• Nem Talált Eredményt

[1] B. Widom, Some Topics in the Theory of Fluids, J. Chem. Phys. 39, 2808 (1963).

[2] S. Lamperski, The individual and mean activity coefficients of an electrolyte from the inverse GCMC simulation, Mol. Simul. 33, 1193 (2007).

[3] A. P. Lyubartsev, J. X. Tang, P. A. Janmey and L. Nordenskiöld, Electrostatically Induced Polyelectrolyte Association of Rodlike Virus Particles, Phys. Rev. Lett. 81, 5465 (1998).

[4] E. Allahyarov, G. Gompper and H. Löwen, DNA condensation and redissolution: interaction between overcharged DNA molecules, J. Phys.: Condens.

Matter 17, S1827 (2005).

[5] V. Lobaskin and K. Qamhieh, Effective Macroion Charge and Stability of Highly Asymmetric Electrolytes at Various Salt Conditions, J. Phys. Chem. B 107, 8022 (2003).

[6] A. Martín-Molina, M. Quesada-Pérez, F. Galisteo-González and R. Hidalgo-Álvarez, Probing charge inversion in model colloids: electrolyte mixtures of and monovalent counterions, J. Phys.: Condens. Matter 15, S3475 (2003).

[7] M. Quesada-Pérez, A. Martín-Molina and R. Hidalgo-Álvarez, Simulation of Electric Double Layers Undergoing Charge Inversion: Mixtures of Mono- and Multivalent Ions, Langmuir 21, 9231 (2005).

[8] A. Martín-Molina, J. A. Maroto-Centeno, R. Hidalgo-Álvarez and M.

Quesada-Pérez, Testing one component plasma models on colloidal overcharging phenomena, J. Chem. Phys. 125, 144906 (2006).

[9] A. Martín-Molina, M. Quesada-Pérez and R. Hidalgo-Álvarez, Electric double layers with electrolyte mixtures: integral equations theories and simulations, Phys. Chem. B 110, 1326 (2006).

[10] B. Jönsson, H. Wennerström, A. Nonat and B. Cabane, Onset of Cohesion in Cement Paste, Langmuir 20, 6702 (2004).

[11] B. Jönsson, A. Nonat, C. Labbez, B. Cabane and H. Wennerström, Controlling the Cohesion of Cement Paste, Langmuir 21, 9211 (2005).

[12] K. Wang, Y.-X. Yu, G.-H. Gao and G.-S. Luo, Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems, J. Chem. Phys. 123, 234904 (2005).

[13] K. Wang, Y.-X. Yu, G.-H. Gao and G.-S. Luo, Preferential interaction between DNA and small ions in mixed-size counterion systems: Monte Carlo simulation and density functional study, J. Chem. Phys. 126, 135102 (2007).

[14] D. Gillespie, D; Boda, D; He, Y; Apel, P; Siwy, ZS, Synthetic nanopores as a test case for ion channel theories: The anomalous mole fraction effect without single filing, Biophys. J. 95, 609 (2008).

[15] Y. He, D. Gillespie, D. Boda, I. Vlassiouk, R. S. Eisenberg, Z. S. Siwy, Tuning transport properties of nanofluidic devices with local charge inversion, JACS 131, 5194 (2009).

[16] P. Debye and E. Hückel, Z. Physik 24, 185 (1923).

[17] G. Gouy, J. Phys. 9, 457 (1910).

[18] D. L. Chapman, Philos. Mag. 25, 475 (1913).

[19] B. V. Derjaguin and L. Landau, Acta Physicochim. USSR 14, 633 (1941).

[20] E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, (Elsevier, Amsterdam, 1948).

[21] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E.

Teller, Equations of State Calculations by Fast Computing Machines, J. Chem. Phys.

21, 1087 (1953).

[22] G. E. Norman and V. S. Filinov, High. Temp. USSR 7, 216 (1969).

[23] D. J. Adams, Chemical potential of hard-sphere fluids by Monte Carlo methods, Mol. Phys. 28, 1241 (1974).

[24] D. J. Adams, Mol. Phys. 29, 307 (1975).

[25] J. P. Valleau and L. K. Cohen, Primitive model electrolytes. I. Grand canonical Monte Carlo simulations, J. Chem. Phys. 72, 5935 (1980).

[26] B. R. Svensson and C. E. Woodward, Widom's method for uniform and non-uniform electrolyte solutions, Mol. Phys. 64, 247 (1988).

[27] P. Sloth and T. S. Sørensen, Monte Carlo simulations of single-ion chemical potentials. Preliminary results for the restricted primitive model, Chem. Phys. Lett.

143, 140 (1988).

[28] P. Sloth and T. S. Sørensen, Monte Carlo simulations of single ion chemical potentials. Results for the unrestricted primitive model, Chem. Phys. Lett. 146, 452 (1988).

[29] T. S. Sørensen, J. B. Jensen and P. Sloth, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, J. Chem. Soc., Faraday Trans. 85, 2649 (1989).

[30] P. Sloth and T. S. Sørensen, Monte Carlo calculations of chemical potentials in ionic fluids by application of Widom's formula: Correction for finite-system effects, Chem. Phys. Lett. 173, 51 (1990).

[31] A. Malasics, D. Gillespie and D. Boda, Simulating prescribed particle densities in the grand canonical ensemble using iterative algorithms, J. Chem. Phys.

128, 124102 (2008).

[32] A. Malasics, D. Boda, An efficient iterative grand canonical Monte Carlo algorithm to determine individual ionic chemical potentials in electrolytes, J. Chem.

Phys., 132, 244103 (2010).

[33] F. L. Román, A. Gonzáles, J. A. White and S. Velasco, Am. J. Phys. 67, 1149 (1999).

[34] L. Blum, Mean spherical model for asymmetric electrolytes I: method of solution, Mol. Phys. 30, 1529 (1975).

[35] L. Blum and J. S. Hoye, Mean spherical approximation for asymmetrical electrolytes II: thermodynamic properties and the pair correlation function, J. Phys.

Chem. 81, 1311 (1977).

[36] L. Blum and Y. Rosenfeld, Relation between the free energy and the direct correlation function in the mean spherical approximation, J. Stat. Phys. 63, 1177 (1991).

[37] W. Nonner, L. Catacuzzeno and B. Eisenberg, Binding and Selectivity in L-Type Calcium Channels: A Mean Spherical Approximation, Biophys. J. 79, 1976 (2000).

[38] B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential Cell Biology: An introduction to the molecular biology of the cell (1997).

[39] D. Gillespie, L. Xu, Y. Wang and G. Meissner, (De)constructing the Ryanodine Receptor: Modeling Ion Permeation and Selectivity of the Calcium Release Channel, J. Phys. Chem. B 109, 15598 (2005)..

[40] Y. Wang, L. Xu, D. Pasek, D. Gillespie and G. Meissner, Probing the Role of Negatively Charged Amino Acid Residues in Ion Permeation of Skeletal Muscle Ryanodine Receptor, Biophys. J. 89, 256 (2005).

[41] D. A. Doyle, J. R. Morais Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L.

Cohen, B. T. Chait and R. MacKinnon, The Structure of the Potassium Channel:

Molecular Basis of K+ Conduction and Selectivity, Science 280, 69 (1998).

[42] E. Neher and B. Sakmann, The patch clamp technique, Scientific American 266, 44 (1992).

[43] W. Almers, E. W. McCleskey and P. T. Palade, A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions, J. Physiol. 353, 565 (1984).

[44] W. Almers and E. W. McCleskey, Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore, J. Physiol. 353, 585 (1984).

[45] P. T. Ellinor, J. Yang, W. A. Sather, J.-F. Zhang and R. W. Tsien, Ca2+

Channel Selectivity at a Single Locus for High-Affinity Ca2+ Interactions Neuron 15, 1121 (1995).

[46] M. R. Nelson, E. Thulin, P. A. Fagan, S. Forsén, W. J. Chazin, The EF-hand domain: a globally cooperative structural unit, Protein Sci. 11, 198 (2002).

[47] S. H. Heinemann, H. Terlau, W. Stuhmer, K. Imoto and S. Numa, Calcium channel characteristics conferred on the sodium channel by single mutations, Nature 356, 441 (1992).

[48] B. A. Biagi and J. J. Enyeart, Gadolinium blocks low- and high-threshold calcium currents in pituitary cells, Am. J. Physiol Cell Phys. 259, C515 (1990).

[49] J. B. Lansman, Blockade of current through single calcium channels by triva-lent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit, J.

Gen. Physiol. 95, 679 (1990).

[50] A. Lacampagne, F. Gannier, J. Argibay, D. Garnier, J.-Y. Le Guennec, The stretch-activated ion channel blocker gadolinium also blocks L-type calcium

chan-nels in isolated ventricular myocytes of the guinea-pig, Biochim. Biophys. Acta Biomembr. 1191, 205 (1994).

[51] A. M. Beedle, J. Hamid and G. W. Zamponi, Inhibition of transiently expressed low- and high-voltage-activated calcium channels by trivalent metal cations, J Membr Biol. 187, 225 (2002).

[52] C. A. Obejero-Paz, I. P. Gray and S. W. Jones, Permeation and Gating in CaV3.1 (1G) T-type Calcium Channels Effects of Ca2+, Ba2+, Mg2+, and Na+, J. Gen.

Phys. 124, 631 (2004).

[53] O. Babich, J. Reeves and R. Shirokov, Block of CaV1.2 Channels by Gd3+

Reveals Preopening Transitions in the Selectivity Filter, J. Gen. Physiol 129, 461 (2007).

[54] O. Babich, V. Matveev, A. L. Harris and R. Shirokov, Ca2+-dependent Inactivation of CaV1.2 Channels Prevents Gd3+ Block: Does Ca2+ Block the Pore of Inactivated Channels?, J. Gen. Physiol 129, 477 (2007).

[55] A. Malasics, D. Gillespie, W. Nonner, D. Henderson, B. Eisenberg, D. Boda, Protein structure and ionic selectivity in calcium channels: Selectivity filter size, not shape, matters, Biochimica et Biophysica Acta (BBA) – Biomembranes, 1788, 2471 (2009).

[56] T. M. Reed and K. E. Gubbins, Applied Statistical Mechanics (McGraw-Hill, New York, 1973).

[57] M. P. Allen and D. J. Tildesely, Computer Simulation of Liquids, Calderon Press, Oxford, (1987).

[58] D. Boda, D. D. Busath, D. Henderson and S. Sokolowski, Monte Carlo simulations of the mechanism for channel selectivity: The competition between volume exclusion and charge neutrality, J. Phys. Chem. B 104, 8903 (2000).

[59] D. Boda, D. Henderson and D. D. Busath, Monte Carlo study of the effect of ion and channel size on the selectivity of a model calcium channel, J. Phys. Chem. B 105, 11574 (2001).

[60] D. Boda, D. Henderson and D. D. Busath, Monte Carlo study of the selectivity of calcium channels: improved geometrical model, Mol. Phys. 100, 2361 (2002).

[61] D. Boda, D. D. Busath, B. Eisenberg, D. Henderson and W. Nonner, Monte Carlo simulations of ion selectivity in a biological Na channel: Charge-space competition, Phys. Chem. Chem. Phys. (PCCP) 4, 5154 (2002).

[62] D. Boda, D. Gillespie, W. Nonner, D. Henderson and B. Eisenberg, Computing induced charges in inhomogeneous dielectric media: Application in a Monte Carlo simulation of complex ionic systems, Phys. Rev. E Stat Nonlin Soft Matter Phys. 69, 046702 (2004).

[63] D. Boda, M. Valisko, B. Eisenberg, W. Nonner, D. Henderson and D.

Gillespie, The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel, J. Chem. Phys. 125, 034901 (2006).

[64] D. Boda, M. Valisko, B. Eisenberg, W. Nonner, D. Henderson and D.

Gillespie, The combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel, Phys. Rev. Letters 98, 168102 (2007).

[65] D. Boda, M. Valisko, D. Henderson, B. Eisenberg and W. Nonner, Ion selectivity in L-type calcium channels by electrostatics and hard-core repulsion, J.

Gen. Physiol. 133, 497 (2009).

[66] B. Corry, T. Allen, S. Kuyucak, and S. Chung, Mechanisms of Permeation and Selectivity in Calcium Channels, Biophys. J. 80, 195 (2001).

[67] B. Corry, M. Hoyles, T. Allen, M. Walker, S. Kuyucak, and S. Chung, Reservoir Boundaries in Brownian Dynamics Simulations of Ion Channels, Biophys.

J. 82, 1975 (2002).

[68] B. Corry, T. Vora, and S. Chung, Electrostatic basis of valence selectivity in cationic channels, BBA, 1711, 72 (2005).

[69] B. Corry and S. Chung, Mechanisms of valence selectivity in biological ion channels, Cell. Mol. Life Sci. 63, 301 (2006).

[70] V. Krishnamurthy and S. Chung, Large-Scale Dynamical Models and Estimation for Permeation in Biological Membrane Ion Channels, Proc. IEEE, 95, 853 (2007).

[71] D. Boda, W. Nonner, D. Henderson, B. Eisenberg and D. Gillespie, Volume exclusion in calcium selective channels, Biophys. J. 94, 3486 (2008).

[72] M. Vrouenraets, J. Wierenga, W. Meijberg and H. Miedema, Chemical Modification of the Bacterial Porin OmpF: Gain of Selectivity by Volume Reduction, Biophys. J. 90, 1202 (2006).

[73] H. Miedema, M. Vrouenraets, J. Wierenga, D. Gillespie, B. Eisenberg, W.

Meijberg and W. Nonner, Ca2+ Selectivity of a Chemically Modified OmpF with Reduced Pore Volume, Biophys. J. 91, 4392 (2006).

[74] D. Boda, W. Nonner, M. Valiskó, D. Henderson, B. Eisenberg and D.Gillespie, Steric Selectivity in Na Channels Arising from Protein Polarization and Mobile Side Chains, Biophys. J. 93, 1960 (2007).

[75] D. Gillespie and D. Boda, The anomalous mole fraction effect in calcium channels: A measure of preferential selectivity, Biophys J. 95, 2658 (2008).

[76] G. Rutkai, T. Kristóf and D. Boda, Relating binding affinity to dynamical selectivity from dynamic Monte Carlo simulations of a model calcium channel, J.

Phys. Chem. Lett. 14, 2179 (2010).

[77] D. Boda, D. Gillespie, B. Eisenberg, W. Nonner and D. Henderson, NATO Science Series: II. Mathematics, Physics and Chemistry. 206 (2004).

[78] D. Gillespie, J. Giri and M. Fill, Reinterpreting the Anomalous Mole Fraction Effect: The Ryanodine Receptor Case Study, Biophys. J. 97, 2212 (2009).

[79] N. S. Y and B. Roux, Importance of Hydration and Dynamics on the Selectivity of the KcsA and NaK Channels, J. Gen. Physiol. 129, 135 (2007).

[80] S. Varma and S. B. Rempe, Tuning Ion Coordination Architectures to Enable Selective Partitioning, Biophys. J. 93, 1093 (2007).

[81] G. V. Miloshevsky and P. C. Jordan, Conformational Changes in the Selectivity Filter of the Open-State KcsA Channel: An Energy Minimization Study, Biophys. J. 95, 3239 (2008).

[82] F. P. W., K. Tai and S. M. S., The Selectivity of K+ Ion Channels: Testing the Hypotheses, Biophys. J. 95, 5062 (2008).

[83] D. L. Bostick, A. K. and B. C. L., K+/Na+ Selectivity in Toy Cation Binding Site Models Is Determined by the ‘Host’, Biophys. J. 96, 3887 (2009).

[84] G. M. Lipkind and H. A. Fozzard, Modeling of the Outer Vestibule and Selectivity Filter of the L-Type Ca2+ Channel, Biochem. 40, 6786 (2001).

[85] G. Barreiro, C. R. W. Guimaraes and R. B. de Alencastro, A molecular dynamics study of an L-type calcium channel model, Protein Eng. 15, 109 (2002).

[86] G. Barreiro, C. R. W. Guimaraes and R. B. de Alencastro, Potential of mean force calculations on an L-type calcium channel model, Protein Eng. 16, 209 (2003).

[87] K. E. Cooper, P. Y. Gates and R. S. Eisenberg, Diffusion theory and discrete rate constants in ion permeation, J. Membr. Biol. 106, 95 (1988).

[88] R. S. Eisenberg, Computing the Field in Proteins and Channels, J. Membr.

Biol. 150, 1 (1996).

[89] W. Nonner and B. Eisenberg, Ion Permeation and Glutamate Residues Linked by Poisson-Nernst-Planck Theory in L-Type Calcium Channels, Biophys. J. 75, 1287 (1998).

[90] W. Nonner, D. P. Chen and B. Eisenberg, Progress and Prospects in Permeation, J. Gen. Physiol. 113, 773 (1999).

[91] A. Fabiato and F. Fabiato, Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells., J. Physiol 75, 463 (1979).

[92] A. Fabiato, Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands, Methods Enzymol. 157, 378 (1988).

[93] Z. Máté, I. Szalai, D. Boda and D. Henderson. Heat capacities of the dipolar Yukawa model polar fluid. Mol. Phys., 2010. in press.

[94] D. Henderson and D. Boda. Insights from theory and simulation on the elec-trical double layer. Phys. Chem. Chem. Phys., 11, 3822 (2009).

[95] D. Boda, M Valiskó, D. Henderson, D. Gillespie, B. Eisenberg and M. K.

Gilson. Ions and inhibitors in the binding site of HIV Protease: Comparison of Monte Carlo simulations and the linearized Poisson-Boltzmann theory. Biophys. J., 96, 1293, (2009).

[96] J. Giri, J. Fonseca, D. Boda, D. Henderson and B. Eisenberg, Self-organized models of selectivity in calcium channels. Phys. Biol., 2010. submitted.