• Nem Talált Eredményt

Knots and Random Walks in Vibrated Granular Chains

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Knots and Random Walks in Vibrated Granular Chains"

Copied!
28
0
0

Teljes szövegt

(1)

Knots and Random Walks in Vibrated Granular Chains

Eli Ben-Naim

Los Alamos National Laboratory

E. Ben-Naim, Z. Daya, P. Vorobieff, R. Ecke, Phys. Rev. Lett. 86, 1414 (2001)

(2)

Plan

I Knots

II Vibrated knot experiment III Diffusion theory

IV Experiment vs theory

V First passage & adjoint equations VI Conclusions & outlook

(3)

Knots in Physical Systems

Knots in DNA strands Wang JMB 71

Tying a microtubule with optical twizzers Itoh, Nature 99 Knotted jets in accretion disks (MHD) F Thomsen 99 Strain on knot (MD) Wasserman, Nature 99

(4)

Knots & Topological Constraints

Knots happen Whittington JCP 88

probability(no knot) exp(N/N0)

Knots tighten (T = ∞) Sommer JPA 92

n/N 0 when N → ∞

Reduce size of chain (m = knot complexity)

R Nνmα α = ν 1/3

Reduce accessible phase space

Large relaxation times de Gennes, Edwards

τreptation N3

Weaken macromolecule

Bio: affect chemistry, function

(5)

Granular Chains

Mechanical analog of bead-spring model

U({Ri}) = v0 X

i6=j

δ(Ri Rj) + 3 2b2

X

i

(Ri Ri+1)2

Beads/rods interact via hard core repulsions

Rods act as springs (nonlinear, dissipative)

Inelastic collisions: bead-bead, bead-plate

Vibrating plate supplies energy

Athermal, nonequilibrium driving

Advantages

Number of beads can be controlled

Topological constraints: can be prepared, observed directly

(6)

Vibrated Knot Experiment

t = 0: trefoil knot placed at chain center

Parameters

— Number of monomers: 30 < N < 270

— Minimal knot size: N0 = 15

Driving conditions

— Frequency: ν = 13Hz

— Acceleration: Γ = Aω2/g = 3.4

Only measurement: opening time t

1. Average opening time τ(N)?

2. Survival probability S(t, N)?

Distribution of opening times R(t, N)?

(7)

The Average Opening Time

101 102

N−N0 100

101 102 103

τ [sec]

slope=1.95

Average over 400 independent measurements

τ(N) (N N0)ν ν = 2.0 ± 0.1

Opening time is diffusive

(8)

The Survival Probability

S(t, N) Probability knot “alive” at time t

R(t, N) Probability knot opens at time t

S(t, N) = 1 Z t

0

dt0 R(t0, N)

S(t, N) obeys scaling

S(t, N) = F(z) z = t τ(N)

0 1 2 3

z 0

0.2 0.4 0.6 0.8 1

F(z)

N=48 N=64 N=85 N=115 N=150 N=200 N=273

τ only relevant time scale

(9)

Theoretical Model

Assumptions

Knot ≡ 3 exclusion points

Points hop randomly

Points move independently (no correlation)

Points are equivalent (size = N0/3) 3 Random Walk Model

1D walks with excluded volume interaction

first point reaches boundary → knot opens

(10)

Diffusion in 3D

1<x1<x2<x3<N N0 −→ 0<x<y<z<1

∂tP(x, y, z, t) = 2P(x, y, z, t)

Boundary conditions Absorbing: P¯

¯x=0 = P¯

¯z=1 = 0

Reflecting: (∂x y)P|x=y = (∂y z)P|y=z = 0

Initial conditions P¯

¯t=0=δ(xx0)δ(yx0)δ(zx0)

Survival probability

S3(t) =

Z 1 0

dx Z 1

x

dy Z 1

y

dz P(x, y, z, t)

3 walks in 1D ≡ 1 walk in 3D

(11)

Product Solution

Product of 1D solutions

P(x, y, z, t) = 3!p(x, t)p(y, t)p(z, t)

Boundary conditions (absorbing only)

p|x=0 = p|x=1 = 0

Initial conditions

p|t=0 = δ(x x0)

Diffusion equation

pt(x, t) = pxx(x, t)

1 walk survival probability

s(t) =

Z 1 0

dx p(x, t)

3 walks survival probability

S3(t) = [s(t)]3

(12)

Why does this work?

Exchange identities of walkers when paths cross

Reduce interacting particle problem to noninteracting particle problem

Eliminate complicated geometry

Reduced to one-dimensional problem

Diffusive opening times

ht i ' τm(N N0)2

D τ3 = 0.056213

(13)

The 1D problem

Expansion in complete basis

p(x, t) = X

n=1

an(x0, t) sin(nπx)

Dynamics pt(x, t) = pxx(x, t) da

dt = n2π2a an(x0, t) = an(x0,0)en2π2t

Initial conditions p(x, t = 0) = δ(x x0) an(x0,0) = 2

Z

dx p(x, t = 0) sin(nπx) = 2 sin(nπx0)

The probability distribution

p(x, x0, t) = 2 X

n=1

sin(nπx0) sin(nπx)en2π2t

The survival probability s(t) = R01 dx p(x, t)

s(t) = 4 π

X

nodd

sin[nπx0]

n en2π2t

(14)

Experiment vs. Theory

Work with scaling variable z = t/τ (hzi = 1)

Combine different data sets (6000 pts)

Fluctuations σ2 = hz2i − hzi2

σexp = 0.62(1), σtheory = 0.63047 (< 2%)

0 1 2 3 4

z 0

0.2 0.4 0.6 0.8 1

F(z)

Experiment Theory

No fitting parameters!

Excellent quantitative agreement

(15)

The Exit Time Probability

Scaling function

R(t, N) = 1

τ G(z) z = t τ(N) G(z) = d

dzF(z)

0 1 2 3 4

z 0

0.2 0.4 0.6 0.8 1

G(z)

Experiment Theory

(16)

Large Exit Times

Largest decay time dominates

Large time tail is exponentially small

F(z) eβz z À 1

Decay coefficient β = 2τm

βexp = 1.65(2) βtheory = 1.66440 (1%)

0 1 2 3 4

z 10−2

10−1 100

F(z)

Experiment Theory N−1/2

(17)

Small Exit Times

Exponentially small (in 1/z) tail

1 F(z) z1/2eα/z z ¿ 1

Decay coefficient α = 1/16τm

αexp = 1.2(1) αtheory = 1.11184 (10%)

0 1 2 3 4 5

1/z 10−2

10−1 100

[1−F(z)]/z1/2

Experiment Theory

Larger discrepancy

(18)

Short Times

Use scaling form S(t, N) F ¡ t

N2

¢

Smallest exit time t = N2 , 1 S 2N/2 1 F

µ 2 N

eαN N → ∞ 1 F(z) eα/z z 0

Analytic Calculation

Laplace transform of exact solution

s(q) = Z

dt eqts(t) = 1

cosh(q/2)

Steepest descent

s(q) eq/2 Z

dt eqt1/16t q → ∞

Allows calculation of correction

1 F(z) z1/2eα/z z 0

(19)

Different knots (m = 1, 3, 5, 7)

0 1 2 3 4

z 0

0.2 0.4 0.6 0.8 1

F(z)

m=1 experiment m=1 theory m=7 experiment m=7 theory

0 1 2 3 4

z 10−2

10−1 100

F(z)

m=1 experiment m=1 theory m=7 experiment m=7 theory

1 3 5 7

m

0.3 0.4 0.5 0.6 0.7 0.8 0.9

σ

1 3 5 7

m 0

10 20 30

N 0

experiment theory

Complex knots (m À 1): τ ∼ σ ∼ ln1m

(20)

Off-Center Initial Conditions

0 20 40 60 80 100

t [sec]

10−1 100

S(t,N=114)

x0=0.2 x0=0.3 x0=0.4 x0=0.5

Survival probability: universal decay

Sm(t) ' A(x0)e2t

Eventually, initial conditions forgotten

What is exit probability E(x0)?

What is exit time T(x0)?

(21)

The First Passage Probability (1 walk)

Straightforward calculation

E(x0) =

Z

0

dt∂xp(x, t)¯

¯x=1 = 2 π

X

n=1

(1)n1sin(nπx0)

n = x0

• Adjoint equation (discrete space)

En = 1

2(En1 +En+1) En+1 2En +En1 = 0

• Electrostatic problem (continuous space)

2

2x0E(x0) = 0

• Boundary conditions

E(0) = 0 E(1) = 1

• The gambler ruin problem E(x0) = x0

(22)

The First Passage Time (1 walk)

Straightforward calculation

T(x0) =

Z

0

dt t ∂xp(x, t)¯

¯x=1= 4 π3

X

nodd

sin(nπx0)

n3 = 1

2x0(1x0)

• Adjoint equation (discrete space)

Tn = 1

2(Tn1+Tn+1)+ 1

D D(Tn+12Tn+Tn1) = 1

• Electrostatic problem (continuous space) D ∂2

2x0T(x0) = −1

• Boundary conditions

T(0) = T(1) = 0

• Solution

T(x0) = 1

2Dx0(1 − x0)

(23)

Derivation (continuum space)

The Greens function G(x,x0, t) = δ(x x0)

D02G(x,x0) = D2G(x,x0) =

∂tG(x,x0, t)

• Survival probability & exit time

S(x0, t) = Z

dxG(x,x0, t) T(x0) =

Z

0

dt t

∂tS(x0, t)

• The adjoint equation

D02T(x0) = D

Z Z

dxdt t

∂t02G(x,x0, t)

=

Z Z

dxdt t 2

2tG(x,x0, t)

=

Z

dt t 2

2tS(x0, t)

= Z

dt

∂tS(x0, t) = S(x0,) S(x0,0)

= 1

(24)

The First Passage Time (d walks)

The exit probability

2E(x, y, z) = 0

The average exit time

2T(x, y, z) = 1

Generally, d-sums

E(x0) = d 2

µ4 π

d X

k1=1 X k2=0

· · · X kd=0

(1)k11k1 sin[k1πx0]

k2 1 +

Pd

i=2(2ki + 1)2 d Y

i=2

sin[(2ki+ 1)πx0]

(2ki+ 1)

T(x0) = 1 π2

µ4 π

d X

k1=0

· · · X kd=0

1 Pd

i=1(2ki + 1)2 d Y

i=1

sin[(2ki + 1)πx0]

(2ki + 1)

S. Redner, A guide to first passage processes (cambridge, 2001).

(25)

Predictions

0 0.5 1

x0 0

0.5 1

E(x0)

d=1 d=2 d=3

0 0.5 1

x0 0

0.5 1

T(x0), σ(x0)

Good agreement for S(t), Sfar(t), Sclose(t)

Poor agreement for E(x0), T(x0)

Current data insufficient (600pts)

Fluctuations diverge near boundary

(26)

Conclusions

Knot governed by 3 exclusion points

Exponential tails (large & small exit times)

Macroscopic observables (t, S(t)) reveals details of a topological constraint

Knot relaxation governed by number of crossing points

Athermal driving, yet, effective degrees of freedom randomized (diffusive relaxation)

Outlook

Different knot types

Correlation between crossing points

Many possibilities with granular chains

(27)

Entropic Tightening

with Matthew Hastings, Zahir Daya, Robert Ecke

0 0.2 0.4 0.6 0.8 1

n 0

1 2 3 4

P(n)

Equilibrium (counting states) prediction

P(n) [n(N n)]d/2

n/N 0 when N → ∞

Observed under nonequilibrium driving Role of entropy?

(28)

Johnathan McKay

My soul is an entangled knot Upon a liquid vortex wrought The secret of its untying

In four-dimensional space is lying

J. C. Maxwell

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

rend szer fenn tar tá sa, amely ben gyógy szert csak gyógy - szer tár ban le het áru sí ta ni). Má sik ér tel me zé se sze rint a nép sza va zá si dön tést csak

tudták volna képzelni, hogy valaha lett volna férfi az életében, Margitka olyan volt, mint egy elhagyatott telek kellős közepére ültetett, vastag derekú diófa.. „Én tudok

[r]

2009 januárjában ajánlotta a kockázati tényezők elemzését és az OGTT alkalmazását minden olyan esetben, amikor nincs ismert diabetes (preegzisztáló vagy

Diplomatiánk támogatása mellett az intézet vezetősége — talán legalkalmasabban, úgy mint a berlini Archäologisches Institut ban, egy igazgató és egy melléje adott

Ha megtetszett neki valamelyik, akkor cserét ajánlott, és mivel ő ext- ra mennyiségű alapkaját kapott, az érintett mindig belement.” A nagyobb ételadagok ezek szerint nem

Az anyagi aján- dék, amit Pál nagy erőbevetéssel az ő pogány keresztény közössége- inél gyűjtött, nem csak kiegyenlítés és köszönet, hanem egyidőben emlékezés is

[r]