• Nem Talált Eredményt

Preparation of a boron nitride single layer on a polycrystalline Rh surface

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Preparation of a boron nitride single layer on a polycrystalline Rh surface"

Copied!
7
0
0

Teljes szövegt

(1)

ContentslistsavailableatSciVerseScienceDirect

Applied Surface Science

j o ur na l ho me p age :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Preparation of a boron nitride single layer on a polycrystalline Rh surface

János Kiss

a,b,∗

, Károly Révész

a,b

, Gábor Klivényi

a,b

, Frigyes Solymosi

a,b

aDepartmentofPhysicalChemistryandMaterialsScience,UniversityofSzeged,Aradivértanúkt.1,H-6720Szeged,Hungary

bReactionKineticsandSurfaceChemistry,ResearchGroupofHungarianAcademyofSciences,RerrichB.t.1,H-6720Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received30July2012

Receivedinrevisedform26October2012 Accepted28October2012

Available online 3 November 2012

Keywords:

Segregationofboron NOdissociationonRh FormationofB Nbond Boronnitride Augerfinestructures

a b s t r a c t

Thesegregationofboronanditsreactivitytowardnitricoxidehavebeeninvestigatedbymeansofhigh- resolutionAugerspectroscopy(AES),X-rayphotoelectronspectroscopy(XPS),ultravioletphotoelectron spectroscopy(UPS),andthermaldesorptionspectroscopy(TDS).ThesegregationofboronfromaRhfoil startedfrom700K.ItspresencealteredthesurfacebehaviorsofRh;theuptakeofNOincreasedbyabout 30–37%.WhereasthedissociationofNOwasabout3–10%onaclean,boron-freesurface,theextentof dissociation(atsaturation)athighestboronlevelwasalmost98%.Thisfeaturestronglysuggestadirect interactionbetweenNOandborononthesurface.Thepresenceofborongreatlystabilizedtheadsorbed nitrogenandoxygenformedinNOdissociation.Boronoxide(BO,B2O2)sublimatedfromthesurface below1000K.Clean,singleBNlayerformedonthesurfaceclosetoamonolayerregime,presumablein nanomashstructure.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Graphenenanoribbons,atomicallythinstripsofgraphenethat arejustafewnanometerswide,areconsideredtobeexcellentcan- didatesfor futureelectronicsapplicationastheirpropertiescan beadjustedthroughwidthandedgeshape[1,3].Hexagonalboron nitride(h-BN)hasgreatpotentialforuseasthedielectriclayerin functionalheterostructureddevices,whichexploittheremarkable propertiesofgraphene[1,2].Thecombinationofgrapheneandh- BNopensuptheexistingpossibilityofcreatinganewclassofatomi- callythinmultilayeredheterostructures.Grapheneandh-BNshare thesamecrystalstructureandhaveverysimilarlatticeconstant but,unlikegraphene,h-BNisaninsulatorwithalargebandgap [4].Alonggraphene,boronnitridenanoribbonshaveattractedmore andmorefundamentalresearchinterest.Forinstance,researchers havefoundthatmagnetismcouldbeinducedinsuchribbonsby replacementofBorNwithBe,C,Al,Si,orwithvacancydefects.

Theyalsofoundthattheribbonscouldhaveanarrowedbandgap andimprovedelectricalconductivitytunedbyatransverseelectric fieldorspecialedgestructure.Thesefindingpromiseabrightfuture inoptoelectronicsandspintronicsforatomicallythinboronnitride nanoribbons.However,amajorchallengeinprovidingexperimen- talevidenceisthatthepreparationofatomicallythinboronnitride isverydifficult[5–7].SincefirstapplicationsofBNinfundamental researchthattheinterestinsinglelayerboronnitride(sBN)has

Correspondingauthorat:DepartmentofPhysicalChemistryandMaterialsSci- ence,UniversityofSzeged,Hungary.Tel.:+3662544803;fax:+3662546482.

E-mailaddress:jkiss@chem.u-szeged.hu(J.Kiss).

beenincreasingsteadily.Inthepastseveralexperimentalstudies havebeenperformedincludingTEM[8–10],AFM[11]andoptical andRamanspectroscopy[9]forcharacterizationofthematerial’s surface.ThemainexperimentalapproachesforproducingsBNhave beenbothmechanical[9,11]andchemical[10]exfoliation.

Oneofthesurfacesciencetoolsproducingboronsourceisthe dehydrogenationofdecaboraneonmetalsurfaces[12].Hexagonal boronnitride(h-BN)waspreparedbythermaldecompositionof borazine,B3H6N3onNi(111)[13],Cu(111)[14]andRh(111)[15].

Surfaceboroncanbepreparedbysegregationprocess,too.Boron segregatesfromthebulktothesurfacebyannealingthepolycrys- tallineRhsurfaceat750–1200K[16,17].Weearlierdemonstrated thatboronimpuritysegregatingtoanRhsurfacedramaticallyalters thereactivityoftheRhsurfacetowardN-andO-containingmoi- eties,suchas(CN)2[18],H2O[17],CO2[19,20].Apossiblereasonfor thisphenomenonisthatboronformsverystrongbondswithNand O,whichcanpromotetheprocessesofsurfacedissociationofthe adsorbedmolecules.Followingsurfacedissociation,wedetected theformationofdissociationproductsviathermaldesorption,and anewfeatureat9.4and7.4eVintheelectronenergylossspectrum duetoB OandB Nbond,respectively.Thesegregationofboron ontoaRhsurfacehasalsobeenobservedbyotherauthors[21–23].

Inpresentworkweexaminethesegregationofboronandinter- actionofsegregatedboronwithNObymeansofdifferentelectron spectroscopicmethods,suchashighresolutionAES,XPS,UPSand thermal desorptionmassspectrometry(TDS).Theprimaryaims weretodeterminethemonolayerBNformedduringthereaction betweenthedissociation productand segregated boron.Earlier theinteractionofNOwithcleanRh(111)surfacewasinvestigated widelybydifferentsurfacesciencetechniques[24–31].Theinitial 0169-4332/$seefrontmatter© 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.apsusc.2012.10.157

(2)

J.Kissetal./AppliedSurfaceScience264 (2013) 838–844 839 adsorptionofNOoncleanRhsurfaceisdissociativeat300K.At

higherNOcoveragetheadsorptionismolecular.

2. Experimental

Theexperimentswereperformedinanultra-highvacuumsys- tem,withabackgroundpressureinthelow-tomiddle10−10mbar range,producedbyturbomolecularandtitaniumgetterpumps.

Thesystemwasequippedwithahemisphericalanalyser(Leybold- HeraeusLHS-10)forUPS,XPSandhighresolutionAES,anArion gunforcleaningandaquadrupolemassspectrometerforTDS.

UPSwasperformedbyusingHeI(21.22eV)andHeII(40.81eV) radiation.TheanglesbetweenthesurfacenormalandtheUVlamp andbetweenthesurfacenormalandtheanalyserwere75 and 16,respectively.ThephotoelectronswereexcitedbyAlK␣radia- tion(1486.7eV)intheXPSregime.TheenergiesoftheXPSpeaks werecalibratedrelativetotheFermilevelofRh,metallicRh3d3/2 ispositionedat307.1eV.Thephotoemissionsweremeasuredby usingapassenergyof50eVinordertogettheoptimumresolution bymaintaininganacceptablesignal-to-noiseratioatmeasuring timeof60min.HighresolutionAugerelectronspectraweretaken indN(E)/dEmodeusingalock-inamplifier(Ithacho,Dinatrac391 A)with0.5–2eVpeak-to-peakmodulation.Attheseparameters theestimatedresolutionwas1.6–1.9eV.Inordertominimizethe electron-inducedchangesinourexperiments,weused0.2–1␮Aof incidentcurrentand2.5kVofincidentenergy.

ThepolycrystallineRhfoil(10mm×10mmand0.127mmthick 99.9%purity)waspurchasedfromHicolCo.Theinitialcleaningpro- cedurehasbeendescribedpreviously[19,20].Itisconsistedofion bombardmentandannealingat1270K.Themajorcontaminants ofRhfoilwereB,P,S,andC.TheP,CandSwereeasilyremoved, butnocompleteeliminationofboronwasachievedevenaftersev- eralcleaningcycles.Thefinalthermaltreatmentwasperformedat 700K.

Segregationof boronwasachieved byannealing the Rhfoil at750–1270K.Thelevelofsurfaceboronischaracterizedbythe relativeintensityoftheboronAugersignal,RB=B178/Rh302.B178

andRh302 representpeak-to-peakintensity ratiosof boronKLL andrhodiumMNNAugertransitionsdeterminedindifferentiated mode.Thepeakpositionsaretakenfromthenegativegoingofthe spectra.

3. Resultsanddiscussion

3.1. Generalfeaturesofsegregatedborononrhodiumsurfaces The segregation of boron was pointed out in earlier works [17–24,32].Ithasbeenobservedthatboronisamajorbulkimpurity (17ppm)inRh.Whenthesurfaceisheatedtheboronsegregates tothesurface.Fig.1showsatypicalsegregationcurve,RBvalues (relativeintensityofboronAugersignal)areplottedagainsttem- perature.Whenthefreshly sputteredsurfacewasheatedabove 700K boronsignalshowedup,it reacheda maximum valueat 1000K.(Experimentscannotbeextendedtohighertemperatures becauseoftheconstructionofoursampleholder.)Boroncoverages werecalculatedroughlybyusingtheratioofthetheoreticalXPS photoionizationcross-section[33]foradsorbedboronandoxygen andcomparingtotheXPSsignalfromtheknownoxygencoverage onpolycrystallineRhatsaturation(5.8×1014Oatoms/cm2)[34].

In thisway we found7.96×1014Batoms/cm2 athighest boron concentration,which abouthalfofa monolayer.Thisvaluecor- respondstoa relative Augerpeak ratio ofRB=0.103.Using the Langmuir–McLeanequation,assumingthatthesegregationprocess isinequilibrium,thesegregationenergyis−71.5kJ/mol.

Fig.1.PlotoftheB/RhAugerpeakratio(RB)versustemperature.

Thesegregationexhibits significantspacespecificity. Onthe Rh(100)face,thesegregatedboronformsa(3×1)LEEDpattern andasboronisdepletedfromthebulk,itthensegregatestoalesser extentandformsa(3×3)orderedoverlayer[23].Thesegregation onthe(755)faceismanytimeslargerthanthatontheRh(331) face[21].

AnanalysisofthewidthoftheHeIUPSuponsegregationof borondidnotrevealanychangesintheworkfunction,indicating thatthedipolemomentproducedbysurfaceboronisverysmall.

ThisisconsistentwiththesimilarPaulingelectronegativitiesof B(2.0)andRh(2.2),whichsuggestthatchargetransferbetween theseelementsisminimal.Independentlyofthecoverage,theB 1slevelappearedat187.8eVinXPS(Fig.2).Thepeakexhibited 3.5eVFWHMatsaturation.Thisvaluesignificantlylargerthanthat observedforB1sonMo(100)surfaceafteradsorptionofdiborane [35].WeassumethattheB1sphotoemissionsignaliscomposedof

186 188 190 192 194

BE (eV)

9900 10000 10100 10200 10300 10400 10500

Intensity (cps)

XPS Spectra

191.5 187.8

192.4

RB~0.07

6L O2

300 K

580 K

720 K

850 K

950 K

1150 187.8

Fig.2. XPspectraforB1slevelafterheatingthesample(RB0.075)exposedto6L O2at300Ktodifferenttemperatures.

(3)

Fig.3.UPspectraofadsorbedNOoncleansurfaceatdifferentexposuresat300Kandatdifferenttemperatures.

twoormoreoverlappingpeaks,indicatingdimersortheformation ofislands.

ThesegregationofborononRhfoilproducedaphotoemission peakat8.6eVindifferenceUPSspectra(notshown).TheB2plevel wouldbeexpectedataround4.0–5.0eV.Thedetectionofthispeak isdoubtful,presumableduetoitsverylowcross-section.Theinten- sityofthisphotoemissionat8.6eVincreasedanditshiftedslightly tohigherbindingenergywithincreasingofthesurfaceconcen- trationofboron[32].InaUPSstudyonironborides,peakdueto emissionfromtheboron2p,2sp2and2sstateswereidentified[36].

TheB2sp2levelislocatedat7.0eVforFe2Bandat10.0eVforFeB.

AccordingtothestudybyJoynerandWillis[36],the2sp2 emis- sionisduetoaB–Binteraction.AstheintensityoftheUPSpeakat 8.6–9.0eVincreasedwithboronlevelonRh,wemayassumethat B–Binteractionalsoexistinourcase,too.Stairetal.[35,37]reached asimilarconclusionfortheB/Mo(100)system.

3.2. AdsorptionanddecompositionofNOonboroncontainingRh The chemical nature of adsorbed NO on boron-free poly- crystallineRh wasalmostidenticaltoRh(111) [30,38–41].The appearanceoftheO2pUPSsignalat5.6–5.8eVindicatesthedis- sociationofNOatlowcoverageat300K.Athigherexposuresthe adsorptionispreferentiallymolecular.Newphotoemissionswere producedat∼2.3,9.3and14.5eVbelowFermilevel(Fig.3).The NO-inducedemissionscanbeattributedtothe2␲*,1␲/5␴and4␴ molecularlevels,respectively.WhentheNO-saturatedsurfacewas heated,theintensitiesofthepeaksat9.3and14.5eVdecreased above354Kandthesepeaksdisappearedat 400–432K(Fig.3).

Theemissionat5.6–5.8eVwasmorestable;itwasdetectedup to997K.Thisemissioncanbeattributedveryprobablytothefor- mationofB Ospeciesathightemperatureswherethesegregation ofboronisdominating.MolecularNOdesorbsbetween350and 420KwithTp=381K.Nitrogendesorbsinthreestages(Tp=410, 550and640K).Somecharacteristicdatafordesorptionarecol- lectedinTable1.Theresultsobtainedsuggestthatthedissociation ofNOis limited.Theextentofdissociation issomewhathigher thanonRh(111)duetothehighernumber ofdefectsites.The calculationsofDeLouiseandWinograd[29],basedonXPSmea- surements,showedthatonly3%ofthesaturatedlayerdissociates at300KonsinglecrystalofRh.Itshouldbealsotakenintoaccount thatthedissociationofNOinthesaturatedlayerishampered,as

itrequiresfree adsorptioncentersinthevicinityofmolecularly adsorbedNO.

ThepresenceofboronalteredthesurfacebehaviorofRh;the uptake of NO onboron containing surface increased by about 30–37%.Theextentofdissociation(atsaturation)alsoincreased;

athigherboronimpuritylevelitwasalmost98%.Thepeaktem- peraturesfordesorptionofmolecularlyadsorbedNOfromboron containingRhwereunalteredsuggestingthatthisNOadsorbsand desorbsfromRhsitesnotinfluencedbyboronadatoms(Table1).

However,thepresenceofboron greatlystabilizedtheadsorbed nitrogenandoxygen.Thisstabilizingeffectwassogreatthatthe nitrogenformed in theboronpromoted dissociation ofNO did notdesorbbelow1200K.Thisfeaturestronglysuggestsadirect interactionbetweenNandborononthesurface.

Fig. 4 shows the UPS spectra of NO as a function of NO exposureandthethermallytreatedNOcoveredsurfacedonboron- contaminatedsurfaces.Atlowcoverages,molecularlyadsorbedNO wasnotdetected;strongUPsignalwasobtainedat5.2–5.5eVdue totheadsorbedoxygenfromNOdissociation (Fig.4).Athigher coverages(from0.4L)aphotoemissionsdueto1␲/5␴orbitalsof adsorbedNOmoleculeweredetected.DuringheatingtheNOcov- eredsurface (Fig. 5)the emissionsfor molecular orbitalof NO disappearedfrom374K,theO2pintensified,andanewphotoemi- ssionappearedfrom546Kat9.0–9.5eV.Itcouldnotbeeliminated upto1270K.Thisphotoemissioncanbeattributedtotheformation of␴bondbetweenBandN[42].

Inthenextstepswefollowedthesurfacechemicalchangesdur- ingadsorptionand thermaltreatmentbyhighresolutionAuger electron spectroscopy.In certain cases due totheloss features originated fromdifferentelectron-induced interband,intraband Table1

CharacteristicdataofdesorptionofNOfromcleanandboroncontainingRhsurfaces (RB0.075).

Surface Products Tp(K) Kineticsorder Ed(kJ/mol)

Clean

NO/NO 381 1 111

N2(␤1)/NO 410 1 120

N2(␤2)/NO 550 1 160

N2(␤3)/NO 640 2

Boroncontaining RB0.103

NO/NO 381 1 111

N2(␤1)/NO 402 1 117

N2(␤2)/NO 580 2

(4)

J.Kissetal./AppliedSurfaceScience264 (2013) 838–844 841

-2 0 2 4 6 8 10 12 14

Binding Energy (eV)

Intensity (Arb. unit)

UPS Spectra

EF=

0.2 L

RB~0.07 0.0 L 0.4 L 6.8 L

Fig.4. UPspectraofadsorbedNOonboroncontainingRhsurfacesatdifferentNO exposuresat300K.

transitionsandplasmonlosses,theAugerspectroscopycouldbe verysensitivetothechemicalnatureofadsorbedmolecules.Fig.6A showstheoxygenAESsignalswithincreasingNO exposuresat highest boron concentration. At lowest NO coverage two AES

-2 0 2 4 6 8 10 12

Binding Energy (eV)

Intensity (Arb. unit)

UPS Spectra

EF=

997 K 837 K 667 K 546 K

447 K 347 K 6.8 L NO 300 K

Fig.5.UPspectraofNOsaturatedboroncontainingRhsurfacesatdifferenttem- peratures.

transitionsweredetectedat513and519eV.Withincreasingexpo- suresbothintensitiesincreased.It isimportanttomentionthat onclean,boron-freesurfaceonestrongpeakappearedat519eV besidessomelossfeaturesatlow-energysideofthespectra.We

480 490 500 510 520 530

eV

dN(E)/dE

AES Spectra

490 500 510 520 530

dN(E)/dE

AES Spectra

0.2 L

0.4 L

0.8 L

6.8 L

Background

300 K

1020 K 374 K

547 K

740 K

880 K

B A

eV

Fig.6.O(KVV)AugerlineshapeafteradsorptionofNOonboroncontainingRhsurfaceatdifferentNOexposuresat300K(A).EffectofheatingonO(KVV)finestructuresof NOsaturatedboroncontainingRhsurfaces(B).Theintensitiesaredividedbythefactorof2.

(5)

Fig.7.N(KVV)AugerlineshapeafteradsorptionofNOonboron-freeRhsurfaceatdifferenttemperatures(A).EffectofheatingonN(KVV)finestructuresofNOsaturated boroncontainingRhsurfaces(B).

believethatthepeakat519eVbelongstoRh NObondwhilethe transitionat513eVcorrespondstotheB NObond.WhentheNO coveredsamplewasheatedthepeakat519eVdisappearedwhen themolecularNOdesorbedabove 374K.The intensityofother oxygenpeakdecreasedfrom740K,disappearedbetween880and 1020K(Fig.6B).TheformationofaB Obondisalsojustifiedby thefinestructureofB(KVV)andO(KVV)AESsignalobtainedinthe interactionofoxygenwithboroncontainingRhat300K[32].The AEStransitionofadsorbedoxygenonaB/Rhsurfaceappearedat 513eVatlowexposure.Withincreasingoftheoxygencoverage, theintensityofthispeakincreasedandatransitionat518eVfor adsorbedoxygenonRhsitesalsodeveloped.

TheAugerfinestructureofnitrogenafteradsorptionanddecom- positionofNOonacleanandboroncontainingRhsurfaceswas somewhat more complex. The adsorbed nitrogen gives a very intense “four-peak”structure in AES[43,44]. Thisstrongstruc- tureoverlapswiththatofotherN-containingmolecules.Onclean RhafterNOadsorptionat300Kfourstructurefinestructurewas observed (Fig.7A).During heating, independentlyfrom theNO dissociationthisstructureremainedupto547–628K,abovethis temperaturetheAESpeakat383eVgained,above740K,where theboronsegregationstarttobedominant,practicallyonepeak remainedat383eV.OnepartofnitrogendesorbsfromRhatoms, other partof nitrogen migrates from Rh sites to boron, which startstosegregatefrom550K.TheformedB Nspeciesexhibits mainlyonepeakbetween380and400eVinAugerspectrum.Sim- ilarstructurewasreportedforhexagonalphaseofboronnitride andBNingraphitizedsteelsheet[45,46].Onboroncontainingsur- face(RB=0.075)atsaturatedNOcoveragethefourpeakstructure ispresentat300K.WhenthemolecularNOdesorbsat434Kand abovetheAESpeakat384–386eVwasonlypresentwithsome satellitesatlowerbindingside(Fig.7B).Thispeakremainedwith sameintensityupto1270K,indicatingthatBNstablesurfacecom- pound.

Fig.8 shows theAugertransitions in boronrange from 150 to 200eV. Without boron (so-called clean surface, RB≈0.003) this regime contains some weektransitions, which are always presentineveryAESspectraofRh.Whenthesurfacewasflashed to1050K, boronsignalappearedat179–183eV.WhenNOwas addedtosurfaceat300K,theintensityofelementalboronsignal

significantlydecreased,ashoulder at172eVgainedremarkably.

Whenthe surface washeated tohigher temperature this peak increased further. In addition, the oxygen Auger feature was shiftedfrom520to513.7eV.Thesame changeswereobserved when oxygenwas added to the boron-containing surface, and followingtheoxidationofboronformingB2O3[47,48].Nodoubt

Fig.8.EffectofheatingonB(KVV)AugerfinestructuresofNOsaturatedboron containingRhsurfaces.

(6)

J.Kissetal./AppliedSurfaceScience264 (2013) 838–844 843 theAEStransitionat172eVbelongs totheboronoxide,which

canbeeliminatedabove880K.AnewAESfeaturedevelopedat 176eVfrom300K. Inharmonywiththeliteraturedata[46,49], weattributedittotheB Nbond.Similarlytothecorresponding NAESsignal,itcannotbeeliminatedbelow1270K.Anextensive argonionbombardmentwasusedtogetbackthecleansurface.

AnalysingtheUPS,XPSandAESdataitturnedoutthatduring heattreatmenttheboronoxidedisappearedfromthesurfaceabove 800K.Furtherprocesses areindicatedby thedecrease intheO Augersignalabove850Kandbythereappearanceoftheelemental boronfeatureat187.8eVinXPS(Fig.2).Afteroxygenadsorptionat 300KtheB1sphotoemissionpeakmovedto191.5eV.Duringheat- ingashoulderdevelopedat192.4eV.Thesebindingenergieswere observedwhenB2O3wastreatedinreducingatmosphere,where transientlytwo-valenceboronwasobserved[50].Whentheoxygen coveredRhsurfacewasheatedabove850Kthepeakshiftedbackto 187.8eV.AswedonotexpectthedecompositionofthestableB2O3 species(thedissociationenergyofBOmoleculeis787kJ/mol[51]

andB Osinglebonddissociationenergyisconsideredtobelower, around540kJ/mol),weassumeafurthersegregationofboronand areactionbetweenB2O3andelementalboron

B(S)+B2O3(S)−B2O2(g)+BO(g),

theheatofreactionis141.1kJ/mol[51].Theoccurrenceofthisreac- tioninthepresentcaseissupportedbytheobservationthatupon heatingtheRhfoilcontainingtheB Ocomplextohightemper- aturewedetecteddesorbingspeciesat54and27amu(B2O2and BO,respectively);thepeaktemperaturewas1050K.Notethatpar- tialoxidationofbulkboronleadstotheformationof(BO)xwhich vaporizesat1300K,asB2O2,anddisproportionatesoncondensa- tion[52].

In the interaction of NO with boron-containing Rh surface above900Kwe prepareda cleansingle BNlayerinmonolayer orclosetomonolayerregime.Anh-BNlayerwasfoundtobind a quitelargenumber ofsubstrates,even when thelatticecon- stantofh-BNand thesubstratedonot match.Theprototypical example is the h-BN/Ni(111) interface,which has nice lattice matchingandformsasimpleepitaxial1×1structure[13,53].In thecaseofincommensurateinterfaces,themismatchcanleadto someextraordinarystructures[54].Corsoetal.[15]havereported the formation of a self-assembled nanostructure, the so-called nanomesh,onthelatticemismatchedRh(111)surfacewithaperi- odicityofabout3.2nm.Thiscorrespondstoasituationwherethe latticeof 12×12 Rh(111)matches 13×13 h-BN cells forming periodic nanomesh structure, which is caused by the lattice- mismatchbetweenRh(111)andh-BN.AlthoughourRhsample ispolycrystallinewecannotexcludethattheformedBNconstitute nanomeshonthesurface.Sincethefirstdiscoveryofnanomesh [15]onRh(111)surface,similarstructureshavealsobeenfound onRu(0001)[55],Pd(111)[56]andPd(110)[57].

4. Conclusions

ThesegregationofboronfromaRhfoilstartedat700K.Theseg- regatedboronproducedapeakfortheB1slevelonXPSat187.8eV andemissioninUPSat8.6–9.0eV,respectively.Thepresenceof borondrasticallyalteredthesurfacebehaviorofRh;theuptake ofNOincreasedbyabout30–37%.TheextentofNOdissociation (atsaturation)athighestboronlevelwasalmost98%.Thisfeature stronglysuggestadirectinteractionbetweenNOandborononthe surface.Thepresenceofborongreatlystabilizedtheadsorbedoxy- genandnitrogenformedduringNOdissociation.Boronoxides(BO, B2O2)sublimatedfromthesurfacebelow1000K.Thestabilizing effectwassogreatthatthenitrogenbondedwasnotreleasedbelow 1200K.Theformationofboronnitridewasdetectedat9.0–9.5eV

inUPS.Thisphotoemissioncanbeattributedtotheformationof␴ bondbetweenBandN.Above400KnewintenseAugertransitions developedat176eV(B)and384eV(N),whicharetypicalforB N species.Aclean,singleBNlayerformedonthesurface,presumable innanomashstructure.

Acknowledgement

ThefinancialsupportoftheHungarianScientificResearchFund (OTKA)throughprojectsK81517,K81660andTámop-4.2.2/B-10/1- 2010-0012areacknowledged.

References

[1]Y.Zhang,T.W.Tan,H.L.Stormer,P.Kim,Nature438(2005)201–204.

[2] A.Geim,K.Novoselov,NatureMaterials6(2007)183–191.

[3]L.Britnell,R.V.Gorbachev,R.Jalil,B.D.Belle,F.Schedin,M.I.Katsnelson,L.Eares, S.V.Morozov,A.S.Mayorov,N.M.R.Peres,A.H.C.Neto,J.Leist,A.K.Geim,L.A.

Ponomarenko,K.S.Novoselov,NanoLetters12(2012)1707–1710.

[4]C.R.Dean,A.F.Young,I.Meric,C.Lee,L.Wang,S.Sorgenfrei,K.Watanabe, T.Taniguchi,P.Kim,K.L.Shepard,J.Hone,NatureNanotechnology5(2010) 722–726.

[5]M. Xie, J. Wang, Y.K. Yap, Journal of Physical Chemistry C 114 (2010) 16236–16241.

[6]Z.Liu,L.Song,S.Zhao,I.Huang,L.Ma,J.Zhang,J.Lou,P.M.Ajayan,NanoLetters 11(2011)2032–2037.

[7]R.M.Ribeiro,N.M.R.Peres,PhysicalReviewB83(2011),No.235312.

[8]W.-Q.Han,L.Wu,Y.Zhu,K.Watanabe,T.Taniguchi,AppliedPhysicsLetters93 (2008)223103–223106.

[9] J.C.Meyer,A.Chuvilin,G.Algara-Siller,J.Biskupek,U.Kaiser,NanoLetters9 (2009)2683–2689.

[10]J.H.Warner,M.H.Rümmeli,A.Bachmatiuk,B.Büchner,ACSNano4(2010) 1299–1304.

[11] C.Lee,Q.Li,W.Kalb,X.Liu,H.Berger,R.W.Carpick,J.Hona,Science328(2010) 76–80.

[12]J.Jones,M.Trenary,JournalofPhysicalChemistryC112(2008)20443–20450.

[13]B.Grad,P.Blaha,K.Schwarz,W.Auwarter,T.Greber,PhysicalReviewB68 (2003),No.085404.

[14] A.B.Preobrajenski,A.S.Vinigradov,N.Martensson,SurfaceScience582(2005) 21–30.

[15]M.Corso,W.Auwarter,M.Muntwiler,A.Tamai,T.Greber,J.Osterwalder,Sci- ence303(2004)217–220.

[16] J.Kiss,F.Solymosi,SurfaceScience135(1983)243–260.

[17]J.Kiss,F.Solymosi,SurfaceScience177(1986)191–206.

[18]F.Solymosi,L.Bugyi,AppliedSurfaceScience21(1985)125–138.

[19] F.Solymosi,J.Kiss,ChemicalPhysicsLetters110(1984)639–642.

[20] F.Solymosi,J.Kiss,SurfaceScience149(1985)17–32.

[21]D.G.Castner,G.A.Somorjai,SurfaceScience83(1979)60–82.

[22]S.Semancik, G.L.Haller, J.T.YatesJr.,AppliedSurfaceScience 10 (1982) 546–558.

[23]R.E.Hendershot,R.S.Hansen,JournalofCatalysis98(1986)150–165.

[24]L.Bugyi,J.Kiss,F.Solymosi,JournalofVacuumScienceandTechnologyA5 (1987)863–864.

[25] R.J.Baird,R.C.Ku,P.Wynblatt,SurfaceScience97(1980)346–362.

[26]C.T.Campbell,J.M.White,AppliedSurfaceScience1(1978)347–359.

[27]H.A.C.M.Hendrickx,B.E.Nieuwenhuys,SurfaceScience175(1986)185–196.

[28]T.W.Root,L.D.Schmidt,G.B.Fisher,SurfaceScience150(1985)173–192.

[29]L.A.DeLouise,N.Winograd,SurfaceScience159(1985)199–213.

[30]L.Bugyi,J.Kiss,K.Révész,F.Solymosi,SurfaceScience233(1990)1–11.

[31]F. Bondino,G.Comelli,A.Baraldi,JournalofChemicalPhysics119(2003) 12525–12533.

[32]J.Kiss,K.Révész,F.Solymosi,AppliedSurfaceScience37(1989)95–110.

[33]J.H.Scofield,JournalofElectronSpectroscopy8(1976)129–137.

[34]C.T.Campbell,S.-K.Shi,J.M.White,AppliedSurfaceScience2(1979)382–396.

[35]T.B.Fryberger,J.L.Gland,P.C.Stair,Langmuir3(1987)1015–1025.

[36]D.J.Joyner,R.F.Willis,PhilosophicalMagazineA43(1981)815–833.

[37]T.B.Fryberger,J.L.Gland,P.C.Stair,JournalofVacuumScienceandTechnology A5(1987)858–862.

[38]E.Umbach,S.Kulkarni,P.Feulner,D.Menzel,SurfaceScience88(1979)65–94.

[39]M.Kiskinova,G.Pirug,H.P.Bonzel,SurfaceScience136(1984)285–295.

[40] D.E.Ibbotson,T.S.Wittrig,W.H.Weinberg,SurfaceScience110(1981)294–312.

[41]H.Conrad,G.Ertl,J.Küppers,E.E.Latta,SurfaceScience65(1977)235–244.

[42]W.vonNiessen,TheoreticaChimicaActa29(1973)29–48.

[43]J.C.Fuggle,D.Menzel,Proc.7thIntern.Vac.Congr.,Vienna,1977,p.1003.

[44]F.Solymosi,J.Kiss,SurfaceScience104(1981)181–198.

[45]S.J.Simko,M.C.Militello,SurfaceScienceSpectra1(1992)288–291.

[46]T.Mega,R.Morimoto,M.Morita,J.Shimomura,SurfaceandInterfaceAnalysis 24(1996)375–379.

[47] D.J.Joyner,D.M.Hercules,JournalofChemicalPhysics72(1980)1095–1108.

[48]J.W.RogersJr.,M.L.Knotek,AppliedSurfaceScience13(1982)352–366.

[49]G.Hanke,K.Müller,SurfaceScience152(1985)902–910.

(7)

[50]I.Bertóti,R.Kelly,M.Mohai,A.Tóth,NuclearInstrumentsandMethodsB80–81 (1993)1219–1225.

[51]B.deB. Darwent,BondDissociationEnergiesin SimpleMolecule,National BureauofStandards,Washington,D.C.,1970.

[52]M.G.Ingram,R.F.Porter,W.A.Chupka,JournalofChemicalPhysics25(1956) 498–501.

[53]M.N.Huda,L.Kleinman,PhysicalReviewB74(2006),No.075418.

[54]H.-P.Koch,R.Laskowski,P.Blaha,K.Schwarz,PhysicalReviewB84(2011),No.

245410.

[55]A.Goriachko,Y.He,M.Knapp,H.Over,Langmuir23(2007)2928–2931.

[56]M.Morscher,M.Corso,T.Greber,J.Osterwalder,SurfaceScience600(2007) 3280–3284.

[57]M.Corso,T.Greber,J.Osterwalder,SurfaceScience577(2005)L78–L84.

Ábra

Fig. 2. XP spectra for B 1s level after heating the sample (R B ≈ 0.075) exposed to 6 L O 2 at 300 K to different temperatures.
Fig. 3. UP spectra of adsorbed NO on clean surface at different exposures at 300 K and at different temperatures.
Fig. 5. UP spectra of NO saturated boron containing Rh surfaces at different tem- tem-peratures.
Fig. 8 shows the Auger transitions in boron range from 150 to 200 eV. Without boron (so-called clean surface, R B ≈ 0.003) this regime contains some week transitions, which are always present in every AES spectra of Rh

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

11 B delivery agents for boron proton-capture enhanced proton therapy (BPCEPT) taking into account the accumulated knowledge on boron compounds used for boron

The alloy surface was prepared by deposition of Au onto the clean Rh(111) surface at room temperature, followed by annealing at 1000 K for 5 min. 11 DFT-optimized structures of

The thickness of the nitride layer, the microhardness and the length of the nitride diffusion zone and surface areal parameters like surface roughness, skewness, grain diameter and

Large tunable valley splitting in edge-free graphene quantum dots on boron nitride..

3 reaction/soprion at phase boundary 4 free transport on the surface 5 mixing in the fluid

The surface free energies of simple matters can be calculated in many cases on the basis of their surface free energies in liquid phase (yL) measured at the

Our main purpose was to reveal the adsorption properties of borazine on the Rh(1 1 1) single crystal surface by electron spec- troscopic methods; furthermore we investigated

These results indicate that in dilute solutions the HCN molecules are not only strongly adsorbed at the liquid surface, staying preferably at the outer edge of the surface layer,