• Nem Talált Eredményt

HADAMARD PRODUCT OF CERTAIN MEROMORPHIC p−VALENT STARLIKE AND p−VALENT CONVEX FUNCTIONS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "HADAMARD PRODUCT OF CERTAIN MEROMORPHIC p−VALENT STARLIKE AND p−VALENT CONVEX FUNCTIONS"

Copied!
7
0
0

Teljes szövegt

(1)

HADAMARD PRODUCT OF CERTAIN MEROMORPHICp−VALENT STARLIKE

ANDp−VALENT CONVEX FUNCTIONS

M. K. AOUF

DEPARTMENT OFMATHEMATICS,

FACULTY OFSCIENCE, MANSOURAUNIVERSITY, MANSOURA35516, EGYPT.

mkaouf127@yahoo.com

Received 12 April, 2008; accepted 30 April, 2009 Communicated by G. Kohr

ABSTRACT. In this paper, we establish some results concerning the Hadamard product of cer- tain meromorphicp-valent starlike and meromorphicp-valent convex functions analogous to those obtained by Vinod Kumar (J. Math. Anal. Appl. 113(1986), 230-234) and M. L. Mogra (Tamkang J. Math. 25(1994), no. 2, 157-162).

Key words and phrases: Meromorphic,p-valent, Hadamard product.

2000 Mathematics Subject Classification. 30C45.

1. INTRODUCTION

Throughout this paper, letp∈N={1,2, . . .}and let the functions of the form:

ϕ(z) =cpzp

X

n=1

cp+nzp+n (cp >0;cp+n≥0),

Ψ(z) =dpzp

X

n=1

dp+nzp+n (dp >0;dp+n≥0)

be regular andp−valent in the unit discU ={z :|z|<1}. Also, let (1.1) f(z) = ap−1

zp +

X

n=1

ap+n−1zp+n−1 (ap−1 >0;ap+n−1 ≥0),

fi(z) = ap−1,i

zp +

X

n=1

ap+n−1,izp+n−1 (ap−1,i >0;ap+n−1,i ≥0),

g(z) = bp−1

zp +

X

n=1

bp+n−1zp+n−1 (bp−1 >0;bp+n−1 ≥0)

The author is thankful to the referee for his comments and suggestions.

117-08

(2)

and

gj(z) = bp−1,j

zp +

X

n=1

bp+n−1,jzp+n−1 (bp−1,j >0;bp+n−1,j ≥0).

be regular andp−valent in the punctured discD={z : 0<|z|<1}.

LetS0(p, α, β)denote the class of functionsϕ(z)which satisfy the condition

0(z) ϕ(z) −p

0(z)

ϕ(z) +p−2α

< β

for some α, β(0 ≤ α < p, 0 < β ≤ 1, p ∈ N)and for allz ∈ U; and let C0(p, α, β)be the class of functions ϕ(z) for which zf

0(z)

p ∈ S0(p, α, β). It is well known that the functions in S0(p, α, β)andC0(p, α, β)are, respectively,p−valent starlike andp−valent convex functions of orderαand typeβ with negative coefficients inU (see Aouf [1]).

Denote byΣS0(p, α, β), the class of functionsf(z)which satisfy the condition (1.2)

zf0(z) f(z) +p

zf0(z)

f(z) + 2α−p

< β

for some α, β(0 ≤ α < p, 0 < β ≤ 1, p ∈ N) and for all z ∈ D, and ΣC0(p, α, β) be the class of functions f(z) for which −zf

0(z)

p ∈ ΣS0(p, α, β). The functions in ΣS0(p, α, β) and ΣC0(p, α, β) are, respectively, called meromorphic p−valent starlike and meromorphic p−valent convex functions of order α and type β with positive coefficients in D. The class ΣS0(p, α, β)withap−1 = 1has been studied by Aouf [2] and Mogra [9].

Using similar arguments as given in ([2] and [9]), we can prove the following result for functions inΣS0(p, α, β).

A functionf(z)∈ΣS0(p, α, β)if and only if (1.3)

X

n=1

{[(n+ 2p−1) +β(n+ 2α−1)]an+p−1} ≤2β(p−α)ap−1.

The result is sharp for the functionf(z)given by f(z) = 1

zp + 2β(p−α)ap−1

(n+ 2p−1) +β(n+ 2α−1)zp+n−1 (p, n∈N).

Proof Outline. Letf(z)∈ΣS0(p, α, β)be given by (1.1). Then, from (1.2) and (1.1), we have (1.4)

P

n=1(n+ 2p−1)ap+n−1z2p+n−1 2(p−α)ap−1 −P

n=1(n+ 2α−1)ap+n−1z2p+n−1

< β (z ∈U).

Since |Re(z)| ≤ |z| (z ∈ C), choosing z to be real and letting z → 1 through real values, (1.4) yields

X

n=1

(n+ 2p−1)ap+n−1 ≤2β(p−α)ap−1

X

n=1

β(n+ 2α−1)ap+n−1, which leads us to (1.3).

(3)

In order to prove the converse, we assume that the inequality (1.3) holds true. Then, if we let z ∈∂U, we find from (1.1) and (1.3) that

zf0(z) f(z) +p

zf0(z)

f(z) + 2α−p

P

n=1(n+ 2p−1)ap+n−1

(p−α)ap−1−P

n=1(n+ 2α−1)ap+n−1

< β (z ∈∂U ={z :z ∈C and |z|= 1}).

Hence, by the maximum modulus theorem, we havef(z) ∈ ΣS0(p, α, β). This completes the

proof of (1.3).

Also we can prove thatf(z)∈ΣC0(p, α, β)if and only if (1.5)

X

n=1

p+n−1 p

[(n+ 2p−1) +β(n+ 2α−1)]an+p−1

≤2β(p−α)ap−1.

The result is sharp for the functionf(z)given by f(z) = 1

zp + 2β(p−α)ap−1

n+2p−1 p

[(n+ 2p−1) +β(n+ 2α−1)]

zp+n−1 (p, n∈N).

The quasi-Hadamard product of two or more functions has recently been defined and used by Owa ([11], [12] and [13]), Kumar ([6], [7] and [8]), Aouf et al. [3], Hossen [5], Darwish [4]

and Sekine [14]. Accordingly, the quasi-Hadamard product of two functionsϕ(z)andΨ(z)is defined by

ϕ∗Ψ(z) =cpdpzp

X

n=1

cp+ndp+nzp+n .

Let us define the Hadamard product of two functionsf(z)andg(z)by f∗g(z) = ap−1bp−1

zp +

X

n=1

ap+n−1bp+n−1zp+n−1.

Similarly, we can define the Hadamard product of more than two meromorphicp−valent func- tions.

We now introduce the following class of meromorphicp−valent functions inD.

A functionf(z)∈Σk(p, α, β)if and only if (1.6)

X

n=1

(

p+n−1 p

k

[(n+ 2p−1) +β(n+ 2α−1)]an+p−1

)

≤2β(p−α)ap−1. where0≤α < p, 0< β ≤1, p∈N, andk is any fixed nonnegative real number.

Evidently,Σ0(p, α, β)≡ΣS0(p, α, β)andΣ1(p, α, β)≡ΣC0(p, α, β). Further,Σk(p, α, β)⊂ Σh(p, α, β)ifk > h ≥0, the containment being proper. Moreover, for any positive integerk, we have the following inclusion relation

Σk(p, α, β)⊂Σk−1(p, α, β)⊂ · · · ⊂Σ2(p, α, β)⊂ΣC0(p, α, β)⊂ΣS0(p, α, β). We also note that for every nonnegative real numberk, the classΣk(p, α, β)is nonempty as the functions

f(z) = ap−1

zp +

X

n=1

p+n−1 p

−k

2β(p−α)

(n+ 2p−1) +β(n+ 2α−1)

ap−1λp+n−1zp+n−1, whereap−1 >0,0≤α < p, 0< β ≤1, p∈N, ap−1 >0, λp+n−1 ≥0andP

n=1λp+n−1 ≤1, satisfy the inequality (1.1).

(4)

In this paper we establish certain results concerning the Hadamard product of meromorphic p−valent starlike and meromorphicp−valent convex functions of orderαand typeβanalogous to Kumar [7] and Mogra [10].

2. THEMAINTHEOREMS

Theorem 2.1. Let the functionsfi(z)belong to the classΣC0(p, α, β)for everyi= 1,2, . . . , m.

Then the Hadamard productf1∗f2∗ · · · ∗fm(z)belongs to the classΣ2m−1(p, α, β).

Proof. It is sufficient to show that

X

n=1

(

p+n−1 p

2m−1

[(n+ 2p−1) +β(n+ 2α−1)]

m

Y

i=1

ap+n−1,i

)

≤2β(p−α)

" m Y

i=1

ap−1,i

# .

Sincefi(z)∈ΣC0(p, α, β), we have (2.1)

X

n=1

p+n−1 p

[(n+ 2p−1) +β(n+ 2α−1)]ap+n−1,i

≤2β(p−α)ap−1,i,

fori= 1,2, . . . , m. Therefore, p+n−1

p

[(n+ 2p−1) +β(n+ 2α−1)]ap+n−1,i ≤2β(p−α)ap−1,i

or

ap+n−1,i

2β(p−α) p+n−1

p

[(n+ 2p−1) +β(n+ 2α−1)]

ap−1,i,

for everyi = 1,2, . . . , m. The right-hand expression of the last inequality is not greater than p+n−1

p

−2

ap−1,i. Hence

(2.2) ap+n−1,i

p+n−1 p

−2 ap−1,i, for everyi= 1,2, . . . , m.

Using (2.2) fori= 1,2, . . . , m−1, and (2.1) fori=m, we obtain

X

n=1

(

p+n−1 p

2m−1

[(n+ 2p−1) +β(n+ 2α−1)]

m

Y

i=1

ap+n−1,i

)

X

n=1

(

p+n−1 p

2m−1

[(n+ 2p−1) +β(n+ 2α−1)]

×

p+n−1 p

−2(m−1)

·

m−1

Y

i=1

ap−1,i

!

ap+n−1,m

)

(5)

=

"m−1 Y

i=1

ap−1,i

# X

n=1

p+n−1 p

[(n+ 2p−1) +β(n+ 2α−1)]an+p−1,m

≤2β(p−α)

" m Y

i=1

ap−1,i

# .

Hencef1∗f2∗ · · · ∗fm(z)∈Σ2m−1(p, α, β).

Theorem 2.2. Let the functionsfi(z)belong to the classΣS0(p, α, β)for everyi= 1,2, . . . , m.

Then the Hadamard productf1∗f2∗ · · · ∗fm(z)belongs to the classΣm−1(p, α, β).

Proof. Sincefi(z)∈ΣS0(p, α, β), we have

(2.3)

X

n=1

{[(n+ 2p−1) +β(n+ 2α−1)]ap+n−1,i} ≤2β(p−α)ap−1,i,

fori= 1,2, . . . , m. Therefore, ap+n−1,i

2β(p−α)

[(n+ 2p−1) +β(n+ 2α−1)]

ap−1,i,

and hence

(2.4) ap+n−1,i

p+n−1 p

−1

ap−1,i, for everyi= 1,2, . . . , m.

Using (2.4) fori= 1,2, . . . , m−1, and (2.3) fori=m, we get

X

n=1

(

p+n−1 p

m−1

[(n+ 2p−1) +β(n+ 2α−1)]

m

Y

i=1

ap+n−1,i

)

X

n=1

(

p+n−1 p

m−1

[(n+ 2p−1) +β(n+ 2α−1)]

×

p+n−1 p

−(m−1)

·

m−1

Y

i=1

ap−1,i

!

ap+n−1,m )

=

"m−1 Y

i=1

ap−1,i

# X

n=1

{[(n+ 2p−1) +β(n+ 2α−1)]an+p−1,m}

≤2β(p−α)

" m Y

i=1

ap−1,i

# .

Hencef1∗f2∗ · · · ∗fm(z)∈Σm−1(p, α, β).

Theorem 2.3. Let the functionsfi(z)belong to the classΣC0(p, α, β)for everyi= 1,2, . . . , m, and let the functionsgj(z)belong to the classΣS0(p, α, β)for everyj = 1,2, . . . , q. Then the Hadamard productf1∗f2∗ · · · ∗fm∗g1∗g2∗ · · · ∗gq(z)belongs to the classΣ2m+q−1(p, α, β).

(6)

Proof. It is sufficient to show that

X

n=1

(

p+n−1 p

2m+q−1

[(n+ 2p−1) +β(n+ 2α−1)]

×

m

Y

i=1

ap+n−1,i·

q

Y

i=1

bp+n−1,i

!)

≤2β(p−α)

m

Y

i=1

ap−1,i q

Y

i=1

bp−1,i

! .

Since fi(z) ∈ ΣC0(p, α, β), the inequalities (2.1) and (2.2) hold for every i = 1,2, . . . , m.

Further, sincegj(z)∈ΣS0(p, α, β), we have (2.5)

X

n=1

{[(n+ 2p−1) +β(n+ 2α−1)]bp+n−1,j} ≤2β(p−α)bp−1,j,

for everyj = 1,2, . . . , q. Whence we obtain

(2.6) bp+n−1,j

p+n−1 p

−1

bp−1,j , for everyj = 1,2, . . . , q.

Using (2.2) fori= 1,2, . . . , m, (2.6) forj = 1,2, . . . , q−1, and (2.5) forj =q, we get

X

n=1

(

p+n−1 p

2m+q−1

[(n+ 2p−1) +β(n+ 2α−1)]

×

m

Y

i=1

ap+n−1,i·

q

Y

j=1

bp+n−1,j

!)

X

n=1

(

p+n−1 p

2m+q−1

[(n+ 2p−1) +β(n+ 2α−1)]

×

p+n−1 p

−2m

p+n−1 p

−(q−1) m

Y

i=1

ap−1,i q−1

Y

j=1

bp−1,j

!

bp+n−1,q

)

=

m

Y

i=1

ap−1,i q−1

Y

j=1

bp−1,j

! X

n=1

{[(n+ 2p−1) + β(n+ 2α−1)]bp+n−1,q}

≤2β(p−α)

m

Y

i=1

ap−1,i q

Y

j=1

bp−1,j

! .

Hencef1∗f2∗ · · · ∗fm∗g1∗g2∗ · · · ∗gq(z)∈Σ2m+q−1(p, α, β).

We note that the required estimate can also be obtained by using (2.2) fori= 1,2, . . . , m−1, (2.6) forj = 1,2, . . . , q, and (2.1) fori=m.

Remark 1. Puttingp= 1in the above results, we obtain the results obtained by Mogra [10].

(7)

REFERENCES

[1] M.K. AOUF,p−Valent regular functions with negative coefficients of order α, Bull. Inst. Math.

Acad. Sinica, 17(3) (1989), 255–267.

[2] M.K. AOUF, Certain classes of meronorphic multivalent functions with positive coefficients, Math.

Comput. Modelling, 47 (2008), 328–340.

[3] M.K. AOUF, A. SHAMANDY ANDM.F. YASSEN, Quasi-Hadamard product ofp−valent func- tions, Commun. Fac. Sci. Univ. Ank. SeriesA1,44 (1995), 35–40.

[4] H.E. DARWISH, The quasi-Hadamard product of certain starlike and convex functions, Applied Math. Letters, 20 (2007), 692–695.

[5] H.M. HOSSEN, Quasi-Hadamard product of certain p-valent functions, Demonstratio Math., 33(2) (2000), 277–281.

[6] V. KUMAR, Hadamard product of certain starlike functions, J. Math. Anal. Appl., 110 (1985), 425–428.

[7] V. KUMAR, Hadamard product of certain starlike functions II, J. Math. Anal. Appl., 113 (1986), 230–234.

[8] V. KUMAR, Quasi-Hadamard product of certain univalent functions, J. Math. Anal. Appl., 126 (1987), 70–77.

[9] M.L. MOGRA, Meromorphic multivalent functions with positive coefficients. I, Math. Japon. 35(1) (1990), 1–11.

[10] M.L. MOGRA, Hadamard product of certain meromorphic starlike and convex functions, Tamkang J. Math., 25(2) (1994), 157–162.

[11] S. OWA, On the classes of univalent functions with negative coefficients, Math. Japon., 27(4) (1982), 409–416.

[12] S. OWA, On the starlike functions of orderαand typeβ, Math. Japon., 27(6) (1982), 723–735.

[13] S. OWA, On the Hadamard products of univalent functions, Tamkang J. Math., 14 (1983), 15–21.

[14] T. SEKINE, On quasi-Hadamard products ofp−valent functions with negative coefficients in: H.

M. Srivastava and S. Owa (Editors), Univalent Functions, Fractional Calculus, and Their Appli- cations, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989, 317-328.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

WATSON, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Func- tions; With an Account of the Principal Transcendental

Abstract: We use a parabolic region to prove certain inequalities for uniformly p-valent functions in the open unit disk D.... Inequalities for p-Valent

We use a parabolic region to prove certain inequalities for uniformly p-valent func- tions in the open unit disk D.. Key words and phrases:

Key words: Univalent, Starlike, Convex, Uniformly convex, Uniformly starlike, Hadamard product, Integral means, Generalized hypergeometric functions.. Abstract: Making use of

In this section, we first derive some subordination results from Theorem 4.1; as corollaries we obtain sharp distortion, growth, covering and rotation theorems from the family U CV

In this paper we establish some results concerning the partial sums of mero- morphic p-valent starlike functions and meromorphic p-valent convex functions.. 2000 Mathematics

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex