• Nem Talált Eredményt

New sufficient condi- tions for these operators to bep-valently starlike,p-valently close-to-convex, uniformlyp-valent close-to-convex and strongly starlike of orderγ(0&lt

N/A
N/A
Protected

Academic year: 2022

Ossza meg "New sufficient condi- tions for these operators to bep-valently starlike,p-valently close-to-convex, uniformlyp-valent close-to-convex and strongly starlike of orderγ(0&lt"

Copied!
9
0
0

Teljes szövegt

(1)

NEW GENERAL INTEGRAL OPERATORS OFp-VALENT FUNCTIONS

B.A. FRASIN

DEPARTMENT OFMATHEMATICS

AL AL-BAYTUNIVERSITY

P.O. BOX: 130095 MAFRAQ, JORDAN

bafrasin@yahoo.com

Received 10 May, 2009; accepted 14 October, 2009 Communicated by N.E. Cho

ABSTRACT. In this paper, we introduce new general integral operators. New sufficient condi- tions for these operators to bep-valently starlike,p-valently close-to-convex, uniformlyp-valent close-to-convex and strongly starlike of orderγ(0< γ1) in the open unit disk are obtained.

Key words and phrases: Analytic functions, p-valent starlike, convex and close-to-convex functions, Uniformly p-valent close-to-convex functions, Strongly starlike, Integral operator.

2000 Mathematics Subject Classification. 30C45.

1. INTRODUCTION ANDDEFINITIONS

LetApdenote the class of functions of the form:

f(z) = zp+

X

n=p+1

anzn (p∈N∈ {1,2, . . .}),

which are analytic in the open unit disk U = {z : |z| < 1}.We write A1 = A. A function f ∈ Apis said to bep-valently starlike of orderβ(0≤β < p)if and only if

Re

zf0(z) f(z)

> β (z ∈ U).

We denote bySp?(β),the class of all such functions. On the other hand, a function f ∈ Apis said to bep-valently convex of orderβ(0≤β < p)if and only if

Re

1 + zf00(z) f0(z)

> β (z ∈ U).

LetKp(β)denote the class of all those functions which are p-valently convex of order β inU. Furthermore, a function f(z) ∈ Apis said to be in the subclass Cp(β) of p-valently close-to- convex functions of orderβ(0≤β < p)inU if and only if

Re

f0(z) zp−1

> β (z∈ U).

129-09

(2)

Note thatSp?(0) =Sp?,Kp(0) =KpandCp(0) =Cpare, respectively, the classes ofp-valently starlike, p-valently convex and p-valently close-to-convex functions in U. Also, we note that S1? = S?, K1 = K and C1 = C are, respectively, the usual classes of starlike, convex and close-to-convex functions inU.

A function f ∈ Ap is said to be in the class U Cp(β)of uniformly p-valent close-to-convex functions of orderβ(0≤β < p)inU if and only if

Re

zf0(z) g(z) −β

zf0(z) g(z) −p

(z ∈ U),

for someg(z)∈ U Sp(β), whereU Sp(β)is the class of uniformlyp-valent starlike functions of orderβ (−1≤β < p)inU and satisfies

(1.1) Re

zf0(z) f(z) −β

zf0(z) f(z) −p

(z ∈ U).

Uniformlyp-valent starlike functions were first introduced in [10].

Forαi >0andfi ∈ Ap,we define the following general integral operators

(1.2) Fp(z) =

Z z

0

ptp−1

f1(t) tp

α1

. . .

fn(t) tp

αn

dt and

(1.3) Gp(z) =

Z z

0

ptp−1

f10(t) ptp−1

α1

. . .

fn0(t) ptp−1

αn

dt.

If we takep = 1, we obtain of the general integral operatorsF1(z) = Fn(z) andG1(z) = Fα1,...,αn(z)introduced and studied by Breaz and Breaz [3] and Breaz et al. [6] (see also [2, 4, 8, 9]). Also forp=n= 1, α1 =α ∈[0,1]in (1.2),we obtain the integral operatorRz

0

f(t) t

α

dt studied in [12] and for p = n = 1, α1 = δ ∈ C, |δ| ≤ 1/4in (1.3),we obtain the integral operatorRz

0(f0(t))αdtstudied in [11, 15].

There are many papers in which various sufficient conditions for multivalent starlikeness have been obtained. In this paper, we derive new sufficient conditions for the operatorsFp(z) andGp(z)to bep-valently starlike,p-valently close-to-convex and uniformlyp-valent close-to- convex inU. Furthermore, we give new sufficient conditions for these two general operators to be strongly starlike of orderγ(0< γ≤1)inU.

In order to derive our main results, we have to recall here the following results:

Lemma 1.1 ([13]). Iff ∈ Ap satisfies Re

1 + zf00(z) f0(z)

< p+ 1

4 (z ∈ U), thenf isp-valently starlike inU.

Lemma 1.2 ([7]). Iff ∈ Ap satisfies

zf00(z)

f0(z) + 1−p

< p+ 1 (z ∈ U),

thenf isp-valently starlike inU. Lemma 1.3 ([16]). Iff ∈ Ap satisfies

Re

1 + zf00(z) f0(z)

< p+ a+b

(1 +a)(1−b) (z ∈ U), wherea >0, b ≥0anda+ 2b≤1,thenf isp-valently close-to-convex inU.

(3)

Lemma 1.4 ([1]). Iff ∈ Ap satisfies

Re

1 + zf00(z) f0(z)

< p+ 1

3 (z ∈ U), thenf is uniformlyp-valent close-to-convex inU.

Lemma 1.5 ([17]). Iff ∈ Ap satisfies

Re

1 + zf00(z) f0(z)

> p

4 −1 (z ∈ U), then

Re s

zf0(z) f(z) >

√p

2 (z ∈ U).

Lemma 1.6 ([14]). Iff ∈ Ap satisfies

Re

1 + zf00(z) f0(z)

> p− γ

2 (z ∈ U),

then

arg zf0(z) f(z)

< π

2γ (0< γ ≤1;z ∈ U), orf is strongly starlike of orderγinU.

2. SUFFICIENTCONDITIONS FOR THEOPERATORFp We begin by establishing sufficient conditions for the operatorFp to be inSp?.

Theorem 2.1. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Apfor all i = 1,2, . . . , nsatisfies

(2.1) Re

zfi0(z) fi(z)

< p+ 1 4Pn

i=1αi (z ∈ U), thenFpisp-valently starlike inU.

Proof. From the definition (1.2), we observe thatFp(z) ∈ Ap.On the other hand, it is easy to see that

(2.2) Fp0(z) =pzp−1

f1(z) zp

α1

. . .

fn(z) zp

αn

. Differentiating (2.2) logarithmically and multiplying byz, we obtain

zFp00(z)

Fp0(z) = (p−1) +

n

X

i=1

αi

zfi0(z) fi(z) −p

.

Thus we have

(2.3) 1 + zFp00(z)

Fp0(z) =p 1−

n

X

i=1

αi

! +

n

X

i=1

αi

zfi0(z) fi(z)

.

Taking the real part of both sides of (2.3), we have

(2.4) Re

1 + zFp00(z) Fp0(z)

=p 1−

n

X

i=1

αi

! +

n

X

i=1

αiRe

zfi0(z) fi(z)

.

(4)

From (2.4) and (2.1), we obtain Re

1 + zFp00(z) Fp0(z)

< p 1−

n

X

i=1

αi

! +

n

X

i=1

αi

p+ 1

4Pn i=1αi

=p+ 1 4. (2.5)

Hence by Lemma 1.1, we getFp ∈ Sp?.This completes the proof.

Lettingn =p= 1, α1 =α andf1 =f in Theorem 2.1, we have:

Corollary 2.2. Iff ∈ A satisfies Re

zf0(z) f(z)

<1 + 1

4α (z ∈ U), whereα >0, thenRz

0

f(t)

t

α

dtis starlike inU.

In the next theorem, we derive another sufficient condition for p-valently starlike functions inU.

Theorem 2.3. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

(2.6)

zfi0(z) fi(z) −p

< p+ 1 Pn

i=1αi (z ∈ U), thenFpisp-valently starlike inU.

Proof. From (2.3) and the hypotheses (2.6), we have

1 + zFp00(z) Fp0(z) −p

=

n

X

i=1

αi

zfi0(z) fi(z) −p

<

n

X

i=1

αi

zfi0(z) fi(z) −p

<

n

X

i=1

αi

p+ 1 Pn

i=1αi

=p+ 1.

Now using Lemma 1.2, we immediately getFp ∈ Sp?.

Lettingn =p= 1, α1 =α andf1 =f in Theorem 2.3, we have:

Corollary 2.4. Iff ∈ A satisfies

zf0(z) f(z) −1

< 2

α (z ∈ U), whereα >0, thenRz

0

f(t)

t

α

dtis starlike inU.

Applying Lemmas 1.3 and 1.4, we obtain the following sufficient conditions for Fpto be p-valently close-to-convex and uniformlyp-valent close-to-convex inU.

Theorem 2.5. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

(2.7) Re

zfi0(z) fi(z)

< p+ (a+b) (1 +a)(1−b)Pn

i=1αi (z ∈ U), wherea >0, b ≥0anda+ 2b≤1,then Fpisp-valently close-to-convex inU.

Proof. From (2.4) and the hypotheses (2.7) and applying Lemma 1.3, we haveFp ∈ Cp(β).

(5)

Lettingn =p= 1, α1 =α andf1 =f in Theorem 2.5, we have:

Corollary 2.6. Iff ∈ A satisfies Re

zf0(z) f(z)

<1 + (a+b)

(1 +a)(1−b)α (z ∈ U), whereα >0,a >0, b ≥0anda+ 2b ≤1,thenRz

0

f(t)

t

α

dt is close-to-convex inU.

Theorem 2.7. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

(2.8) Re

zfi0(z) fi(z)

< p+ 1 3Pn

i=1αi (z ∈ U), thenFpis uniformlyp-valent close-to-convex inU.

Proof. The proof of the theorem follows by applying Lemma 1.4 and using (2.4), (2.8) to get

Fp ∈ U Cp(β).

Lettingn =p= 1, α1 =α andf1 =f in Theorem 2.7, we have:

Corollary 2.8. Iff ∈ A satisfies Re

zf0(z) f(z)

<1 + 1

3α (z ∈ U), whereα >0, thenRz

0

f(t)

t

α

dt is uniformly close-to-convex inU. Using Lemma 1.5, we obtain the next result

Theorem 2.9. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

(2.9) Re

zfi0(z) fi(z)

> p− 3p+ 4 4Pn

i=1αi (z ∈ U), then

Re s

zFp0(z) Fp(z) >

√p

2 (z ∈ U).

Proof. It follows from (2.4) and (2.9) that

Re

1 + zFp00(z) Fp0(z)

> p 1−

n

X

i=1

αi

! +

n

X

i=1

αi

p− 3p+ 4 4Pn

i=1αi

= p 4 −1.

By Lemma 1.5, we conclude that Re

szFp0(z) Fp(z) >

√p

2 (z ∈ U).

Lettingn =p= 1, α1 = 1 and f1 =f in Theorem 2.9, we have:

Corollary 2.10. Iff ∈ A satisfies

(2.10) Re

zfi0(z) fi(z)

>−3

4 (z ∈ U), then

(2.11) Re

v u u t

f(z) Rz

0

f(t) t

dt

> 1

2 (z∈ U).

(6)

3. SUFFICIENT CONDITIONS FOR THEOPERATORGp

The first two theorems in this section give a sufficient condition for the integral operatorGpto be in the classSp?.

Theorem 3.1. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

(3.1) Re

1 + zfi00(z) fi0(z)

< p+ 1 4Pn

i=1αi (z ∈ U), thenGpisp-valently starlike inU.

Proof. From the definition (1.3), we observe thatGp(z)∈ Apand zG00p(z)

G0p(z) = (p−1) +

n

X

i=1

αi

zfi00(z)

fi0(z) −(p−1)

or

(3.2) 1 + zG00p(z)

G0p(z) =p 1−

n

X

i=1

αi

! +

n

X

i=1

αi

1 + zfi00(z) fi0(z)

.

Taking the real part of both sides of (3.2), we have

(3.3) Re

1 + zG00p(z) G0p(z)

=p 1−

n

X

i=1

αi

! +

n

X

i=1

αiRe

1 + zfi00(z) fi0(z)

.

From (3.3) and the hypotheses (3.1), we obtain Re

1 + zG00p(z) G0p(z)

< p 1−

n

X

i=1

αi

! +

n

X

i=1

αi

p+ 1

4Pn i=1αi

=p+ 1 4. (3.4)

Therefore, using Lemma 1.1, it follows that the integral operator Gpbelongs to the class

Sp?.

Lettingn =p= 1, α1 =αand f1 =f in Theorem 3.1, we obtain Corollary 3.2. Iff ∈ A satisfies

Re

1 + zf00(z) f0(z)

<1 + 1

4α (z ∈ U), whereα >0, thenRz

0(f0(t))αdt is starlike inU.

Theorem 3.3. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

(3.5)

zfi00(z) fi0(z)

< p+ 1 Pn

i=1αi −p+ 1 (z ∈ U), wherePn

i=1αi >1,thenGpisp-valently starlike inU. Proof. It follows from (3.2) and (3.5) that

1 + zG00p(z) G0p(z) −p

=

n

X

i=1

αi

zfi00(z) fi0(z)

−(p−1)

n

X

i=1

αi

<(p−1)

n

X

i=1

αi+

n

X

i=1

αi

p+ 1 Pn

i=1αi

−p+ 1

< p+ 1.

(7)

Therefore, it follows from Lemma 1.2 thatGpis in the classSp?. Lettingn =p= 1, α1 =αand f1 =f in Theorem 3.3, we obtain:

Corollary 3.4. Iff ∈ A satisfies

zf00(z) f0(z)

< 2

α (z ∈ U), whereα >0, thenRz

0(f0(t))αdt is starlike inU.

Applying Lemmas 1.3 and 1.4, we obtain the following sufficient conditions for Gpto be p-valently close-to-convex and uniformlyp-valent close-to-convex inU.

Theorem 3.5. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

(3.6) Re

1 + zfi00(z) fi0(z)

< p+ a+b

(1 +a)(1−b)Pn

i=1αi (z ∈ U), where a >0, b ≥0 anda+ 2b ≤1,thenGpisp-valently close-to-convex inU.

Proof. In view of (3.3) and (3.6) and by using Lemma 1.3, we haveGp ∈ Cp(β).

Lettingn =p= 1, α1 =αand f1 =f in Theorem 3.5, we obtain Corollary 3.6. Iff ∈ A satisfies

Re

1 + zf00(z) f0(z)

<1 + a+b

(1 +a)(1−b)α (z ∈ U), whereα >0, a >0, b≥0 anda+ 2b≤1,thenRz

0(f0(t))αdt is close-to-convex inU.

Theorem 3.7. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

(3.7) Re

1 + zfi00(z) fi0(z)

< p+ 1 3Pn

i=1αi (z ∈ U), thenGpis uniformlyp-valent close-to-convex inU.

Proof. In view of (3.3) and (3.7) and by using Lemma 1.4, we haveGp ∈ U Cp(β).

Lettingn =p=α= 1and f1 =f in Theorem 3.7, we have:

Corollary 3.8. Iff ∈ A satisfies Re

1 + zf00(z) f0(z)

<1 + 1

3α (z ∈ U), whereα >0,thenRz

0(f0(t))αdt is uniformly close-to-convex inU. Using Lemma 1.5, we obtain the next result.

Theorem 3.9. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

(3.8) Re

1 + zfi00(z) fi0(z)

> p− 3p+ 4 4Pn

i=1αi (z ∈ U), then

(3.9) Re

s

zG0p(z) Gp(z) >

√p

2 (z ∈ U).

(8)

Proof. It follows from (3.3) and (3.8) that

Re

1 + zG00p(z) G0p(z)

> p 1−

n

X

i=1

αi

! +

n

X

i=1

αi

p− 3p+ 4 4Pn

i=1αi

= p 4 −1.

By Lemma 1.5, we get the result (3.9).

Lettingn =p= 1, α1 = 1 and f1 =f in Theorem 3.9, we have Corollary 3.10. Iff ∈ A satisfies

(3.10) Re

1 + zfi00(z) fi0(z)

>−3

4 (z ∈ U), then

(3.11) Re

s zf0(z) Rz

0 f0(t)dt > 1

2 (z ∈ U).

4. STRONGSTARLIKENESS OF THE OPERATORSFpANDGp

Applying Lemma 1.6 and using (2.4), we obtain the following sufficient condition for the operatorFpto be strongly starlike of orderγinU.

Theorem 4.1. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

Re

zfi0(z) fi(z)

> p− γ 2Pn

i=1αi (z ∈ U), thenFpis strongly starlike of orderγ (0< γ≤1)inU.

Lettingn =p= 1, α1 =α andf1 =f in Theorem 4.1, we have Corollary 4.2. Iff ∈ A satisfies

Re

zf0(z) f(z)

>1− γ

2α (z ∈ U), whereα >0, thenRz

0

f(t)

t

α

dt is strongly starlike of orderγ(0< γ ≤1)inU.

Applying once again Lemma 1.6 and using (3.3), we obtain the following sufficient condition for the operatorGpto be strongly starlike of orderγinU.

Theorem 4.3. Let αi > 0 be real numbers for all i = 1,2, . . . , n. If fi ∈ Ap for all i = 1,2, . . . , n satisfies

Re

1 + zfi00(z) fi0(z)

> p− γ 2Pn

i=1αi (z ∈ U), thenGp is strongly starlike of orderγ (0< γ ≤1)inU.

Lettingn =p=α1 = 1andf1 =f in Theorem 4.3, we have Corollary 4.4. Iff ∈ A satisfies

Re

1 + zf00(z) f0(z)

>1− γ

2α (z ∈ U), whereα >0,thenRz

0(f0(t))αdt is strongly starlike of orderγ (0< γ ≤1)inU.

(9)

REFERENCES

[1] H.A. Al-KHARSANIANDS.S. Al-HAJIRY, A note on certain inequalities forp-valent functions, J. Inequal. Pure Appl. Math., 9(3) (2008), Art. 90. [ONLINE:http://jipam.vu.edu.au/

article.php?sid=1027].

[2] D. BREAZ, Certain integral operators on the classesM(βi)andN(βi),J. Ineq. Appl., 2008 (2008), Article ID 719354.

[3] D. BREAZANDN. BREAZ, Two integral operator, Studia Universitatis Babes-Bolyai, Mathemat- ica, Cluj-Napoca, 3 (2002), 13–21.

[4] D. BREAZANDH. GÜNEY, The integral operator on the classesSα(b)andCα(b), J. Math. Ineq., 2(1) (2008), 97–100.

[5] D. BREAZANDV. PESCAR, Univalence conditions for some general integral operators, Banach J. Math. Anal., 2(1) (2008), 53–58.

[6] D. BREAZ, S. OWA AND N. BREAZ, A new integral univalent operator, Acta Univ. Apul., 16 (2008), 11–16.

[7] J. DZIOK, Applications of the Jack lemma, Acta Math. Hungar., 105(1-2) (2004), 93–102.

[8] B.A. FRASIN, Some sufficient conditions for certain integral operators, J. Math. Ineq., 2(4) (2008), 527–535.

[9] B.A. FRASIN, Univalence of two general integral operator, Filomat, 23(3) (2009), 223–228.

[10] A.W. GOODMAN, On uniformly starlike functions, J. Math. Anal. Appl., 55 (1991), 364–370.

[11] Y.J. KIMANDE.P. MERKES, On an integral of powers of a spirallike function, Kyungpook Math- ematical Journal, 12 (1972), 249–252.

[12] S.S. MILLER, P.T. MOCANU ANDM.O. READE, Starlike integral operators, Pacific Journal of Mathematics, 79(1) (1978), 157–168.

[13] M. NUNOKAWA, On the multivalent functions, Indian J. Pure Appl. Math., 20 (1989), 577–582.

[14] M. NUNOKAWA, S. OWAANDA. IKEDA, On the strongly starlikeness of multivalently convex functions of orderα,IJMMS, 28(1) (2001), 51–55.

[15] N.N. PASCUANDV. PESCAR, On the integral operators of Kim-Merkes and Pfaltzgraff, Mathe- matica, 32(55)(2) (1990), 185–192.

[16] R.K. RAINA ANDI.B. BAPNA, Inequalities defining ceratin subclasses of analytic functions in- volving fractional calculus operators, J. Inequal. Pure Appl. Math., 5(2) (2004), Art. 28. [ONLINE:

http://jipam.vu.edu.au/article.php?sid=387].

[17] S. OWA, On the Nunokawa’s conjecture for multivalent functions, Bull. Austral. Math. Soc., 41 (1990), 301–305.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The purpose of this paper is to obtain sufficient bound estimates for harmonic func- tions belonging to the classes S H ∗ [A, B], K H [A, B] defined by subordination, and we give

Key words: Univalent, Starlike, Convex, Uniformly convex, Uniformly starlike, Hadamard product, Integral means, Generalized hypergeometric functions.. Abstract: Making use of

In this paper we establish some results concerning the partial sums of mero- morphic p-valent starlike functions and meromorphic p-valent convex functions.. 2000 Mathematics

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex

For a brief history of the Fekete-Szegö problem for the class of starlike, convex and close-to-convex functions, see the recent paper by Srivastava et

For a brief history of the Fekete-Szegö prob- lem for the class of starlike, convex and close-to-convex functions, see the recent paper by Srivastava et

In this paper we introduce the class B(p, n, µ, α) of analytic and p-valent func- tions to obtain some sufficient conditions and some angular properties for func- tions belonging