng., 3, (1985), 49-95.

Ramkrishna, D., Borwanker, J.D.: A puristic analysis of population balance, Chem.

Eng. Sci., 28, (1973), 1423-1435.

Ramkrishna D.: Population balances. San-Diego: Academic Press, (2000)

Randolph, A.D., Larson, M.A.: Theory of Particulate Processes, Academic Press, New York, 1988.

Richardson, J.F., Ayers, P.: Heat transfer between particles and a gas in a fluidised bed, Trans. Inst. Chem. Eng. 37 (1959), 314-321.

Rodriguez O.M.H., Pecora A.A.B., Bizzo W.A.: Heat recovery from hot solid particles in a shallow fluidized bed, Appl. Therm. Eng. 22, (2002), 145.

Sastry, K.V.S., Fuerstenau, D.W.: Size distribution of agglomerates in coalescing dispersed phase systems, Ind. Eng. Chem. Fund, 9, (1970), 145-149.

Schouten, J.C., Zijerveld, R.S., van den Bleek, C.M.: Scale-up of bottom-bed dynamics and axial solids-distribution in circulating fluidized beds of Geldart-B particles, Chem. Eng. Sci., 54, (1999), 2103-2112.

Schlünder, E.U.: Heat transfer to packed and stirred beds from the surface of immersed bodies, Chem. Eng. Proc. 18, (1984), 31-53.

Schmidt A., Renz, U.: Eulerian computation of heat transfer in fluidized beds, Chem.

Eng. Sci. 54, (1999), 5515–5522.

Skorokhod, A.V.: Stochastic Differential Equations of Complex Systems, Nauka, Moszkva, 1983

Sobczyk, K.: Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic, Dordrecht, 1991

Sommerfeld, M.: Validation of a stochastic Lagrangian modelling approach for inter particle collisions in homogeneous isotropic turbulence, Int. J. Multiphase Flow 27, (2001), 1829-1858.

Sommerfeld, M.: Kinetic simulations for analysing the wall collision process of non-spherical particles, Proc. ASME FEDSM’02, (2002), 1-9.

Sun, J., Chen, M.M.: A theoretical analysis of heat transfer due to particle impact, Int.

J. Heat Mass Transfer 31, (1988), 969-975.

Süle, Z., Lakatos, B.G., Mihálykó, Cs.: Axial dispersion/population balance model of heat transfer in turbulent fluidization, Computers and Chemical Engineering (publikálásra elküldve)

Süle, Z., Lakatos, B.G., Mihálykó, Cs.: Axial dispersion/population balance model of heat transfer in gas-solid turbulent fluidization, Proc. 19th European Symposium on Computer Aided Process Engineering - ESCAPE19, Computer-Aided Chemical Engineering, Krakkó, Lengyelország, 26, (2009a), 719-724.

Süle, Z., Lakatos, B.G., Mihálykó, Cs.: Modelling of Heat Transfer Processes with Compartment/Population Balance Model, Proc. CD of 6th Vienna Conference on Mathematical Modelling - MATHMOD09, Full Papers CD Volume, Bécs, Ausztria, (2009b), 1602-1611.

Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Population Balance Model of Gas-Solid Fluidized Bed Heat Exchangers, Chemical and Process Engineering, 29, (2008), 201-213.

Süle, Z., Effect of Solid Particles on the Heat Transfer Efficiency of Heat Exchangers, Proc. of the 5th PhD Mini-Symposium, Veszprém, (2007), 31-33.

Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Population Balance Model of Heat Transfer in Gas-Solid Turbulent Fluidization, Proc. CD of 17th European Symposium on Computer Aided Process Engineering - ESCAPE17, Computer-Aided Chemical Engineering, Bukarest, Románia, 24 (2007a)

Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Population Balance Model of Ga--Solid Fluidized Bed Heat Exchangers, Proc. of XIX Polish Conference of Chemical and Process Engineering, Rzeszów, Lengyelország, (2007b), 199-202.

Süle, Z.: Modelling of Heat Transfer Processes in Fluidized Bed Heat Exchangers, Proc. of the 4th PhD Mini-Symposium, Veszprém, (2006), 40-42.

Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Fluidizált rétegű hőcserélő rendszerek hőátadási folyamatainak modellezése, a Műszaki Kémiai Napok'06 konferencia kiadványa, Veszprém, (2006a), 53-56.

Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Modeling of Heat Transfer Process in Particulate Systems, Proc. of 16th European Symposium on Computer Aided Process Engineering - ESCAPE16, Computer-Aided Chemical Engineering, Garmisch-Partenkirchen, Németország, 21A, (2006b), 589-594.

Süle, Z.: Modelling of Heat Transfer Processes in Particulate Systems, Proc. of the 3rd PhD Mini-Symposium, Veszprém, (2005), 52-54.

Süle, Z., Mihálykó, Cs., Lakatos, B.G., Mizonov, V.: Szemcsés rendszerek hőátadási folyamatainak modellezése, a Műszaki Kémiai Napok'05 konferencia kiadványa, Veszprém, (2005), 190-193.

Süle, Z., Mihálykó, Cs., Lakatos, B.G., Blickle, T.: Szilárd-fluidum rendszer hőátadá-si folyamatainak elemzése momentumok segítségével II. Kvantitatív vizsgálat, a Műszaki Kémiai Napok'04 konferencia kiadványa, Veszprém, (2004), 343-346.

Thompson, M.L., Bi, H., Grace, J.R.: A generalized bubbling/turbulent fluidized-bed reactor model, Chem. Eng.. Sci., 54, (1999), 2175-2185.

Vanderschuren, J., Delvosalle, C.: Particle-to-particle heat transfer in fluidized bed drying, Chem. Eng. Sci. 35 (8), (1980), 1741-1748

Wamsley, W. W., Johanson, L. N.: Fluidized Bed Heat Transfer, Chem. Engng.

Progr., 50, (1954), 347-355.

Wen, C.Y., Yu, Y.H.: A generalized method for predicting minimum fluidization velocity, AIChE Journal, 12, (1966), 610-618.

You, C., Zhao, H., Haiying, Y.C., Qi, H., Xu, X.: Experimental investigation of interparticle collision rate in particulate flow, Int. J. Multiphase Flow, 30 (2004), 1121-1138.

Zhou, H., Flamant, G., Gauthier, D.: DEM-LES simulation of coal combustion in a bubbling fluidized bed. Part II: coal combustion at the particulate level, Chem. Eng.

Sci. 59, (2004), 4205-4215.

Saját publikációk

Az értekezés témájából született publikációk listája

Lektorált, nemzetközi folyóiratban megjelent publikációk

[P1] Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Population Balance Model of Gas-Solid Fluidized Bed Heat Exchangers

Chemical and Process Engineering, 29, (2008), 201-213., IF=0.115

[P2] Lakatos, B.G., Süle, Z., Mihálykó, Cs.: Population Balance Model of Heat Transfer in Gas-Solid Particulate Systems

International Journal of Heat and Mass Transfer, 51, (2008), 1633-1645., IF=1.500

[P3] Süle, Z., Lakatos, B.G., Mihálykó, Cs.: Axial Dispersion/Population Balance Model of Heat Transfer in Turbulent Fluidization

Computers and Chemical Engineering (publikálásra elküldve)

Konferenciakiadványban megjelent publikációk

[P4] Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Modeling of Heat Transfer Process in Particulate Systems

Proc. of 16th European Symposium on Computer Aided Process Engineering - ESCAPE16, Computer-Aided Chemical Engineering, Garmisch-Partenkirchen, Németország, 21A, (2006), 589-594.

[P5] Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Population Balance Model of Gas-Solid Fluidized Bed Heat Exchangers

Proc. of XIX Polish Conference of Chemical and Process Engineering, Rzeszów, Lengyelország, (2007), 199-202.

[P6] Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Population Balance Model of Heat Transfer in Gas-Solid Turbulent Fluidization

Proc. CD of 17th European Symposium on Computer Aided Process Engineering - ESCAPE17, Computer-Aided Chemical Engineering, Bukarest, Románia, 24, (2007)

[P7] Süle, Z., Lakatos, B.G., Mihálykó, Cs.: Modelling of Heat Transfer Processes with Compartment/Population Balance Model

Proc. CD of 6th Vienna Conference on Mathematical Modelling - MATHMOD09, Full Papers CD Volume, Bécs, Ausztria, (2009), 1602-1611.

[P8] Süle, Z., Lakatos, B.G., Mihálykó, Cs.: Axial Dispersion/Population Balance Model of Heat Transfer in Gas-Solid Turbulent Fluidization

Proc. 19th European Symposium on Computer Aided Process Engineering - ESCAPE19, Computer-Aided Chemical Engineering, Krakkó, Lengyelország, 26, (2009), 719-724.

[P9] Blickle, T., Mihálykó, Cs., Süle, Z., Lakatos, B.G.: Hőátadási modellek összehasonlító vizsgálat

a Műszaki Kémiai Napok'04 konferencia kiadványa, Veszprém, (2004), 335-338.

[P10] Mihálykó, Cs., Lakatos, B.G., Süle, Z., Blickle, T.: Szilárd-fluidum rendszer hőátadási folyamatainak elemzése momentumok segítségével I. Kvalitatív vizsgálat

a Műszaki Kémiai Napok'04 konferencia kiadványa, Veszprém, (2004), 339-342.

[P11] Süle, Z., Mihálykó, Cs., Lakatos, B.G., Blickle, T.: Szilárd-fluidum rendszer hőátadási folyamatainak elemzése momentumok segítségével II. Kvantitatív vizsgálat

a Műszaki Kémiai Napok'04 konferencia kiadványa, Veszprém, (2004), 343-346.

[P12] Süle, Z.: Modelling of Heat Transfer Processes in Particulate Systems Proc. of the 3rd PhD Mini-Symposium, Veszprém, (2005), 52-54.

[P13] Süle, Z., Mihálykó, Cs., Lakatos, B.G., Mizonov, V.: Szemcsés rendszerek hőátadási folyamatainak modellezése

a Műszaki Kémiai Napok'05 konferencia kiadványa, Veszprém, (2005),

190-[P14] Süle, Z.: Modelling of Heat Transfer Processes in Fluidized Bed Heat Exchangers

Proc. of the 4th PhD Mini-Symposium, Veszprém, (2006), 40-42.

[P15] Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Fluidizált rétegű hőcserélő rendszerek hőátadási folyamatainak modellezése

a Műszaki Kémiai Napok'06 konferencia kiadványa, Veszprém, (2006), 53-56.

[P16] Süle, Z., Effect of Solid Particles on the Heat Transfer Efficiency of Heat Exchangers

Proc. of the 5th PhD Mini-Symposium, Veszprém, (2007), 31-33.

Az értekezés témájában elhangzott tudományos előadások listája

1. Mihálykó, Cs., Süle, Z., Lakatos, B.G.: Hőátadási modellek összehasonlító vizsgálata

Műszaki Kémiai Napok'04 Konferencia, Veszprém, 2004. április, szóbeli szekcióelőadás

2. Mihálykó, Cs., Lakatos, B.G., Süle, Z., Blickle, T.: Szilárd-fluidum rendszer hőátadási folyamatainak elemzése momentumok segítségével I. Kvalitatív vizsgálat

Műszaki Kémiai Napok'04 Konferencia, Veszprém, 2004. április, szóbeli szekcióelőadás

3. Süle, Z., Mihálykó, Cs., Lakatos, B.G., Blickle, T.: Szilárd-fluidum rendszer hőátadási folyamatainak elemzése momentumok segítségével II. Kvantitatív vizsgálat

Műszaki Kémiai Napok'04 Konferencia, Veszprém, 2004. április, szóbeli szekcióelőadás

4. Süle, Z., Mihálykó, Cs., Lakatos, B.G., Mizonov, V.: Szemcsés rendszerek hőátadási folyamatainak modellezése

Műszaki Kémiai Napok'05 Konferencia, Veszprém, 2005. április, szóbeli szekcióelőadás

5. Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Szemcsés rendszerek hőátadási folyamatainak modellezése

VEAB Analízis és Alkalmazásai munkabizottság tudományos ülése, Veszprém, 2005. május, szóbeli előadás

6. Süle, Z.: Modelling of Heat Transfer Processes in Particulate Systems

The 3rd PhD Mini-Symposium, Veszprém, 2005. június, szóbeli szekcióelőadás 7. Süle, Z.: Modelling of Heat Transfer Processes in Fluidized Bed Heat

Exchangers

4th PhD Mini-Symposium, Veszprém, 2006. június, szóbeli szekcióelőadás 8. Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Fluidizált rétegű hőcserélő rendszerek

hőátadási folyamatainak modellezése

Műszaki Kémiai Napok'06 Konferencia, Veszprém, 2006. április, szóbeli szekcióelőadás

9. Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Modeling of Heat Transfer Process in Particulate Systems

16th European Symposium on Computer Aided Process Engineering - ESCAPE16, Garmisch-Partenkirchen, Németország, 2006. július, poszter előadás

10. Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Hőátadási folyamatok populációs modelljei

VEAB Analízis és Alkalmazásai munkabizottság tudományos ülése, Veszprém, 2006. október, szóbeli előadás

11. Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Population Balance Model of Heat Transfer in Gas-Solid Turbulent Fluidization

17th European Symposium on Computer Aided Process Engineering - ESCAPE17, Bukarest, Románia, 2007. május, szóbeli szekcióelőadás

12. Süle, Z.: Effect of Solid Particles on the Heat Transfer Efficiency of Heat Exchangers

The 5th PhD Mini-Symposium, Veszprém, 2007. június, szóbeli szekcióelőadás 13. Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Population Balance Model of

Gas-Solid Fluidized Bed Heat Exchangers

XIX Polish Conference of Chemical and Process Engineering, Rzeszów, Lengyelország, 2007. szeptember, szóbeli szekcióelőadás

14. Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Population Balance Model of Gas-Solid Fluidized Bed Heat Exchangers

XXVII International Workshop on Chemical Engineering Mathematics, Veszprém, 2007. szeptember, szóbeli szekcióelőadás

15. Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Hőcserélők populáció mérlegegyenletes matematikai modellje

VEAB Analízis és Alkalmazásai munkabizottság tudományos ülése, Veszprém, 2007. október, szóbeli előadás

16. Süle, Z., Mihálykó, Cs., Lakatos, B.G.: Axiális diszperziós/populációs mérlegegyenlet modell hőátadási folyamatok leírására

VEAB Analízis és Alkalmazásai munkabizottság tudományos ülése, Veszprém, 2008. október, szóbeli előadás

17. Süle, Z., Lakatos, B.G., Mihálykó, Cs.: Modelling of Heat Transfer Processes with Compartment/Population Balance Model

6th Vienna Conference on Mathematical Modelling - MATHMOD09, Bécs, Ausztria, 2009. február, szóbeli szekcióelőadás

18. Süle, Z., Lakatos, B.G., Mihálykó, Cs.: Axial Dispersion/Population Balance Model of Heat Transfer in Gas-Solid Turbulent Fluidization

19th European Symposium on Computer Aided Process Engineering - ESCAPE19, Krakkó, Lengyelország, 2009. június, szóbeli szekcióelőadás