• Nem Talált Eredményt

π sin πr− 1 13 (n+ 1) (2n+ 1)1−1r (r >1, n∈N0=N∪ {0}) is proved

N/A
N/A
Protected

Academic year: 2022

Ossza meg "π sin πr− 1 13 (n+ 1) (2n+ 1)1−1r (r >1, n∈N0=N∪ {0}) is proved"

Copied!
6
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 1, Issue 2, Article 22, 2000

ON A STRENGTHENED HARDY-HILBERT INEQUALITY

BICHENG YANG DEPARTMENT OFMATHEMATICS

GUANGDONGEDUCATIONCOLLEGE, GUANGZHOU

GUANGDONG510303, PEOPLESREPUBLIC OFCHINA. bcyang@163.net

Received 8 May, 2000; accepted 10 June 2000 Communicated by L. Debnath

ABSTRACT. In this paper, a new inequality for the weight coefficientW(n, r)of the form

W(n, r) =

X

m=0

1 m+n+ 1

n+12 m+12

1 r

< π

sin πr 1

13 (n+ 1) (2n+ 1)1−1r

(r >1, nN0=N∪ {0})

is proved. This is followed by a strengthened version of the more accurate Hardy-Hilbert in- equality.

Key words and phrases: Hardy-Hilbert inequality, Weight Coefficient, Hölder’s inequality.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

Ifp >1,1p +1q = 1,an, bn ≥0, and0<P

n=1−λapn <∞,0<P

n=1−λbqn <∞(λ= 0,1), then the Hardy-Hilbert inequality is

(1.1)

X

m=1−λ

X

n=1−λ

ambn

m+n+λ < π sin

π p

X

n=1−λ

apn

!1p X

n=1−λ

bqn

!1q ,

where the constantπ/sin(π/p)is best possible (see [3, Chapter 9]). Inequality (1.1) is im- portant in analysis and it’s applications (see [4, Chapter 5]). In recent years, Yang and Gao [2, 7], have given a strengthened version of (1.1) forλ = 0as

(1.2)

X

m=1

X

n=1

ambn

m+n <

X

n=1

 π sin

π p

− 1−γ n1p

apn

1

p

X

n=1

 π sin

π p

−1−γ n1q

bqn

1 q

,

ISSN (electronic): 1443-5756

c 2000 Victoria University. All rights reserved.

012-00

(2)

where γ = 0.5772+, is Euler’s constant. Later, Yang and Debnath [6] proved a distinctly strengthened version of (1.1) forλ= 0as

(1.3)

X

m=1

X

n=1

ambn m+n <

X

n=1

 π sin

π p

− 1 2np1 +n1q

apn

1

p

X

n=1

 π sin

π p

− 1 2n1q +n1p

bqn

1 q

, which is not comparable with (1.2).

Inequality (1.1) forλ = 1 is called the more accurate Hardy-Hilbert’s inequality, which has been strengthened as

(1.4)

X

m=0

X

n=0

ambn m+n+ 1

<

X

n=0

 π sin

π p

− ln 2−γ (2n+ 1)1+1p

apn

1

p

X

n=0

 π sin

π p

− ln 2−γ (2n+ 1)1+1q

bqn

1 q

, by introducing an inequality of the weight coefficient W(n, r) in the form (see [5, equation (2.9)]):

(1.5) W(n, r) =

X

m=0

1 m+n+ 1

n+12 m+ 12

1 r

< π

sin πr − ln 2−γ (2n+ 1)2−1r

(r >1, n∈N0). In this paper we will give another strengthened version of (1.1) for λ = 1, which is not comparable with (1.4). We need some preparatory works.

2. SOME LEMMAS

Lemma 2.1. Iff ∈ C6[0,∞), f(2q)(x) > 0 (q= 0,1,2,3), f(i−1)(∞) = 0 (i= 1,2, . . . ,6), andP

n=0f(n)<∞, then we have

X

k=2

(−1)kf(k)> 1

2f(2) (see [1, equation (4.4)]), (2.1)

X

m=0

f(m) = Z

0

f(t)dt+ 1

2f(0) + Z

0

1f0(t)dt, (2.2)

Z 0

1f0(t)dt= − 1

12f0(0) +δ2, δ2 = 1 6

Z 0

3f000(t)dt <0, (2.3)

wherei(t) (i= 1,3)are Bernoulli functions (see [5, equations (1.7)-(1.9)]).

Setting the weight coefficientW(n, r)in the form:

(2.4) W(n, r) =

X

m=0

1 m+n+ 1

n+12 m+ 12

1r

= π

sin πr − θ(n, r) (2n+ 1)2−1r

(r >1, n∈N0), then we find

(2.5) θ(n, r) = π

sin πr(2n+ 1)2−1r −(2n+ 1)2

X

m=0

1 m+n+ 1

1 2m+ 1

1r .

(3)

If we define the functionf(x)asf(x) = (x+n+1)1 2x+11 1r

,x∈[0,∞), then we havef(0) = (n+1)1 , f0(x) = − 1

(x+n+ 1)2 1

2x+ 1 1r

− 2

r(x+n+ 1) 1

2x+ 1 1+1r

, f0(0) =− 1

(n+ 1)2 − 2 r(n+ 1), and

Z 0

f(x)dx= 1 (2n+ 1)1r

Z

1 2n+1

1 (y+ 1)

1 y

1r dy

= 1

(2n+ 1)1r

"

π sin πr

X

ν=0

(−1)ν 1− 1r

(2n+ 1)ν+1−1r

# . By (2.2) and (2.5), we have

θ(n, r) =−(2n+ 1)2 2 (n+ 1) +

X

ν=0

(−1)ν 1−1r

(2n+ 1)ν−1 (2.6)

+ Z

0

1(t)

"

(2n+ 1)2 (t+n+ 1)2(2t+ 1)1r

+ 2 (2n+ 1)2 r(t+n+ 1) (2t+ 1)1+1r

# dt.

By Lemma 4 of [5, p. 1106] and (2.4), we have

Lemma 2.2. Forr >1,n∈N0, we haveθ(n, r)> θ(n,∞), and

(2.7) W(n, r)< π

sin πr − θ(n,∞) (2n+ 1)2−1r

(r >1, n∈N0), where

(2.8) θ(n,∞) = −(2n+ 1)2 2 (n+ 1) +

X

ν=0

(−1)ν

(1 +ν) (2n+ 1)ν−1 + Z

0

1(t)

"

(2n+ 1)2 (t+n+ 1)2

# dt.

Since by (2.3) and (2.1),we have Z

0

1(t) 1

(t+n+ 1)2dt=− 1

12 (n+ 1)2 − 1 3!

Z 0

3(t)

1 (t+n+ 1)

000

dt

>− 1 12 (n+ 1)2 and

X

ν=0

(−1)ν

(1 +ν) (2n+ 1)ν−1 = (2n+ 1)−1 2 +

X

ν=2

(−1)ν (1 +ν) (2n+ 1)ν−1

>(2n+ 1)−1

2 + 1

6 (2n+ 1). Then by (2.8), we find

(2.9) θ(n,∞)> 1

6 − 1

6 (n+ 1) − 1

12 (n+ 1)2 + 1 6 (2n+ 1).

(4)

Lemma 2.3. Forr >1,n∈N0, we have

(2.10) W(n, r)< π

sin πr − 1

13 (n+ 1) (2n+ 1)1−1r .

Proof. Define the functiong(x)as g(x) = 1

12 − 1

6 (2x+ 1) + 1

12 (x+ 1) + 1

12 (2x+ 1)2, x∈[0,∞).

Then by (2.8), we haveθ(n,∞)> 2n+1n+1g(n). Sinceg(1)>0.0787> 131 , and forx∈[1,∞),

g0(x) = 1

3 (2x+ 1)2 − 1

12 (x+ 1)2 − 1

3 (2x+ 1)3 = 4x2+ 2x−1

12 (x+ 1)2(2x+ 1)3 >0, then forn ≥ 1, we haveθ(n,∞)> (n+1)2n+1g(1) > 13(n+1)2n+1 .Hence by (2.7), inequality (2.10) is valid forn ≥1. Sinceln 2−γ = 0.1159+> 131, then by (1.5), we find

(2.11) W(0, r)< π

sin πr − ln 2−γ (2×0 + 1)2−1r

< π

sin πr − 1

13 (0 + 1) (2×0 + 1)1−1r .

It follows that (2.10) is valid forr >1,andn∈N0. This proves the lemma.

3. THEOREM AND REMARKS

Theorem 3.1. If p > 1,1p + 1q = 1, an, bn ≥ 0, 0 < P

n=0apn < ∞, and0 < P

n=0bqn < ∞, then

(3.1)

X

m=0

X

n=0

ambn m+n+ 1 <

X

n=0

 π sin

π p

− 1

13 (n+ 1) (2n+ 1)1p

apn

1 p

×

X

n=0

 π sin

π p

− 1

13 (n+ 1) (2n+ 1)1q

bqn

1 q

,

(3.2)

X

m=0

X

n=0

an m+n+ 1

!p

<

 π sin

π p

p−1

X

n=0

 π sin

π p

− 1

13 (n+ 1) (2n+ 1)p1

apn.

Proof. By Hölder’s inequality, we have

(5)

X

m=0

X

n=0

ambn m+n+ 1 =

X

m=0

X

n=0

"

am (m+n+ 1)1p

m+ 12 n+12

pq1 # "

bn (m+n+ 1)1q

n+12 m+ 12

pq1 #

≤ (

X

m=0

X

n=0

"

1 (m+n+ 1)

m+12 n+ 12

1q# apm

)1p

× (

X

m=0

X

n=0

"

1 (m+n+ 1)

n+ 12 m+12

1 p#

bqn )1q

= (

X

m=0

X

n=0

"

1 (m+n+ 1)

m+ 12 n+12

1 q#

apm )

1 p

× (

X

n=0

X

m=0

"

1 (m+n+ 1)

n+ 12 m+12

1 p#

bqn )

1 q

= (

X

m=0

W(m, q)apm

)p1 ( X

n=0

W(n, p)bqn )1q

. Sincesin(π/q) = sin(π/p), by (2.10) forr=p, q, we have (3.1).

By (2.10), we haveW(n, p)< π/sin(π/p). Then by Hölder’s inequality, we obtain

X

n=0

an

m+n+ 1 =

X

n=0

"

an (m+n+ 1)p1

n+ 12 m+12

pq1 # "

1 (m+n+ 1)1q

m+ 12 n+12

pq1 #

≤ (

X

n=0

"

1 (m+n+ 1)

n+ 12 m+12

1q# apn

)

1

p (

X

n=0

1 (m+n+ 1)

m+ 12 n+12

1p)

1 q

= (

X

n=0

"

1 (m+n+ 1)

n+12 m+ 12

1q# apn

)1p

{W(m, p)}1q

<

( X

n=0

"

1 (m+n+ 1)

n+12 m+ 12

1 q#

apn )

1

p

 π sin

π p

1 q

. Then we find

X

m=0

X

n=0

an m+n+ 1

!p

<

X

m=0

X

n=0

"

1 (m+n+ 1)

n+12 m+12

1q# apn

 π sin

π p

p q

=

 π sin

π p

p−1

X

n=0

X

m=0

"

1 (m+n+ 1)

n+12 m+ 12

1q# apn

=

 π sin

π p

p−1

X

n=0

W(n, q)apn.

(6)

Hence by (2.10) forr=q, we have (3.2). The theorem is proved.

Remark 3.1. Inequality (3.1) is a definite improvement over (1.1) forλ = 1.

Remark 3.2. Since forn ≥2,13 (2−γ)<2− n+11 , then

(3.3) π

sin πr − ln 2−γ (2n+ 1)2−1r

> π

sin πr − 1

13 (n+ 1) (2n+ 1)1−1r

(r >1, n≥2). In view of (2.11) and (3.3), it follows that (3.1) and (1.4) represent two distinct versions of strengthened inequalities. However, they are not comparable.

Remark 3.3. Inequality (3.2) reduces to (3.4)

X

m=0

X

n=0

an m+n+ 1

!p

<

 π sin

π p

p

X

n=0

apn.

This is an equivalent form of the more accurate Hardy-Hilbert’s inequality (see [3, Chapter 9]).

REFERENCES

[1] R.P. BOAS, Estimating remainders, Math. Mag., 51(2) (1978), 83–89.

[2] M. GAO AND B. YANG, On the extended Hilbert’s inequality, Proc. Amer. Math. Soc., 126(3) (1998), 751–759.

[3] G.H. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge University Press, 1934.

[4] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´C AND A.M. FINK, Inequalities Involving Functions and their Integrals and Derivatives, Kluwer Academic Publishers, 1991.

[5] B. YANG, On a strengthened version of the more accurate Hardy-Hilbert’s inequality, Acta Math.

Sinica, 42(6) (1999), 1103–1110.

[6] B. YANGANDL. DEBNATH, On new strengthened Hardy-Hilbert’s inequality, Int. J. Math. Math.

Sci., 21(2) (1998), 403–408.

[7] B. YANG ANDM. GAO, On a best value of Hardy-Hilbert’s inequality, Adv. Math., 26(2) (1997), 156–164.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The word a(ab) n+1 , with the unique C-decoding (1, (a(ab) n+1 )), is P inter n -violation-free for decodings with respect to C, but it is not P inter n -violation-free

Mindössze a nem Magyarországon készült és csak részben magyar nyelvű nyomtatványok után jelzi „etc.” azt, hogy a kiadvány nem ritkaság, és még számos, más

Ве1%уо%уазгаИ КНтка, Сазг1гоеп1его16ргаг Тапзгёк 8 Рёсзг Тикотапуе%уе1ет, АкаМпоз ОгуозЫкотапуг Каг, 1.зг.. Ве1%уд%уазгаЫ КНтка, КагсНо16%шг ёз

Three competing phases fill this master phase diagram, namely (n − 1)-, n-, and n-◇, which refers to structures formed by n − 1 layers of parallel to the walls squares,

RecentlyType 1 (R = OEt) N-(3-quinazolinio)amidates and their dimers (2, R = OEt), respectively, were found to undergo cleavage in n-hutylamine solutions, hoth at

Ha azonban δ &gt; 1 – 1/n, a termelő profitja árpadló mellett mindig magasabb, mint annak hiányában, ezért egy profitmaximalizáló termelő minden ilyen esetben a

Ruhám elvetted, hogy ne dideregjek S fejem alól párnám, hogy árva fejem Legyen hova hajtsam, biztos térdeden.. Arcom álarcát is letépted

Igen, Saáry Péter kint volt a fronton, sok mindenre ráeszmélt, de Istenem, még mindig csak tizenkilenc évest.. Ha nincs háború, iákkor most nem az arany csillag