• Nem Talált Eredményt

p − VALENTCONVEXFUNCTIONS p − VALENTSTARLIKEAND M.K.AOUF HADAMARDPRODUCTOFCERTAINMEROMORPHIC

N/A
N/A
Protected

Academic year: 2022

Ossza meg "p − VALENTCONVEXFUNCTIONS p − VALENTSTARLIKEAND M.K.AOUF HADAMARDPRODUCTOFCERTAINMEROMORPHIC"

Copied!
14
0
0

Teljes szövegt

(1)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page

Contents

JJ II

J I

Page1of 14 Go Back Full Screen

Close

HADAMARD PRODUCT OF CERTAIN MEROMORPHIC p−VALENT STARLIKE AND

p−VALENT CONVEX FUNCTIONS

M. K. AOUF

Department of Mathematics, Faculty of Science,

Mansoura University, Mansoura 35516, Egypt.

EMail:mkaouf127@yahoo.com

Received: 12 April, 2008

Accepted: 30 April, 2009

Communicated by: G. Kohr 2000 AMS Sub. Class.: 30C45.

Key words: Meromorphic,p-valent, Hadamard product.

Abstract: In this paper, we establish some results concerning the Hadamard product of cer- tain meromorphicp-valent starlike and meromorphicp-valent convex functions analogous to those obtained by Vinod Kumar (J. Math. Anal. Appl. 113(1986), 230-234) and M. L. Mogra (Tamkang J. Math. 25(1994), no. 2, 157-162).

Acknowledgements: The author is thankful to the referee for his comments and suggestions.

(2)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page2of 14 Go Back Full Screen

Close

Contents

1 Introduction 3

2 The Main Theorems 8

(3)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page3of 14 Go Back Full Screen

Close

1. Introduction

Throughout this paper, letp∈N={1,2, . . .}and let the functions of the form:

ϕ(z) = cpzp

X

n=1

cp+nzp+n (cp >0;cp+n≥0),

Ψ(z) = dpzp

X

n=1

dp+nzp+n (dp >0;dp+n≥0)

be regular andp−valent in the unit discU ={z :|z|<1}. Also, let (1.1) f(z) = ap−1

zp +

X

n=1

ap+n−1zp+n−1 (ap−1 >0;ap+n−1 ≥0),

fi(z) = ap−1,i

zp +

X

n=1

ap+n−1,izp+n−1 (ap−1,i >0;ap+n−1,i ≥0),

g(z) = bp−1

zp +

X

n=1

bp+n−1zp+n−1 (bp−1 >0;bp+n−1 ≥0)

and

gj(z) = bp−1,j

zp +

X

n=1

bp+n−1,jzp+n−1 (bp−1,j >0;bp+n−1,j ≥0).

be regular andp−valent in the punctured discD={z : 0<|z|<1}.

(4)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page4of 14 Go Back Full Screen

Close

LetS0(p, α, β)denote the class of functionsϕ(z)which satisfy the condition

0(z) ϕ(z) −p

0(z)

ϕ(z) +p−2α

< β

for someα, β(0≤α < p,0< β ≤1, p∈N)and for allz ∈U; and letC0(p, α, β) be the class of functionsϕ(z)for which zf

0(z)

p ∈ S0(p, α, β). It is well known that the functions inS0(p, α, β)andC0(p, α, β)are, respectively,p−valent starlike and p−valent convex functions of orderαand typeβwith negative coefficients inU (see Aouf [1]).

Denote byΣS0(p, α, β), the class of functionsf(z)which satisfy the condition (1.2)

zf0(z) f(z) +p

zf0(z)

f(z) + 2α−p

< β

for someα, β(0≤α < p, 0< β ≤ 1, p∈ N)and for allz ∈ D, andΣC0(p, α, β) be the class of functions f(z) for which −zf

0(z)

p ∈ ΣS0(p, α, β). The functions in ΣS0(p, α, β) and ΣC0(p, α, β) are, respectively, called meromorphic p−valent starlike and meromorphic p−valent convex functions of order α and type β with positive coefficients inD. The classΣS0(p, α, β)withap−1 = 1has been studied by Aouf [2] and Mogra [9].

Using similar arguments as given in ([2] and [9]), we can prove the following result for functions inΣS0(p, α, β).

A functionf(z)∈ΣS0(p, α, β)if and only if (1.3)

X

n=1

{[(n+ 2p−1) +β(n+ 2α−1)]an+p−1} ≤2β(p−α)ap−1.

(5)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page5of 14 Go Back Full Screen

Close

The result is sharp for the functionf(z)given by f(z) = 1

zp + 2β(p−α)ap−1

(n+ 2p−1) +β(n+ 2α−1)zp+n−1 (p, n∈N).

Proof Outline. Let f(z) ∈ ΣS0(p, α, β) be given by (1.1). Then, from (1.2) and (1.1), we have

(1.4)

P

n=1(n+ 2p−1)ap+n−1z2p+n−1 2(p−α)ap−1−P

n=1(n+ 2α−1)ap+n−1z2p+n−1

< β (z ∈U).

Since|Re(z)| ≤ |z| (z ∈C), choosingz to be real and lettingz →1through real values, (1.4) yields

X

n=1

(n+ 2p−1)ap+n−1 ≤2β(p−α)ap−1

X

n=1

β(n+ 2α−1)ap+n−1, which leads us to (1.3).

In order to prove the converse, we assume that the inequality (1.3) holds true.

Then, if we letz ∈∂U, we find from (1.1) and (1.3) that

zf0(z) f(z) +p

zf0(z)

f(z) + 2α−p

P

n=1(n+ 2p−1)ap+n−1

(p−α)ap−1−P

n=1(n+ 2α−1)ap+n−1

< β (z ∈∂U ={z :z ∈C and |z|= 1}).

Hence, by the maximum modulus theorem, we have f(z) ∈ ΣS0(p, α, β). This completes the proof of (1.3).

(6)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page6of 14 Go Back Full Screen

Close

Also we can prove thatf(z)∈ΣC0(p, α, β)if and only if (1.5)

X

n=1

p+n−1 p

[(n+ 2p−1) +β(n+ 2α−1)]an+p−1

≤2β(p−α)ap−1.

The result is sharp for the functionf(z)given by f(z) = 1

zp + 2β(p−α)ap−1

n+2p−1 p

[(n+ 2p−1) +β(n+ 2α−1)]

zp+n−1 (p, n∈N).

The quasi-Hadamard product of two or more functions has recently been defined and used by Owa ([11], [12] and [13]), Kumar ([6], [7] and [8]), Aouf et al. [3], Hossen [5], Darwish [4] and Sekine [14]. Accordingly, the quasi-Hadamard product of two functionsϕ(z)andΨ(z)is defined by

ϕ∗Ψ(z) =cpdpzp

X

n=1

cp+ndp+nzp+n .

Let us define the Hadamard product of two functionsf(z)andg(z)by f∗g(z) = ap−1bp−1

zp +

X

n=1

ap+n−1bp+n−1zp+n−1.

Similarly, we can define the Hadamard product of more than two meromorphic p−valent functions.

We now introduce the following class of meromorphicp−valent functions inD.

(7)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page7of 14 Go Back Full Screen

Close

A functionf(z)∈Σk(p, α, β)if and only if (1.6)

X

n=1

(

p+n−1 p

k

[(n+ 2p−1) +β(n+ 2α−1)]an+p−1 )

≤2β(p−α)ap−1. where0≤α < p,0< β ≤1, p∈N, andkis any fixed nonnegative real number.

Evidently,Σ0(p, α, β)≡ ΣS0(p, α, β)andΣ1(p, α, β)≡ ΣC0(p, α, β). Further, Σk(p, α, β) ⊂ Σh(p, α, β)ifk > h ≥ 0, the containment being proper. Moreover, for any positive integerk, we have the following inclusion relation

Σk(p, α, β)⊂Σk−1(p, α, β)⊂ · · · ⊂Σ2(p, α, β)⊂ΣC0(p, α, β)⊂ΣS0(p, α, β). We also note that for every nonnegative real number k, the class Σk(p, α, β) is nonempty as the functions

f(z) = ap−1

zp +

X

n=1

p+n−1 p

−k

×

2β(p−α)

(n+ 2p−1) +β(n+ 2α−1)

ap−1λp+n−1zp+n−1, where ap−1 > 0, 0 ≤ α < p, 0 < β ≤ 1, p ∈ N, ap−1 > 0, λp+n−1 ≥ 0 and P

n=1λp+n−1 ≤1, satisfy the inequality (1.1).

In this paper we establish certain results concerning the Hadamard product of meromorphicp−valent starlike and meromorphicp−valent convex functions of or- derαand typeβanalogous to Kumar [7] and Mogra [10].

(8)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page8of 14 Go Back Full Screen

Close

2. The Main Theorems

Theorem 2.1. Let the functions fi(z) belong to the class ΣC0(p, α, β) for every i = 1,2, . . . , m. Then the Hadamard product f1 ∗f2 ∗ · · · ∗fm(z) belongs to the classΣ2m−1(p, α, β).

Proof. It is sufficient to show that

X

n=1

(

p+n−1 p

2m−1

[(n+ 2p−1) +β(n+ 2α−1)]

m

Y

i=1

ap+n−1,i

)

≤2β(p−α)

" m Y

i=1

ap−1,i

# .

Sincefi(z)∈ΣC0(p, α, β), we have (2.1)

X

n=1

p+n−1 p

[(n+ 2p−1) +β(n+ 2α−1)]ap+n−1,i

≤2β(p−α)ap−1,i, fori= 1,2, . . . , m. Therefore,

p+n−1 p

[(n+ 2p−1) +β(n+ 2α−1)]ap+n−1,i ≤2β(p−α)ap−1,i

or

ap+n−1,i

2β(p−α) p+n−1

p

[(n+ 2p−1) +β(n+ 2α−1)]

ap−1,i,

(9)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page9of 14 Go Back Full Screen

Close

for every i = 1,2, . . . , m. The right-hand expression of the last inequality is not greater than

p+n−1 p

−2

ap−1,i. Hence

(2.2) ap+n−1,i

p+n−1 p

−2

ap−1,i, for everyi= 1,2, . . . , m.

Using (2.2) fori= 1,2, . . . , m−1, and (2.1) fori=m, we obtain

X

n=1

(

p+n−1 p

2m−1

[(n+ 2p−1) +β(n+ 2α−1)]

m

Y

i=1

ap+n−1,i

)

X

n=1

(

p+n−1 p

2m−1

[(n+ 2p−1) +β(n+ 2α−1)]

×

p+n−1 p

−2(m−1)

·

m−1

Y

i=1

ap−1,i

!

ap+n−1,m

)

=

"m−1 Y

i=1

ap−1,i

# X

n=1

p+n−1 p

[(n+ 2p−1) +β(n+ 2α−1)]an+p−1,m

≤2β(p−α)

" m Y

i=1

ap−1,i

# .

Hencef1∗f2 ∗ · · · ∗fm(z)∈Σ2m−1(p, α, β).

Theorem 2.2. Let the functions fi(z) belong to the class ΣS0(p, α, β) for every i = 1,2, . . . , m. Then the Hadamard product f1 ∗f2 ∗ · · · ∗fm(z) belongs to the classΣm−1(p, α, β).

(10)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page10of 14 Go Back Full Screen

Close

Proof. Sincefi(z)∈ΣS0(p, α, β), we have

(2.3)

X

n=1

{[(n+ 2p−1) +β(n+ 2α−1)]ap+n−1,i} ≤2β(p−α)ap−1,i,

fori= 1,2, . . . , m. Therefore, ap+n−1,i

2β(p−α)

[(n+ 2p−1) +β(n+ 2α−1)]

ap−1,i, and hence

(2.4) ap+n−1,i

p+n−1 p

−1

ap−1,i, for everyi= 1,2, . . . , m.

Using (2.4) fori= 1,2, . . . , m−1, and (2.3) fori=m, we get

X

n=1

(

p+n−1 p

m−1

[(n+ 2p−1) +β(n+ 2α−1)]

m

Y

i=1

ap+n−1,i

)

X

n=1

(

p+n−1 p

m−1

[(n+ 2p−1) +β(n+ 2α−1)]

×

p+n−1 p

−(m−1)

·

m−1

Y

i=1

ap−1,i

!

ap+n−1,m

)

=

"m−1 Y

i=1

ap−1,i

# X

n=1

{[(n+ 2p−1) +β(n+ 2α−1)]an+p−1,m}

≤2β(p−α)

" m Y

i=1

ap−1,i

# .

(11)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page11of 14 Go Back Full Screen

Close

Hencef1∗f2 ∗ · · · ∗fm(z)∈Σm−1(p, α, β).

Theorem 2.3. Let the functions fi(z) belong to the class ΣC0(p, α, β) for every i= 1,2, . . . , m, and let the functionsgj(z)belong to the classΣS0(p, α, β)for every j = 1,2, . . . , q. Then the Hadamard productf1∗f2∗ · · · ∗fm∗g1∗g2∗ · · · ∗gq(z) belongs to the classΣ2m+q−1(p, α, β).

Proof. It is sufficient to show that

X

n=1

(

p+n−1 p

2m+q−1

[(n+ 2p−1) +β(n+ 2α−1)]

×

m

Y

i=1

ap+n−1,i·

q

Y

i=1

bp+n−1,i

!)

≤2β(p−α)

m

Y

i=1

ap−1,i q

Y

i=1

bp−1,i

! . Since fi(z) ∈ ΣC0(p, α, β), the inequalities (2.1) and (2.2) hold for every i = 1,2, . . . , m. Further, sincegj(z)∈ΣS0(p, α, β), we have

(2.5)

X

n=1

{[(n+ 2p−1) +β(n+ 2α−1)]bp+n−1,j} ≤2β(p−α)bp−1,j,

for everyj = 1,2, . . . , q. Whence we obtain

(2.6) bp+n−1,j

p+n−1 p

−1

bp−1,j , for everyj = 1,2, . . . , q.

(12)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page12of 14 Go Back Full Screen

Close

Using (2.2) fori= 1,2, . . . , m, (2.6) forj = 1,2, . . . , q−1, and (2.5) forj =q, we get

X

n=1

(

p+n−1 p

2m+q−1

[(n+ 2p−1) +β(n+ 2α−1)]

×

m

Y

i=1

ap+n−1,i·

q

Y

j=1

bp+n−1,j

!)

X

n=1

(

p+n−1 p

2m+q−1

[(n+ 2p−1) +β(n+ 2α−1)]

×

p+n−1 p

−2m

p+n−1 p

−(q−1) m Y

i=1

ap−1,i q−1

Y

j=1

bp−1,j

!

bp+n−1,q

)

=

m

Y

i=1

ap−1,i q−1

Y

j=1

bp−1,j

! X

n=1

{[(n+ 2p−1) + β(n+ 2α−1)]bp+n−1,q}

≤2β(p−α)

m

Y

i=1

ap−1,i q

Y

j=1

bp−1,j

! .

Hencef1∗f2 ∗ · · · ∗fm∗g1∗g2∗ · · · ∗gq(z)∈Σ2m+q−1(p, α, β).

We note that the required estimate can also be obtained by using (2.2) for i = 1,2, . . . , m−1, (2.6) forj = 1,2, . . . , q, and (2.1) fori=m.

Remark 1. Putting p = 1 in the above results, we obtain the results obtained by Mogra [10].

(13)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page13of 14 Go Back Full Screen

Close

References

[1] M.K. AOUF,p−Valent regular functions with negative coefficients of orderα, Bull. Inst. Math. Acad. Sinica, 17(3) (1989), 255–267.

[2] M.K. AOUF, Certain classes of meronorphic multivalent functions with posi- tive coefficients, Math. Comput. Modelling, 47 (2008), 328–340.

[3] M.K. AOUF, A. SHAMANDYAND M.F. YASSEN, Quasi-Hadamard product of p−valent functions, Commun. Fac. Sci. Univ. Ank. Series A1, 44 (1995), 35–40.

[4] H.E. DARWISH, The quasi-Hadamard product of certain starlike and convex functions, Applied Math. Letters, 20 (2007), 692–695.

[5] H.M. HOSSEN, Quasi-Hadamard product of certain p-valent functions, Demonstratio Math., 33(2) (2000), 277–281.

[6] V. KUMAR, Hadamard product of certain starlike functions, J. Math. Anal.

Appl., 110 (1985), 425–428.

[7] V. KUMAR, Hadamard product of certain starlike functions II, J. Math. Anal.

Appl., 113 (1986), 230–234.

[8] V. KUMAR, Quasi-Hadamard product of certain univalent functions, J. Math.

Anal. Appl., 126 (1987), 70–77.

[9] M.L. MOGRA, Meromorphic multivalent functions with positive coefficients.

I, Math. Japon. 35(1) (1990), 1–11.

[10] M.L. MOGRA, Hadamard product of certain meromorphic starlike and convex functions, Tamkang J. Math., 25(2) (1994), 157–162.

(14)

Hadamard Product M. K. Aouf vol. 10, iss. 2, art. 43, 2009

Title Page Contents

JJ II

J I

Page14of 14 Go Back Full Screen

Close

[11] S. OWA, On the classes of univalent functions with negative coefficients, Math.

Japon., 27(4) (1982), 409–416.

[12] S. OWA, On the starlike functions of orderαand typeβ, Math. Japon., 27(6) (1982), 723–735.

[13] S. OWA, On the Hadamard products of univalent functions, Tamkang J. Math., 14 (1983), 15–21.

[14] T. SEKINE, On quasi-Hadamard products ofp−valent functions with negative coefficients in: H. M. Srivastava and S. Owa (Editors), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989, 317-328.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: In the present paper, we discuss a subclass M p (λ, µ, A, B) of p-valently Bazile- viˇc functions, which was introduced and investigated recently by Patel [5].. Such

Abstract: We use a parabolic region to prove certain inequalities for uniformly p-valent functions in the open unit disk D.... Inequalities for p-Valent

We use a parabolic region to prove certain inequalities for uniformly p-valent func- tions in the open unit disk D.. Key words and phrases:

In this paper we establish several Hadamard type inequalities for differentiable m- convex and (α, m)-convex functions.. We also establish Hadamard type inequalities for products of

In this paper we establish some results concerning the partial sums of mero- morphic p-valent starlike functions and meromorphic p-valent convex functions.. 2000 Mathematics

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex

We introduce a subclass M p (λ, µ, A, B) of p-valent analytic functions and de- rive certain properties of functions belonging to this class by using the tech- niques of