• Nem Talált Eredményt

Electrophysiological alterations in a complex rat model ofschizophrenia Behavioural Brain Research

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Electrophysiological alterations in a complex rat model ofschizophrenia Behavioural Brain Research"

Copied!
8
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Behavioural Brain Research

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research report

Electrophysiological alterations in a complex rat model of schizophrenia

Gyongyi Horvath

a,∗

, Zita Petrovszki

b

, Gabriella Kekesi

a

, Gabor Tuboly

c

, Balazs Bodosi

a

, Janos Horvath

a

, Peter Gombköt ˝o

a

, Gyorgy Benedek

a

, Attila Nagy

a

aDepartmentofPhysiology,FacultyofMedicine,UniversityofSzeged,Dómtér10.,H-6720Szeged,Hungary

bInstituteofPhysicalEducationandSportMedicine,JuhászGyulaFacultyofEducation,UniversityofSzeged,Hattyassor10.,H-6725Szeged,Hungary

cDepartmentofNeurology,FacultyofMedicine,UniversityofSzeged,Semmelweisu.6.,H-6720Szeged,Hungary

h i g h l i g h t s

•EEGphenotypecharacterizationinaratsubstrainrelatedtoschizophrenia/autism.

•ERPsshowedsignificantchangesinP2latencyandN1amplitude.

•AcuteketaminetreatmentdidnotcausealterationsinERPs.

•Alteredpowerofoscillationsindifferentfrequencybandswasobserved.

•Ketaminecausedstrain-dependentchangesinthepowerofoscillations.

a r t i c l e i n f o

Articlehistory:

Received18December2015

Receivedinrevisedform25March2016 Accepted29March2016

Availableonline30March2016

Keywords:

Autism

Eventrelatedpotentials Neuronaloscillation Powerspectrumanalysis Ratmodel

Schizophrenia

a b s t r a c t

Background:Psychiatricdisordersarefrequentlyaccompaniedbychangesinbrainelectricaloscilla- tionsandabnormalauditoryeventrelatedpotentials.Thegoalofthisstudywastocharacterizethese parametersofanewratsubstrainshowingseveralalterationsrelatedtoschizophrenia.

Methods:Maleratsofthenewsubstrain,developedbyselectivebreedingaftercombinedsubchronic ketaminetreatmentandpostweaningsocialisolation,andnaiveWistaronesgroup-housedwithoutany interventionswereinvolvedinthepresentstudy.Attheageof3months,animalswereimplantedwith corticalelectroencephalographyelectrodes.Auditoryevokedpotentialsduringpaired-clickstimuliand powerofoscillationindifferentfrequencybandsweredeterminedwithandwithoutacuteketamine (20mg/kg)treatment.

Results:Regardingtheauditoryevokedpotentials,thelatencyofP2wasdelayedandtheamplitudeofN1 peakwaslowerinthenewsubstrain.Thenewsubstrainshowedincreasedpowerofoscillationsinthe theta,alphaandbetabands,whiledecreasedpowerwasdetectedindeltaandgamma2bands(52–70Hz) comparedwithcontrolanimals.Acuteketaminetreatmentincreasedthegamma1band(30–48Hz)power inbothgroups,whileitelicitedsignificantchangesonlyinthenewsubstraininthetotalpowerandin alpha,betaandgamma2bands.

Conclusions:Thevalidationofthetranslationalutilityofthisnewratsubstrainbyelectrophysiological investigationsrevealedthattheseratsshowabnormalitiesthatmaymodelapartoftheneurophysiolog- icaldeficitsobservedinschizophrenia.

©2016ElsevierB.V.Allrightsreserved.

Abbreviations:EEG,electroencephalography;ERP,eventrelatedpotential;NMDAR,N-methyl-d-aspartatereceptor.

Correspondingauthor.

E-mailaddresses:horvath.gyongyi@med.u-szeged.hu(G.Horvath),petrovszki.zita@med.u-szeged.hu(Z.Petrovszki),kekesi.gabriella@med.u-szeged.hu(G.Kekesi), tuboly.gabor@med.u-szeged.hu(G.Tuboly),bodosi.balazs@med.u-szeged.hu(B.Bodosi),horvath.janos@med.u-szeged.hu(J.Horvath),gombpeti@gmail.com(P.Gombköt ˝o), benedek.gyorgy@med.u-szeged.hu(G.Benedek),nagy.attila.1@med.u-szeged.hu(A.Nagy).

http://dx.doi.org/10.1016/j.bbr.2016.03.051 0166-4328/©2016ElsevierB.V.Allrightsreserved.

(2)

1. Introduction

Schizophrenia is a commonneurodevelopmental and highly heritable neuropsychiatric disorder [1,2]. Over the past few decades, researches using electroencephalography (EEG) have identifiedseveral neurophysiologicalalterations in this disease, indicatingneuralcircuitdisruptions.Unfortunately,theresultsare controversial,andtheymaydependonthesubtypeorphaseofthe disease;therefore,itsmodelinginpreclinicalresearchfieldisabig challenge[3–9].Itisarguedthatperfectsimulationofinherently humandiseasesinanimalsmightbeimpossible,buttherecreation ofendophenotypesrelatedtothedisordersisapossibility.There- fore,developinganimalmodelswithabnormalEEGactivitymay helpintheclarificationofthemechanismsinthebackgroundofthis neuropsychiatricdisease[10,11].Previousstudiesusingdifferent rodentmodelsofschizophreniashowedwidelydiversifiedalter- ationsinthepowerofEEGoscillationsandeventrelatedpotentials (ERP)[12–23].

Preclinicalandclinicalstudiesfocusingonpharmacologicaland genomicalchangessupportthehypothesisthathypofunctionofN- methyl-d-aspartatereceptor(NMDAR)signalingcontributestothe pathophysiologyofschizophrenia;therefore,NMDARantagonists, includingketamine,havebeen usedextensivelytoprobe ques- tionsrelatedtoitsneurobiology[24–28].Ketamineadministeredto healthycontrolsinsubanestheticdosemimicsseveralsymptomsof schizophrenia,anditworsensthesesignsinschizophreniapatients [24,29,30].Furthermore,NMDARantagonistsorsilencingofthese receptorsareusedinanimalmodelsofneuropsychiatricdisorders showingseveralalterationsinEEGactivity,too[13,18,25,31–34].

We developed a complex animal model by selective breed- ing based on behavioral alterations after combined subchronic ketaminetreatmentandpostweaningsocialisolation[35,36].Itis thoughtthatselectivebreedingforphenotypicextremesincreases thehomozygosityofgenesthataffecttheselectedtrait,whereby theallelicfrequencyoftrait-irrelevantgenesremainsunaffected [37]. Therefore, animals selectively bred for a behavioral given phenotypeareincreasinglyusedtostudypathophysiologicalmech- anismsunderlyingcertaindisorders.Forexample,ratshavebeen successfullybredforanxiety[38],reducedsensorimotorgating[39]

andforseizuresusceptibility[40].Severalaspectsofschizophre- niawere foundin the newsubstrain, i.e., disturbances in pain sensitivity,sensorygating,memoryfunctions,motoractivityand stereotypicbehaviors[35,36].Ourrecentdataindicatedthatboth heritable and environmental factors (i.e., juvenile social isola- tionandketaminetreatment)areimportantinthegenerationof thebehavioralalterations,butthemostsignificantchangeswere observedafterthecombinationoftreatmentswithselectivebreed- ing[35,36,41].Inordertokeepthenumberofanimalsusedinthe experimentsatminimallevel,wedecidedtocomparetwogroups ofanimals,i.e.,naiveratswithoutanyinterventionandthenew substrainafterjuvenileisolationandsubchronicketaminetreat- ment.In this report, theelectrophysiological phenotypeof this newratsubstrainwascharacterizedbytheinvestigationofERPs, theirgating,andthebasalfrequencybandswithandwithoutacute ketaminetreatment,totestthepotentialusefulnessofthesubstrain instudyingtheneurophysiologicaldeficitsrelatedtoschizophre- nia.

2. Methods

Allexperiments involving animal subjects were carried out withtheapprovaloftheHungarianEthicsCommitteeforAnimal Research(registrationnumber:XIV/03285/2011).Animalsuffering andthenumberofanimalspergroupwerekepttoaminimum.

2.1. Selectivebreedingprocess

Theparadigmforselectivebreedingwasdescribedpreviously [35,36]. Briefly, the parental generation consisted of male and female(10-10)outbredWistarrats.Offspringsoftheratsinthenext generationsweretestedafterweaningwiththetail-flicktest(48C hotwater)toassesspain sensitivity,andthenhousedindividu- allyfor28days.Theanimalsweretreatedwithketamine(Calypsol, RichterGedeonPlc.,Budapest,Hungary;30mg/kgIP,4mL/kg,daily, 5times/week,15injectionsintotal)from5to7weeksofage.Then theanimalswerere-housed(4–5rats/cage)and1weekofrecov- erywasprovidedtothemwithnotreatment.Startingattheage of9weeks,thepainsensitivity,thesensorygatingwithprepulse inhibition,andthecognitivefunctionsandstereotypicbehavioron novelobjectcognitiontestwereassessed(Table1).Animals(5male with10female) withthehighest levelof disturbancesinthese parameterswereusedforselectivebreedingthroughoutseveral generations.

2.2. ExperimentalparadigmforEEGexperiments

Twoexperimentalgroupsof 8–8ratswerecompared:naive socializedmaleratswithoutanyinterventions;andthe17thgen- eration of selectively bred male rats with social isolation and ketaminetreatmentasnewsubstrain.Aftertheabove-mentioned behavioraltests,theanimalswereinvolvedintheEEGexperiments (Table1).

Ratswereanesthetizedwithamixtureofketaminehydrochlo- rideandxylazine(72and8mg/kgintraperitoneally,respectively), andtransferredintoa stereotaxicframe.Afterwards,smallburr holesweredrilledintheirskullforelectrodeplacementaccord- ingtocoordinatesfoundintheratbrainatlas[42].Thetargetarea fortheepiduralstainlesssteelelectrodesandcoordinatesrelative tobregmawerethefollowingatbothsides:recordingelectrodes:

parietalcortex6mmposterior,2mmlateraltobregma;reference electrodes:1.5mmposteriortobregma,2mmlateral,andaground electrode2.5mmposteriortobregma,1mmlateral.Finally,elec- trodeswereplacedinaminiature6-pinconnector,whichwasfixed withdentalcement.

Afterthesurgery,theanimalswereinjectedwithgentamycin (10mg/kg,subcutaneously)topreventinfection,andwerehoused individually.Theywereallowedtorecoverforoneweekwitha 12:12-h light–dark cycle, anambient temperature regulatedat 23C,waterandfoodwithadlibitumaccess.

Onthetestingdays(between8:00AMand12:00PM),animals wereplacedintherecordingchamber(L:34cm,W:14.5cm, H:

33.5cm),recordingcableswereattachedtocommutatorsallowing thefreemovementoftherats,andtheywereallowedtoaccom- modatetothetestenvironmentfor10minwhileauditorystimuli werenotpresent.

Followingtheacclimatization,the20mintestsessionwasini- tiated.ForgenerationofERPstothesensorygatingparadigm,two consecutiveclicks(70dBclickswithbroadspectrumfor5ms:S1 andS2)werepresentedwithinterstimulusintervalof500ms.The intervalbetweenthepairsofclickswas5s.Clicksweredrivenbya computerprogramanddeliveredvialoudspeakers.

Tohabituatetheanimalstothetaskandtominimizethepoten- tialdiscomfort during the tests, three recording sessions were performedonthreeconsecutiveweekswithoutanyintervention.

ThenEEGrecordingswererepeatedafteracuteketamine(20mg/kg intraperitoneally)orvehicle(saline)injectiononthesubsequent two weeks.Eachanimal wasgivenboth injections with7 days apart,andtheorderofvehicleanddrugadministrationwascoun- terbalanced.Aftertheinjections,theratswereplacedintheircage for20minbeforeputtingthemtotherecordingchamberforEEG registration.

(3)

Table1

Experimentalparadigm.

Groups Age(weeks)

3 4 5–7 8 9 10 12 13–15 16–17

Naiverats (n=8) New substrain (n=8)

(PD21) weaningTF test1

group housing social isolation

socialisola- tion+ketamine treatment

group housing

TFtest2 PPItest

NORtest EEG

electrode implanta- tion+recovery (7days)

EEGfor habituation

EEG registration afteracute ketamine/saline treatment Abbreviations:PD—postnatalday;TF—tail-flick;PPI—prepulseinhibition;NOR—novelobjectrecognition;EEG—electroencephalogram.

Fig.1. Eventrelatedpotentials(ERPs)usingthepaired-clickparadigm.

AverageofERPswithSEMinnaiveandnewsubstrainratsinresponsetothefirst (S1)andthesecond(S2)auditorystimuli.Arrowsdenotestimulusonsets.P1,N1 andP2refertoERP-relatedpeaks.

BipolarEEGrecordingswereperformedfrombothsidesofthe skull.Thesignalswereamplifiedwithacustommadeeightchan- nelEEGamplifier(gainsetting:1000) byusingAD8222(Analog DevicesInc.)highperformanceinstrumentationamplifier.Thesig- nalswereonlinefilteredusingthefollowingfiltersettings:high passfilter=0.33Hz;lowpassfilter=155Hz.Theamplifiedandfil- teredsignalswerethendigitizedandrecordedwitha16channel Datawavesystem.Thesamplingrateoftheelectrophysiologicalsig- nalswas5kHz.TherecordedEEGsignalswerestoredonacomputer forsubsequentofflineanalysis.

2.3. Dataanalysis

WecalculatedtheaveragedERPinresponsetoS1and S2to measuretheamplitudes,latenciesoftheresponsesandtheirgating.

TheP1, N1 andP2 componentswere identifiedaccordingly:

P1wasthefirstpositive-goingwave thatoccursintherangeof 10–45msafterstimulus,theN1componentwasthefirstnegative- goingcomponentdirectlyfollowingP1intherangeof20–70ms afterstimulus,and P2wasthesecondpositive-going wavethat occursbetween40and100ms(Fig.1).Theamplitudesandthe latenciesofeachcomponentweredetermined.Gatingwasdefined astheratioofthepeak-to-peakamplitudesofthecorresponding componentsrecordedasthefirstandsecondERPs.Therefore,two segmentswerecalculated:thedifferencebetweenP1andN1and betweenN1andP2,andthemagnitudeofinhibitionwasdefinedas theratiooftheevokedresponses(S2/S1)forbothamplitudes(G1 andG2).

Power density values were calculated by fast Fourier trans- formation (FFT) of artefact-free epochs under condition of 0.61Hz resolution with a Hanning window for 5min peri-

ods before the auditory stimuli in the frequency range of delta(0.6–4Hz),theta(4–8Hz),alpha(8–13Hz),beta(13–30Hz) and gamma1 (30–48Hz), gamma2 (52–70Hz) and gamma3 (71–100Hz)bins/waves.Relativebandpowerswereexpressedas powerratiosofeachfrequencybandtothetotal(z-score).

TheobtainedEEGdatawereanalyzedoff-linewithDatawave system(DataWaveTechnologies,Loveland,CO,USA)andSpike2 (CambridgeElectronicDesign,Cambridge,UK)systems.Dataare expressedasmeans±SEM.Meanvaluesofthedifferentparameters werecomparedwithANOVA,withfactorsgroup,clicksandtreat- ment.Whentheglobaltestwassignificant,theLSDposthoctest wasusedfortheevaluationoftheeffectsofthevariousparameters.

Statistical analysiswasperformedwithStatistica 11.0 software (Statsoft,Tulsa,Oklahoma,USA).Differenceswereconsideredsig- nificantforp<0.05.

3. Results

3.1. Behavioralalterations

Inagreementwithourrecentstudies[35,36],thenaiveandnew substrain ratsinvolved intheEEG experimentsshowedsignifi- cantdifferencesonthebehavioraltests.Thus,thenewsubstrain showedblunted painsensitivity detectedat theageof3 and9 weeks:ANOVArevealedsignificanteffectsofgroup(F(1,14)=12.53;

p<0.05) and time (F(1,14)=87.20; p<0.0001) with significantly longerlatenciesin thenewsubstrainat week9.Impaired sen- sory gating on the prepulse-inhibition test was also present:

ANOVArevealedasignificanteffectofgroup(F(1,14)=5.99;p<0.05) withlowervaluesinthenewsubstrain.ANOVAshowedthatthe newsubstrainspentsignificantlylesstimewiththeexploration of the new object compared to the naive ones (F(1,14)=11.73, p<0.005) inthenovelobjectrecognitiontest. Furthermore,the grooming activityofthenewsubstrainwassignificantlyhigher (F(1,14)=5.92, p<0.05) that was accompanied by lower rearing activity(F(1,14)=10.71,p<0.01).

Qualitativeobservationsindicatedthattheratshadmildimpair- ments in coordination and locomotor activity following acute ketaminetreatmentduringtheEEGrecordings.

3.2. AnalysisofERPresponses

RegardingthelatencyofP1andN1peaks,therewerenosignif- icantdifferencesbetweenthegroups,thetreatments,thefirstand secondclicksandtheirinteractions(dataarenotshown).Regard- ingthelatencyofP2,ANOVAshowedasignificanteffectofgroup (F(1,28)=14.99;p<0.001),thusthenewsubstrainhadlongerlaten- ciescomparedtothecontrolgroup,butneitherketaminetreatment northeorderoftheclicksinfluencedit(Fig.2A).

Thesecondclickinducedloweramplitudesofallthepeakscom- paredtothefirstoneinbothgroups,andthisdecreasewasnot influencedbyacuteketaminetreatment.Regardingthedifferences betweenthetwogroupsforbothclicksnosignificantdifferences wereobservedintheamplitudeofP1andP2peaks(dataarenot

(4)

Fig.2.Alterationsinthepeaksofeventrelatedpotentials.

MeanP2latencies(A)andN1amplitudes(B)topairedstimuliinnaiveandnewsubstrainratsaftersalineorketaminetreatment.Thesymbol*signssignificantdifferences comparedtonaivegroup.Thesymbol+denotessignificantdifferencesbetweenresponsestoS1andS2stimuli.

shown),butN1peakwassignificantlylowerinthenewsubstrain comparedtothecontrolone;thus,ANOVAshowedasignificant effectofgroup(F(1,28)=11.44;p<0.005)(Fig.2B).

Asregardsthedegreeofgatingtherewasnosignificantdiffer- encebetweenthetwogroupsintheG1value(G1naive:0.53±0.03 vs.G1newsubstrain:0.51±0.09),whileG2washigherinthecon- trolgroup,thusthedegreeofthegatingwaslowerintheseanimals (G2naive:0.63±0.04vs.G2newsubstrain:0.49±0.03;p<0.05).

Acuteketaminetreatmenthadnosignificantinfluenceonthese parameters(G1naive0.55±0.03vs.G1newsubstrain0.42±0.05;

andG2naive:0.52±0.04vs.G2newsubstrain:0.48±0.04).

3.3. Oscillatoryactivity

Asregardsthetotalpowerofthewaves,ANOVAshowedasignif- icanteffectofgroup(F(1,28)=9.15;p<0.01).Post-hoctestrevealed thatthenewsubstrainhadsignificantlyhighertotalpowerafter ketaminetreatmentcomparedtothecontrolanimals(Fig.3A).

Regardingthedeltaband,ANOVAshowedasignificanteffectof group(F(1,28)=8.84;p<0.01);thus,thenewsubstrainhadlower powerinthisfrequencyband,whileketaminedidnotinfluence significantlythisparameterineithergroup(Fig.3B).

Asregardsthethetaband,ANOVAshowedasignificanteffectof group(F(1,28)=6.12;p<0.05;alpha);therefore,thenewsubstrain hadhigherpowerinthisfrequencybandwithoutketaminetreat- ment,butketaminedecreased thedifferencesbetweenthetwo groups(Fig.3B).

Asregardsthealphaband,ANOVAshowedasignificanteffectof group(F(1,28)=4.89;p<0.05)andtreatment(F(1,28)=8.37;p<0.01);

thus,thenewsubstrainhadhigherpowerinthisfrequencyband that was significantly decreased by acute ketamine treatment (Fig.3C).

Asregardsthebetaband,ANOVAshowedasignificanteffectof treatment(F(1,28)=10.41;p<0.005)andthegroupandtreatment interaction(F(1,28)=5.21;p<0.05); therefore,thenew substrain hadhigher powerinthis frequency bandthat wassignificantly decreasedbyacute ketaminetreatmentsimilarly toalphaband (Fig.3C).

Asregardsthegamma1band,ANOVAshowedasignificanteffect oftreatment(F(1,28)=11.81;p<0.005),thus,acuteketamineinjec- tionsignificantlyincreasedthepowerofthisbandinbothgroups (Fig.3D).

Asregardsthegamma2band,ANOVAshowedasignificanteffect oftreatment(F(1,28)=5.45;p<0.05)andthegroupandtreatment interaction(F(1,28)=6.22; p<0.05); therefore,the newsubstrain had lower powerin this frequency band that wassignificantly increasedbyacuteketaminetreatment(Fig.3D).Asregardsthe gamma3waves,nosignificanteffectswereobserved(Fig.3D).

4. Discussion

Theelectrophysiologicalvalidation ofthetranslationalutility ofthisnewratsubstrainrevealedthattheseanimalsshowedsev- eralneurophysiologicalabnormalitiesobservedinschizophrenia.

ThelatencyoftheP2peakswasprolonged,andtheamplitudeof N1responsedecreased;however,thegatingwasnotimpairedin theseanimalsinthedouble-clickparadigm.Furthermore,theacute treatmentwithasubanesthetic doseof ketaminedidnotresult in significantalterations in ERPparameters. The newsubstrain showedincreasedpowerofoscillationsinthetheta,alphaandbeta ranges,whiledecreasedpowerwasdetectedindeltaandgamma2 bands compared withthecontrol animals.Ketamine treatment increasedthegamma1bandpowerinbothgroups,whileitcaused significantchangesonlyinthenewsubstraininthetotalpower andinalpha,betaandgamma2bands,suggestingtheenhanced sensitivityforthisdrug.

Paired-click paradigm is a standard method used to assess sensorygating[43].ERPinhumanstudieshasapositivedeflec- tionoccurringapproximately50msfollowingtheonsetofsensory stimulation(P50),whichisgeneratedprimarilyintheauditorytha- lamusandtemporalcortex[44,45].TheN100component,alarge negativedeflection,occursfollowingtheP50responseoriginated mainlyfromtheprimaryauditorycortex[46].Thesecondposi- tivedeflectionthatemergesapproximately200msaftersensory stimulation(P200)isgeneratedbytheassociationcortexreflect- inghigher-orderintegrationandinterpretationofsensorystimuli.

TheERPwaveformsobtainedinrodentsshowverysimilarchar- acteristicstohumanoneswiththeexceptionthatthelatenciesof therodentERParesignificantlyshorter[4].Thus,ERPsinrodent typicallyshowapositivedeflectionbetween10and 30ms(P1), anegativedeflectionbetween30and 50ms(N1),and asecond positivedeflectionbetween50and100ms(P2)(Fig.1).

ReducedpeakamplitudesoftheauditoryERParewellrepli- catedinschizophrenicpatients[43,45,46],andhavebeenobserved in multiple relevant rodent models [19], but no changes in

(5)

Fig.3. BasalEEGpowerindifferentfrequencybands.

Itwasrecordedfromratparietalcortexinnaiveandnewsubstrainratsaftersalineorketaminetreatment.(A)Totalpower;(B)deltaandthetabands;(C)alphaandbeta bands;(D)gamma1-3bands.*Signssignificantdifferencescomparedtonaivegroup.Thesymbol#denotessignificantdifferencesbetweenacutesalineandketamine treatments.

theseparameterswerealsoreported[44,46].Ketamineexposure decreasedtheamplitudeofERPinseveralhumanandanimalstud- ies[12,21,34,46,47],but contradictory resultsare alsoavailable [48]; the latteris in agreement withourresults. It seemsthat theP50 responseshavelimitedutilitiesasaclinicalorresearch tool;however, reductionin N100amplitudeis widelyreported inschizophreniaasanendophenotypewithastrongheritability, representingdeficitsininitialsensoryprocessingandearlyatten- tion[46].Therefore,thechangeinN1peakamplitudeinrodents may bea potentialbiomarker for schizophrenia that hasbeen detectedindisease-relevanttransgenicmiceandalsoinducedby acuteketaminetreatment[43,46,48].ThedecreasedN1response, observedinoursubstrain,isinagreementwiththesestudies,which suggeststhat this substrainmaysimulateschizophrenia in this respect.AmplitudeoftheP200/P2isreducedinschizophrenia,after acuteexposuretoketamineinhealthycontrolsandrodents,how- ever,wedidnotdetectitinoursubstrain,whichmightbedueto thedifferencesintheapplieddoseorthestrain[46].

EEG recordings in healthy humans exhibit habituation to repeated stimuli; thus the amplitude of the auditory evoked potentialismarkedlyattenuateduponthesecondclickstimulus comparedwiththefirstone[5,44,45].Thesensorygatingparadigm hasbeenfrequentlyusedtostudyneurophysiologicalprocesses inschizophrenia,however,ERP-basedsensorygatingfindingsin

this diseasearesomehowdiverse;severalstudiesshowdeficits [4,45,46,49,50],whilesomearenegative,asitwasfoundin the newsubstrain[51–53].Theineffectivityofbothacuteandchronic ketaminetreatmentontheERPgating,inagreementwithourdata, indicatesthatNMDAreceptorsmaynotbecriticallyinvolvedin itsgeneration[12,47,54–56].Altogether,thealterationsobserved intheERPsinoursubstrainshowedlimitedcorrelationwiththe humanschizophrenicdata(decreasedamplitudeofN1).

Several neural oscillatory abnormalities have been demon- strated in schizophrenia that may contribute to the abnormal sensory and cognitive performance [1,3,7–9,46,57,58]. Neural oscillationsdependonthekineticsofinhibitory(GABAergic)and excitatory(glutamatergic)synapticinteractions,andtheineffec- tiveinhibitory controlof sensoryprocessing ischaracteristic in this disease [3,16,17,47,59–61]. Because of the prominent role of gamma-bandactivityin cognitionduringnormal brainfunc- tioning,therehasbeenaparticularfocusontheinvestigationof high-frequencyactivityinpatientpopulations[46].Fast-spiking, parvalbumin-positiveGABAergicneuronsplayapivotalroleinthe primarygenerationofhigh-frequencyoscillationsandtheirsyn- chronization, whereas glutamatergic pyramidalneurons appear tocontroltheirstrength, duration,andlong-rangesynchroniza- tionactingprimarilyviaNMDARs[3,18,32,46,59,61].Manyhuman studiesobservedreducedgammaoscillatoryactivity,whichmay

(6)

reflect the deficits in cognitive and sensory processing related to negative symptoms in schizophrenia [3,47,57,62,63]. How- ever,therearecontroversialfindingofincreasedgammaactivities in schizophrenia as well,and it is reportedly relevant to posi- tivesymptoms(hallucination, delusion)[9,25,64–67].Abnormal gammaactivityhasbeenreportedinnumerousanimalmodelsof schizophrenia,too,e.g.,silencingoftheGABAergicinterneurons andhypofunctionofNMDARsignalingisaccompaniedbyaltered oscillatorypowerparticularlyinthegammarange[17,32,46,68].

ChronicNMDARantagonisttreatmentmaycausedecreasedoscil- latorypowerseveralweeksormonthsafterthecessationofthe treatment,suggestinglong-lastingconsequencesofsuchaninter- vention[12,21,69].Thus,thedecreasedgammapowerbetween52 and70Hz inournewsubstrainmightbedue,atleastpartially, tochronicketaminetreatment.Regardingtheacutedrugeffect, inagreementwithourresults,significantlyelevatedgammaband oscillationshavebeenobservedinbothhumanandanimalstudies, reflectingacorticalhyperglutamatergicstatethroughGABAergic disinhibition,leadingtoamild shiftintheexcitation/inhibition balancetowardexcitation[12,16,47,58,70–73].

Betaoscillations,lessexploredinschizophrenia,arebelieved tobegeneratedbroadlyacrossmultipleneocorticalstructuresand areinvolvedintheadaptationtorepetitivesensorystimuli,atten- tion,andsynchronizationoflargeensemblesofneurons[3,46].In agreementwithresultsobservedinthenewsubstrain,betaband powerincreases in patientswithschizophrenia, which maybe duetoglobalcorticalhyperexcitabilityorattentiondisturbances observedinthesepatients[74].Asregardsthealphabandoscilla- tion,itisrelatedprimarilytothethalamus;thus,thealterationsin thisfrequencybandmaysuggestdysfunctionoftheinhibitorytha- lamicneurons[74,75].Differentlaboratorieshavereportedeither higheralphapowerassociatedwithnegativesymptoms[46,66,74]

or reduced alpha bandpower in a phase-independent manner [46,74],thustheenhancedpowerobservedinournewsubstrain mightberelatedtothenegativesymptomsofschizophrenia.

Abnormalitiesinlowerfrequencyoscillations(deltaandtheta) arealsoprominentin thisdisease[7,8,76,77].Thecorticaldelta band oscillation originates from the reticular nucleus of the thalamus, where predominantly parvalbumin-positive GABAer- gicneuronsarepresent[78].Theycanbepartiallybuttonically activatedviaNMDARs, thereby regulatingtheactivityof thala- micrelayneuronsprojectingtotheprefrontalcortex.Thetheta frequency range is associated withcognition/memory function, where cortico-hippocampal circuits are key generators of the rhythm[59].Bothdeltaandthetabandchanges dependonthe phaseofschizophrenia,i.e.,patientswithpositivesignsshowno- changesordecreaseintheseparameters,whileinnegativephase of schizophrenia increases were detected [25,65,66,74,77]. Our modelshoweddecreaseddeltaactivity,whichmightsimulatethe positivephaseofschizophrenia,whiletheenhancedthetapower canindicatethenegativeone.In contrasttoourfindings,most studiesshowsignificantlyreducedlow-frequencyoscillationsafter acuteketaminetreatment[12,16,47,58,69–73],andthisdiscrep- ancymightbeexplainedbythedifferencesintheapplieddoses.

Asany rodent model of a complex humanneuropsychiatric disorder, our model has a number of shortcomings. The het- erogeneity of this disease and the overlap in several aspects withotherneuropsychiatric diseases,especially autism,further complicatestheabilitytodiscernthespecificityofagiven pre- clinical model [60,79,80]. Although autism and schizophrenia are clearly distinct disorders, they share a significant number ofcommonclinical characteristics,includinggenetics, epidemi- ology (e.g., prenatal infection, maternal stress, and perinatal hypoxia), behavioral phenotypes (e.g., impairments in social and cognitive behaviors, communicative function, and stereo- typedbehaviors), neuroimagingand neurophysiologicalfindings

(e.g.,interneuron dysfunctionor disrupted excitation/inhibition balance)[1,60,79,81,82].Furthermore,hypofunctionofN-methyl- d-aspartate receptor (NMDAR) signaling contributes to the pathophysiology of both diseases [83–85]. NMDAR1 hypomor- phicmicedisplay both schizophrenia- and autism-like changes in social and cognitivebehaviorsand in theoscillatoryactivity [13,18,32–34].Mostofthebehavioralalterationsobservedinthis newsubstrain can alsobe detectedin autism [81,86–88],sim- ilarly, the observed electrophysiological changes in our model mightsimulateseveralalterationsdetectedinboththeautismand schizophreniaand maycontributetotheabnormalsensoryand cognitiveperformance [1,3,7–9,46,57,58]. Especially,thesignifi- cantlyenhancedlatencyintheP2responsesinthenewsubstrain correlateswithhumanstudiesinvolvingautisticpatientsandits animalmodelswithoutinfluencingpeakamplitude[18,85,89–91].

Since most of the abnormalities overlap in these two disor- ders, thesealterations regarding theEEGoscillationsshouldbe accompaniedbyothermorespecificsignsforrelevantdiagnosis [1,17,18,32,46,60,68,74,82,85,90,92,93].

5. Conclusion

Our substrain wasoriginallydeveloped asa complex model ofschizophrenia,andhasbeenextensivelyinvestigatedassuch;

however,theresultsindicated that theseratsexhibited several autism-likebehavioral andneurophysiologicalphenotypicalter- ations. It also highlights the challenge of modeling a complex humanbehavioraldisorderinrodents,sinceasitwasmentioned above,mostofthesebiomarkersarenon-specifictothesediseases.

Itcanbeconcludedthatthissubstrainproduceslong-lastingalter- ationsonERPandEEGoscillationsafterjuvenilesocialisolation andsubchronicketaminetreatment.Theseresultsarepartiallyin agreementwithclinicaldata,whichsuggeststhatthismodelpro- videsalimitedrepresentationofdisturbancesobservedinEEGof schizophrenicand/orautisticpatients.Althoughthestrengthsand weaknessesofthis model shouldbeevaluatedin thefutureby molecularbiologicalmethods, too,we concludethatourmodel mayprovideadditionalopportunityforthetranslationalresearch oftheseneuropsychiatricdisorders.

Acknowledgements

FundingforthisstudywasprovidedbytheHungarianResearch Grant(OTKA,K83810),TÁMOP-4.2.2.B-15/1/KONV-2015-0006and Hungarian Brain Research Program Grant KTIA13NAP-A-I/15.

Thesegrantshadnofurtherroleinstudydesign,incollection,anal- ysisandinterpretationofdata,inthewritingofthereport,andin thedecisiontosubmitthepaperforpublication.

TheauthorswishtothankRobertAverkinandTamásNagypál fortheirparticipationinelectrophysiologicalsetupandrecordings, AgnesTandariforherexcellenttechnicalassistanceandaregrateful toCsillaKeresztesforthelinguisticreviewofthemanuscript.

References

[1]D.C.Rojas,L.B.Wilson,Gamma-bandabnormalitiesasmarkersofautism spectrumdisorders,Biomark.Med.8(2014)353–368.

[2]A.H.C.Wong,H.H.M.VanTol,Schizophrenia:fromphenomenologyto neurobiology,Neurosci.Biobehav.Rev.27(2003)269–306.

[3]P.J.Uhlhaas,W.Singer,High-frequencyoscillationsandtheneurobiologyof schizophrenia,DialoguesClin.Neurosci.15(2013)301–313.

[4]L.E.Adler,E.Pachtman,R.D.Franks,M.Pecevich,M.C.Waldo,R.Freedman, Neurophysiologicalevidenceforadefectinneuronalmechanismsinvolvedin sensorygatinginschizophrenia,Biol.Psychiatry17(1982)639–654.

[5]D.L.Braff,M.A.Geyer,Sensorimotorgatingandschizophrenia:humanand animalmodelstudies,Arch.Gen.Psychiatry47(1990)181–188.

[6]D.L.Braff,M.A.Geyer,N.R.Swerdlow,Humanstudiesofprepulseinhibitionof startle:normalsubjects,patientgroups,andpharmacologicalstudies, Psychopharmacology(Berl)156(2001)234–258.

(7)

[7]S.R.Sponheim,B.A.Clementz,W.G.Iacono,M.Beiser,RestingEEGin first-episodeandchronicschizophrenia,Psychophysiology31(1994)37–43.

[8]S.R.Sponheim,W.G.Iacono,P.D.Thuras,S.M.Nugent,M.Beiser,Sensitivity andspecificityofselectbiologicalindicesincharacterizingpsychoticpatients andtheirrelatives,Schizophr.Res.63(2003)27–38.

[9]E.Basar,Brainoscillationsinneuropsychiatricdisease,DialoguesClin.

Neurosci.15(2013)291–300.

[10]J.Chen,B.K.Lipska,D.R.Weinberger,Geneticmousemodelsofschizophrenia:

fromhypothesis-basedtosusceptibilitygene-basedmodels,Biol.Psychiatry 59(2006)1180–1188.

[11]A.Meyer-Lindenberg,Frommapstomechanismsthroughneuroimagingof schizophrenia,Nature468(2010)194–202.

[12]E.M.Sullivan,P.Timi,L.E.Hong,P.O’Donnell,Reversetranslationofclinical electrophysiologicalbiomarkersinbehavingrodentsunderacuteandchronic NMDAreceptorantagonism,Neuropsychopharmacology40(2015)719–727.

[13]S.Bickel,H.P.Lipp,D.Umbricht,Earlyauditorysensoryprocesssingdeficitsin mousemutantswithreducedNMDAreceptorfunction,

Neuropsychopharmacology33(2008)1680–1689.

[14]B.V.Broberg,B.Oranje,B.Y.Glenthoj,K.Fejgin,N.Plath,J.F.Bastlund, Assessmentofauditorysensoryprocessinginaneurodevelopmentalanimal modelofschizophrenia-gatingofauditory-evokedpotentialsandprepulse inhibition,Behav.BrainRes.213(2010)142–147.

[15]D.W.N.Dissanayake,M.Zachariou,C.A.Marsden,R.Mason,Effectsof phencyclidineonauditorygatingintherathippocampusandthemedial prefrontalcortex,BrainRes.1298(2009)153–160.

[16]R.S.Ehrlichman,M.J.Gandal,C.R.Maxwell,M.T.Lazarewicz,L.H.Finkel,D.

Contreras,etal.,N-Methyl-d-asparticacidreceptorantagonist-induced frequencyoscillationsinmicerecreatepatternofelectrophysiologicaldeficits inschizophrenia,Neuroscience158(2009)705–712.

[17]V.S.Sohal,F.Zhang,O.Yizhar,K.Deisseroth,Parvalbuminneuronsandgamma rhythmsenhancecorticalcircuitperformance,Nature459(2009)698–702.

[18]M.J.Gandal,J.Sisti,K.Klook,P.I.Ortinski,V.Leitman,Y.Liang,etal., GABAB-mediatedrescueofalteredexcitatory-inhibitorybalance,gamma synchronyandbehavioraldeficitsfollowingconstitutive

NMDAR-hypofunction,Transl.Psychiatry2(2012)e142.

[19]M.T.Lazarewicz,R.S.Ehrlichman,C.R.Maxwell,M.J.Gandal,L.H.Finkel,S.J.

Siegel,Ketaminemodulatesthetaandgammaoscillations,J.Cogn.Neurosci.

22(2010)1452–1464.

[20]J.A.Saunders,M.J.Gandal,S.J.Siegel,NMDAantagonistsrecreate signal-to-noiseratioandtimingperturbationspresentinschizophrenia, Neurobiol.Dis.46(2012)93–100.

[21]R.E.Featherstone,L.R.Nagy,C.G.Hahn,S.J.Siegel,Juvenileexposureto ketaminecausesdelayedemergenceofEEGabnormalitiesduringadulthood inmice,DrugAlcoholDepend.134(2014)123–127.

[22]Y.Tomimatsu,R.Hibino,H.Ohta,BrownNorwayrats,aputative

schizophreniamodel,showincreasedelectroencephalographicactivityatrest anddecreasedevent-relatedpotentialamplitude,power,andcoherencein theauditorysensorygatingparadigm,Schizophr.Res.166(2015)171–177.

[23]A.Ahnaou,S.Nayak,A.Heylen,D.Ashton,DrinkenburgWHIM.SleepandEEG profileinneonatalhippocampallesionmodelofschizophrenia,Physiol.

Behav.92(2007)461–467.

[24]J.H.Krystal,L.P.Karper,J.P.Seibyl,G.K.Freeman,R.Delaney,D.Bremner, SubanestheticeffectsofthenoncompetitiveNMDAantagonist,ketamine,in humans:psychotomimetic,perceptual,cognitive,andneuroendocrine responses,Arch.Gen.Psychiatry51(1994)199–214.

[25]D.C.Javitt,K.M.Spencer,G.K.Thaker,G.Winterer,M.Hajos,

Neurophysiologicalbiomarkersfordrugdevelopmentinschizophrenia,Nat.

Rev.DrugDiscov.7(2008)68–83.

[26]J.D.Jentsch,R.H.Roth,Theneuropsychopharmacologyofphencyclidine:from NMDAreceptorhypofunctiontothedopaminehypothesisofschizophrenia, Neuropsychopharmacology20(1999)201–225.

[27]A.C.Lahti,M.A.Weiler,B.A.TamaraMichaelidis,A.Parwani,C.A.Tamminga, Effectsofketamineinnormalandschizophrenicvolunteers,

Neuropsychopharmacology25(2001)455–467.

[28]J.M.Stone,P.D.Morrison,L.S.Pilowsky,Review:glutamateanddopamine dysregulationinschizophreniaasynthesisandselectivereview,J.

Psychopharmacol.21(2007)440–452.

[29]A.K.Malhotra,D.A.Pinals,C.M.Adler,I.Elman,A.Clifton,D.Pickar, Ketamine-inducedexacerbationofpsychoticsymptomsandcognitive impairmentinneuroleptic-freeschizophrenics,Neuropsychopharmacology 17(1997)141–150.

[30]A.C.Lahti,H.H.Holcomb,D.R.Medoff,C.A.Tamminga,Ketamineactivates psychosisandalterslimbicbloodflowinschizophrenia,Neuroreport6(1995) 869–872.

[31]N.R.Swerdlow,M.A.Geyer,J.M.Shoemaker,G.A.Light,D.L.Braff,K.E.Stevens, etal.,Convergenceanddivergenceintheneurochemicalregulationof prepulseinhibitionofstartleandN40suppressioninrats,

Neuropsychopharmacology31(2006)506–515.

[32]V.M.Tatard-Leitman,C.R.Jutzeler,J.Suh,J.A.Saunders,E.N.Billingslea,S.

Morita,etal.,PyramidalcellselectiveablationofN-methyl-d-aspartate receptor1causesincreaseincellularandnetworkexcitability,Biol.

Psychiatry77(2015)556–568.

[33]G.E.Duncan,S.S.Moy,J.A.Lieberman,B.H.Koller,Typicalandatypical antipsychoticdrugeffectsonlocomotorhyperactivityanddeficitsin sensorimotorgatinginageneticmodelofNMDAreceptorhypofunction, Pharmacol.Biochem.Behav.85(2006)481–491.

[34]L.C.Amann,T.B.Halene,R.S.Ehrlichman,S.N.Luminais,N.Ma,T.Abel,etal., Chronicketamineimpairsfearconditioningandproduceslong-lasting reductionsinauditoryevokedpotentials,Neurobiol.Dis.35(2009)311–317.

[35]Z.Petrovszki,G.Adam,G.Tuboly,G.Kekesi,G.Benedek,S.Keri,etal., Characterizationofgene-environmentinteractionsbybehavioralprofilingof selectivelybredrats:theeffectofNMDAreceptorinhibitionandsocial isolation,Behav.BrainRes.240(2013)134–145.

[36]G.Kekesi,Z.Petrovszki,G.Benedek,G.Horvath,Sex-specificalterationsin behavioralandcognitivefunctionsinathreehitanimalmodelof schizophrenia,Behav.BrainRes.284(2015)85–93.

[37]M.Hadamitzky,S.Harich,M.Koch,K.Schwabe,Deficientprepulseinhibition inducedbyselectivebreedingofratscanberestoredbythedopamineD2 antagonisthaloperidol,Behav.BrainRes.177(2007)364–367.

[38]G.Liebsch,A.Montkowski,F.Holsboer,R.Landgraf,Behaviouralprofilesof twoWistarratlinesselectivelybredforhighorlowanxiety-related behaviour,Behav.BrainRes.94(1998)301–310.

[39]K.Schwabe,F.Freudenberg,M.Koch,Selectivebreedingofreduced sensorimotorgatinginWistarrats,Behav.Genet.37(2007)706–712.

[40]R.J.Racine,M.Steingart,D.C.McIntyre,Developmentofkindling-proneand kindling-resistantrats:selectivebreedingandelectrophysiologicalstudies, EpilepsyRes.35(1999)183–195.

[41]G.Tuboly,G.Benedek,G.Horvath,Selectivedisturbanceofpainsensitivity aftersocialisolation,Physiol.Behav.96(2009)18–22.

[42]G.Paxinos,C.Watson,TheRatBraininStereotaxicCoordinates,5ed.,Elsevier AcademicPress,Burlington,2005.

[43]K.Gjini,S.Burroughs,N.N.Boutros,Relevanceofattentioninauditorysensory gatingparadigmsinschizophreniaApilotstudy,J.Psychophysiol.25(2011) 60–66.

[44]L.Witten,B.Oranje,A.Mork,B.Steiniger-Brach,B.Y.Glenthoj,J.F.astlund, Auditorysensoryprocessingdeficitsinsensorygatingandmismatch negativity-likeresponsesinthesocialisolationratmodelofschizophrenia, Behav.BrainRes.266(2014)85–93.

[45]J.Smucny,A.Olincy,L.C.Eichman,E.Lyons,J.R.Tregellas,Earlysensory processingdeficitspredictsensitivitytodistractioninschizophrenia, Schizophr.Res.147(2013)196–200.

[46]R.E.Featherstone,M.F.McMullen,K.R.Ward,J.Bang,J.Xiao,S.J.Siegel,EEG biomarkersoftargetengagement,therapeuticeffect,anddiseaseprocess, Ann.N.Y.Acad.Sci.1344(2015)12–26.

[47]L.E.Hong,A.Summerfelt,R.W.Buchanan,P.O’Donnell,G.K.Thaker,M.A.

Weiler,etal.,Gammaanddeltaneuraloscillationsandassociationwith clinicalsymptomsundersubanestheticketamine,Neuropsychopharmacology 35(2010)632–640.

[48]C.R.Maxwell,R.S.Ehrlichman,Y.L.Liang,D.Trief,S.J.Kanes,J.Karp,etal., Ketamineproduceslastingdisruptionsinencodingofsensorystimuli,J.

Pharmacol.Exp.Ther.316(2006)315–324.

[49]C.Siegel,M.Waldo,G.Mizner,L.E.Adler,R.Freedman,Deficitsinsensory gatinginschizophrenicpatientsandtheirrelatives:evidenceobtainedwith auditoryevokedresponses,Arch.Gen.Psychiatry41(1984)607–612.

[50]R.Freedman,L.E.Adler,G.A.Gerhardt,M.Waldo,N.Baker,G.M.Rose,etal., Neurobiologicalstudiesofsensorygatinginschizophrenia,Schizophr.Bull.13 (1987)669–678.

[51]O.M.deWilde,L.J.Bour,P.M.Dingemans,J.H.Koelman,D.H.Linszen,Failure tofindP50suppressiondeficitsinyoungfirst-episodepatientswith schizophreniaandclinicallyunaffectedsiblings,Schizophr.Bull.33(2007) 1319–1323.

[52]J.L.Santos,E.M.Sanchez-Morla,A.Aparicio,M.A.Garcia-Jimenez,C.

Villanueva,V.Martinez-Vizcaino,etal.,P50gatingindeficitandnondeficit schizophrenia,Schizophr.Res.119(2010)183–190.

[53]C.M.Yee,T.J.Williams,P.M.White,K.H.Nuechterlein,D.Ames,K.L.Subotnik, AttentionalmodulationoftheP50suppressiondeficitinrecent-onsetand chronicschizoprenia,J.Abnorm.Psychol.119(2010)31–39.

[54]B.Oranje,C.C.Gispen-deWied,M.N.Verbaten,R.S.Kahn,Modulatingsensory gatinginhealthyvolunteers:theeffectsofketamineandhaloperidol,Biol.

Psychiatry52(2002)887–895.

[55]B.N.vanBerckel,B.Oranje,J.M.VanRee,M.N.Verbaten,R.S.Kahn,Theeffects oflowdoseketamineonsensorygating,neuroendocrinesecretionand behaviorinhealthyhumansubjects,Psychopharmacology(Berl)137(1998) 271–281.

[56]N.M.W.J.deBruin,B.A.Ellenbroek,A.R.Cools,A.M.L.Coenen,E.L.J.M.van Luijtelaar,Differentialeffectsofketamineongatingofauditoryevoked potentialsandprepulseinhibitioninrats,Psychopharmacology(Berl)142 (1999)9–17.

[57]J.S.Kwon,B.F.O’Donnell,G.V.Wallenstein,R.W.Greene,Y.Hirayasu,P.G.

Nestor,Gammafrequency-rangeabnormalitiestoauditorystimulationin schizophrenia,Arch.Gen.Psychiatry56(1999)1001–1005.

[58]K.M.Spencer,P.G.Nestor,R.Perlmutter,M.A.Niznikiewicz,M.C.Klump,M.

Frumin,Neuralsynchronyindexesdisorderedperceptionandcognitionin schizophrenia,Proc.Natl.Acad.Sci.U.S.A.101(2004)17288–17293.

[59]G.Buzsaki,A.Draguhn,Neuronaloscillationsincorticalnetworks,Science 304(2004)1926–1929.

[60]E.V.Orekhova,T.A.Stroganova,A.O.Prokofyev,G.Nygren,C.Gillberg,M.

Elam,Sensorygatinginyoungchildrenwithautism:relationtoage,IQ,and EEGgammaoscillations,Neurosci.Lett.434(2008)218–223.

[61]R.D.Traub,M.A.Whittington,E.H.Buhl,J.G.Jefferys,H.J.Faulkner,Onthe mechanismofthegamma−>betafrequencyshiftinneuronaloscillations

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In the case of a-acyl compounds with a high enol content, the band due to the acyl C = 0 group disappears, while the position of the lactone carbonyl band is shifted to

The power of the investigated four frequency bands (theta, alpha, beta, gamma) during acquisition were compared to the baseline activity using nonparametric permutation test

During the training sessions the British group used relaxation (p&lt;0.05) and emotional regulation (p&lt;0.05) on a significantly higher level, while the skills of the Hungarian

While estrogen withdrawal and high-triglyceride diet resulted in an excessive accumulation of collagen type I, physical exercise training significantly ( # p &lt; 0 05 ) reduced

In this study, the absolute power of the beta and theta bands in the frontal and central regions was increased in patients carrying the G allele compared with patients without the

Because our training better improved sensory processing associated with this medium-to-low frequency band and there were no significant changes in the frequency band linked

Antinociceptive effect of P2Y 12 receptor antagonists in different pain models Four of the tested P2Y 12 receptor antagonists had significant effect in acute pain model.. MRS2395,

Results from the theta band func- tional network graphs suggest that interhemispheric connections within this band are positively related to the Segregation dimension of the MDS