• Nem Talált Eredményt

Wake-sleep cycle

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Wake-sleep cycle"

Copied!
41
0
0

Teljes szövegt

(1)

2011.10.15.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 1 Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework**

Consortium leader

PETER PAZMANY CATHOLIC UNIVERSITY

Consortium members

SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

The Project has been realised with the support of the European Union and has been co-financed by the European Social Fund ***

**Molekuláris bionika és Infobionika Szakok tananyagának komplex fejlesztése konzorciumi keretben

***A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.

PETER PAZMANY CATHOLIC UNIVERSITY

SEMMELWEIS UNIVERSITY

(2)

Peter Pazmany Catholic University Faculty of Information Technology

BEVEZETÉS A FUNKCIONÁLIS NEUROBIOLÓGIÁBA

INTRODUCTION TO

FUNCTIONAL NEUROBIOLOGY

www.itk.ppke.hu

By Imre Kalló

Contributed by: Tamás Freund, Zsolt Liposits, Zoltán Nusser, László Acsády, Szabolcs Káli, József Haller, Zsófia Maglóczky, Nórbert Hájos, Emilia Madarász, György Karmos, Miklós Palkovits, Anita Kamondi, Lóránd Erőss, Róbert

Gábriel, Zoltán Kisvárdai, Zoltán Vidnyánszky

(3)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 3

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Wake-sleep cycle

Imre Kalló & György Karmos

Pázmány Péter Catholic University, Faculty of Information Technology

I. The circadian rhythm

II. Physiological characteristics of the sleep stages

III. Brain mechanisms responsible for the wake-sleep cycle

IV. Sleep disturbance

(4)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Physiology of the wake-sleep cycle

ƒ The circadian rhythm

ƒ Physiological characteristics of the sleep stages

ƒ Brain mechanisms responsible for the wake-sleep cycle

ƒ Sleep disturbance

Rhytmic functions of the living organisms: heart beat, respiration, brain waves, periods, reproductive cycle, migration cycle, etc.

Internally or externally driven rhythms :

circadian rhythm, lunar rhythm, seasonal rhythm Internal clock-driven, synchronised rhythm (Zeitgeber)

(5)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 5

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Circadian fluctuations of human physiology

CIRCADIAN RHYTHM

Synchronising factor:

light-dark cycle

Circadian rule:

diurnal animals: light intensity increase, wake/sleep ratio increases

nocturnal animals: light intensity increase, wake- sleep ratio decrease

(6)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Shift of the human circadian rhythm in isolated environment

Activity cycle: 33,2 h Temperature cycle: 24,8 h

(7)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 7

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Activity rhythm of rats before and after SCN lesion

SCN lesion

GLU: glutamate

GRP: gastrin-releasing peptide AVP: arginine vasopressin VIP: vasoactive intestinal peptide

CAR: calterinin NPY: neuropeptide Y NA: noradrenaline 5HT: serotonin

NUCLEUS

SUPRACHIASMATICUS

(8)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Regulation of melatonin secretion in rat

(9)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 9

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Physiology of the wake-sleep cycle

ƒ The circadian rhythm

ƒ Physiological characteristics of the sleep stages

ƒ Brain mechanisms responsible for the wake-sleep cycle

ƒ Sleep disturbance

(10)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Sleep stages on the EEG

Stages of slow wave sleep:

1.stage: low amplitude, fast activity, with a few theta wave

2-5% of sleeping time

2. stage: theta waves, 10-14 Hz sleeping spindles

45-55% of sleeping time

3. stage: high amplitude theta and delta waves, 20-50% of waves >75 μV

5-10% of sleeping time

4. stage: high amplitude delta waves, 20% of waves >75 μV

15-20% of sleeping time

(11)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 11

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Operational pattern of thalamic „relay” cells in awake state

and during slow-wave sleep

(12)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Stages of sleep during night sleep

(13)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 13

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Characteristics of NREM and

REM sleep

(14)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Typical sleep phases in the cat

(15)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 15

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Ponto-Geniculo-Occipital (PGO) waves in REM sleep

(16)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Age-dependent characteristics of

sleep cycles

(17)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 17

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Age-dependent characteristics of

sleep cycles

(18)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Dream report-lengths during NREM and REM phases

(19)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 19

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Proportion of sensory modalities in dream reports

VISION = 100%

(20)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Effect of deprivation of REM

sleep

(21)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 21

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Active and inactive brain regions in REM sleep:

results of PET studies

(22)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Physiology of the wake-sleep cycle

ƒ The circadian rhythm

ƒ Physiological characteristics of the sleep stages

ƒ Brain mechanisms responsible for the wake-sleep cycle

ƒ Sleep disturbance

(23)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 23

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Theories of wake-sleep regulation

Passive hypothesis – basic state is sleep – must find a waking center Active hypothesis – basik state is awake, which is inhibited – must find a sleeping center

Chemical factors (adenosine, interleukin-1, TNFα) Center – theories

Effect of sleep deprivation

NREM 15-22 days

REM 16 hours

(24)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

EEG effects of brainstem transsections (Bremer 1935-37)

ENCEPHALE ISOLÉ

CERVEAU ISOLÉ

(25)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 25

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Sleep evoked by low frequency stimulation of the thalamus

Walter Rudolf Hess 1881-1973

(26)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Effect of brainstem lesions

(Moruzzi and Magoun, 1949)

(27)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 27

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Reticular activating system

(28)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Deep brain single cell activities during sleep phases

(29)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 29

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Postulated mechanism of REM atonia

(30)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Elements of the brainstem activating system

(31)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 31

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Projections of the ventrolateral preoptic nucleus

(32)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Projections of the orexin neurons

(33)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 33

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Function of the neurons participating in the regulation

(34)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Transmitter systems

participating in the regulation

(35)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 35

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Model of the wake-sleep regulation

(36)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Physiology of the wake-sleep cycle

ƒ The circadian rhythm

ƒ Physiological characteristics of the sleep stages

ƒ Brain mechanisms responsible for the wake-sleep cycle

ƒ Sleep disturbance

(37)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 37

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

International classification

of sleep disturbances

(38)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Effect of sleep pill deprivation

(39)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 39

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Effect of travelling through several time zones

(40)

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Biological rhythms and the brainstem biological clocks

(41)

2011.10.15. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 41

Introduction to functional neurobiology: Wake-sleep cycle

www.itk.ppke.hu

Relationship between sleep and respiration

OBSTRUKTIVE SLEEP APNEA SYNDROME OSAS

Continuous Positive Airway Pressure CPAP

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Effects of N-methyl-D-aspartate (NMDA) perfusion on sleep – wake activity in control (intact) rats and after the selective lesioning of the cholinergic cells in the basal forebrain

Similarly to REM sleep parameters, escitalopram did not influenced the effects of REM sleep deprivation on NREM parameters (Figure 2). REM sleep deprivation caused REM

 There is an association between lunar cycles and objective sleep parameters (sleep efficiency, sleep latency, superficial sleep, deep sleep, night cycles of waking, REM sleep,

In contrast, the average length of REM episodes was increased during the rebound following a small platform sleep deprivation compared to the large platform sleep

To study the changes of exhaled breath volatile compounds pattern occur during sleep in patients suffering from symptoms of sleep related breathing disorders..

Relationship of sleep interictal epileptiform discharges to sigma activity (12- 16 Hz) in benign epilepsy of childhood with rolandic spikes. The electroencephalographic features

Taken together, we hypothesize that nesfatin-1, as a potential novel element of sleep-wake regulation, may suppress REM sleep and theta rhythm generation in wake

To study the association between MCH and nesfatin neuropeptides and REM sleep, we applied the classic ‘flower pot’ selective REM sleep deprivation method followed by