• Nem Talált Eredményt

319–336 DOI: 10.18514/MMN.2018.2216 BLENDING TYPE APPROXIMATION BY GENERALIZED BERNSTEIN-DURRMEYER TYPE OPERATORS ARUN KAJLA AND TUNCER ACAR Received 27 January, 2017 Abstract

N/A
N/A
Protected

Academic year: 2022

Ossza meg "319–336 DOI: 10.18514/MMN.2018.2216 BLENDING TYPE APPROXIMATION BY GENERALIZED BERNSTEIN-DURRMEYER TYPE OPERATORS ARUN KAJLA AND TUNCER ACAR Received 27 January, 2017 Abstract"

Copied!
18
0
0

Teljes szövegt

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 19 (2018), No. 1, pp. 319–336 DOI: 10.18514/MMN.2018.2216

BLENDING TYPE APPROXIMATION BY GENERALIZED BERNSTEIN-DURRMEYER TYPE OPERATORS

ARUN KAJLA AND TUNCER ACAR Received 27 January, 2017

Abstract. In this article we construct a Durrmeyer modification of the operators introduced by Chen et al. in [10] based on a non-negative real parameter. We establish local approximation, global approximation, Voronovskaja type asymptotic theorem. The rate of convergence for dif- ferentiable functions whose derivatives are of bounded variation is also obtained.

2010Mathematics Subject Classification: 41A25; 26A15

Keywords: local approximation, global approximation, asymptotic formula, bounded variation

1. INTRODUCTION

The approximation theory by linear positive operators investigates how the func- tions can be best approximated by simpler functions. The most famous basic result for convergence of linear positive operators is due to Weierstrass who introduced an important theorem named Weierstrass’ approximation theorem. At last in 1912 Bern- stein introduced the most famous algebraic polynomialsBn.fIx/in approximation theory in order to give a constructive proof of Weierstrass’ theorem, which are given by

Bn.fIx/D

n

X

kD0

pn;k.x/f k

n

; x2Œ0; 1;

wherepn;k.x/D n k

!

xk.1 x/n k and he proved that iff 2C Œ0; 1thenBn.fIx/

converges uniformly tof .x/inŒ0; 1:

The Bernstein operators have been used in many branches of mathematics and computer science. Due to their useful structure, Bernstein polynomials and their modifications have been intensively studied. Among other papers, we refer the read- ers to [3,7,9,13,23,25].

c 2018 Miskolc University Press

(2)

Forf 2C Œ0; 1;Chen et al. in [10] introduced a generalization of the Bernstein operators based on a non-negative parameter˛ .0˛1/as follows:

Tn.˛/.fIx/D

n

X

kD0

pn;k.˛/.x/f k

n

; x2Œ0; 1 (1.1) where

pn;k.˛/.x/D

"

n 2 k

!

.1 ˛/xC n 2 k 2

!

.1 ˛/.1 x/C n k

!

˛x.1 x/

#

xk 1.1 x/n k 1 (1.2) andn2:They proved the rate of convergence, Voronovskaja type asymptotic for- mula and shape preserving properties for these operators. For the special case,˛D1;

these operators reduce the well-known Bernstein operators.

The Durrmeyer type modification of the operators is a method to approximate the Lebesgue integrable functions. For this aim, many researchers have studied in this direction. Gupta and Rassias [18] introduced the Lupas-Durrmeyer type operat- ors based on Polya distribution and established asymptotic approximation, local and global results. Goyal et al. [14] considered a one parameter family of Baskakov- Sz´asz type operators and studied quantitative convergence theorems for these op- erators. Gupta et al. [16] introduced hybrid operators involving inverse Polya- Eggenberger distribution and studied degree of approximation of these operators which include global approximation and uniform convergence. Very recently, Acu and Gupta [15] defined a summation-integral type operators depending on two para- meters and discussed some approximation results e.g. local approximation, Voro- novskaja type asymtotic theorem and weighted approximation of these operators.

In the literature survey, several authors have studied the approximation behavior of mixed hybrid operators (cf. [1,2,4–6,8,17,19–21]).

Inspired by their work, forf 2C Œ0; 1we define the following Durrmeyer type modification of the operators (1.1) as:

Dn.˛/.fIx/D.nC1/

n

X

kD0

pn;k.˛/.x/

Z 1 0

pn;k.t /f .t /dt; x2Œ0; 1: (1.3) The purpose of this paper is to study the Voronovskaja type theorem, local approxim- ation, pointwise estimates and global approximation results for these operators (1.3).

The rate of convergence for differentiable functions whose derivatives are of bounded variation is also obtained.

2. BASIC RESULTS

In what follows letjj jjdenote the uniform norm onC Œ0; 1.

(3)

Letei Dti; i2N[ f0g:By simple computation, we get Z 1

0

pn;k.t /tidt D nŠ.kCi /Š

kŠ.nCiC1/Š: (2.1)

In order to prove the main results, we will show some lemmas in this section. We need the following auxiliary results.

Lemma 1([10]). For the operatorsTn.˛/.fIx/;we have (i) Tn.˛/.e0Ix/D1I

(ii) Tn.˛/.e1Ix/DxI

(iii) Tn.˛/.e2Ix/Dx2C.nC2.1 ˛//

n2 x.1 x/I (iv) Tn.˛/.e3Ix/Dx3C3.nC2.1 ˛//

n2 x2.1 x/

C.nC6.1 ˛//

n3 x.1 x/.1 2x/I (v) Tn.˛/.e4Ix/Dx4C6.nC2.1 ˛//

n2 x3.1 x/

C4.nC6.1 ˛//

n3 x2.1 x/.1 2x/

C..3n.n 2/C12.n 6/.1 ˛// x.1 x/C.nC14.1 ˛///

n4 x.1 x/:

Lemma 2. For the operatorsD.˛/n .fIx/;we have (i) D.˛/n .e0Ix/D1I

(ii) D.˛/n .e1Ix/DxC 1 2x .nC2/I

(iii) D.˛/n .e2Ix/Dx2C2x2.˛ 3n 4/

.nC2/.nC3/ C2x.2n ˛C1/

.nC2/.nC3/ C 2 .nC2/.nC3/I (iv) D.˛/n .e3Ix/Dx3C6x3. n.5C2n ˛/ 2.1C˛//

.nC2/.nC3/.nC4/

C3x2.n.3n 2˛ 1/C10.˛ 1//

.nC2/.nC3/.nC4/ C 18x.n ˛C1/

.nC2/.nC3/.nC4/

C 6

.nC2/.nC3/.nC4/I

(v) D.˛/n .e4Ix/Dx4Cx4. 4.nC3/.16Cn.3C5n//C12˛.n 3/.n 2//

.nC2/.nC3/.nC4/.nC5/

C4x3.n 2/ .n.4n 3˛ 1/C33.˛ 1//

.nC2/.nC3/.nC4/.nC5/

(4)

C24x2 nC3n2C14.˛ 1/ 4n˛

.nC2/.nC3/.nC4/.nC5/ C 48x.2n 3˛C3/

.nC2/.nC3/.nC4/.nC5/

C 24

.nC2/.nC3/.nC4/.nC5/:

Proof. This lemma follows easily applying Lemma1and relation (2.1). Hence the

details are omitted.

Lemma 3. From Lemma2, we get (i) D.˛/n .t xIx/D1 2x

nC2I

(ii) D.˛/n ..t x/2Ix/D2x.1 x/.n ˛ 2/

.nC2/.nC3/ C 2

.nC2/.nC3/I (iii) D.˛/n ..t x/4Ix/D12x3.x 2/ .n.n 2˛ 19/C46˛ 36/

.nC2/.nC3/.nC4/.nC5/

C12x2.n.n 2˛ 25/C58˛ 38/

.nC2/.nC3/.nC4/.nC5/ C 24x.3n 6˛C1/

.nC2/.nC3/.nC4/.nC5/

C 24

.nC2/.nC3/.nC4/.nC5/:

Lemma 4. Forf 2C Œ0; 1;we havekDn.˛/.fI /k kfk: Proof. From definition (1.3) and Lemma2, we have

kDn.˛/.fI /k .nC1/

n

X

kD0

p.˛/n;k.x/

Z 1 0

pn;k.t /jf .t /jdt kfkD.˛/n .e0Ix/D kfk:

Lemma 5. Forn2N, we have

Dn.˛/..t x/2Ix/ 2n2.x/

.nC2/; wheren2.x/D'2.x/C.nC12/ and'2.x/Dx.1 x/:

Proof. This result is obtained by straightforward computation, but the details are

omitted.

Remark1. Letn˛;mWDDn.˛/..t x/mIx/; mD1; 2; 4be the central moments of Dn.˛/, we get

nlim!1n n˛;1.x/D1 2x;

nlim!1n n˛;2.x/D2x.1 x/;

(5)

nlim!1n2n˛;4.x/D12x2.1 x/2: 3. BASIC CONVERGENCE THEOREM

Theorem 1. Suppose thatf 2C Œ0; 1and˛ 2Œ0; 1: Then lim

n!1Dn.˛/.fIx/D f .x/;uniformly inŒ0; 1.

Proof. Applying Lemma2,Dn.˛/.e0Ix/D1; Dn.˛/.e1Ix/!x; Dn.˛/.e2Ix/!x2 asn! 1; uniformly inŒ0; 1. By the well-known Bohman-Korovkin theorem, it follows thatDn.˛/.fIx/!f .x/asn! 1;uniformly inŒ0; 1.

4. LOCALAPPROXIMATION

TheK-functional is given by :

K2.f; ı/Dinffjjf gjj Cıjjg00jj Wg2W2g.ı > 0/;

whereW2D fgWg002C Œ0; 1gandjj:jjis the uniform norm onC Œ0; 1:By [11] there exists a positive constantM > 0such that

K2.f; ı/M!2.f;p

ı/; (4.1)

where the second order modulus of continuity forf 2C Œ0; 1is defined as

!2.f;p

ı/D sup

0<hp ı

sup

x;xC2h2Œ0;1jf .xC2h/ 2f .xCh/Cf .x/j: We define the usual modulus of continuity forf 2C Œ0; 1as

!.f; ı/D sup

0<hı

sup

x;xCh2Œ0;1

jf .xCh/ f .x/j:

Theorem 2. For the operatorsDn.˛/;there exists a constantM > 0such that jDn.˛/.fIx/ f .x/jM!2

f; .nC2/ 1=2n.x/

C!

f;

ˇ ˇ ˇ ˇ

1 2x nC2 ˇ ˇ ˇ ˇ

;

wheref 2C Œ0; 1,˛2Œ0; 1; n2.x/D'2.x/C.nC12/ andx2Œ0; 1:

Proof. We define the auxiliary operators as follows:

D.˛/n .fIx/DD.˛/n .fIx/Cf .x/ f

nxC1 nC2

:

Then, we can easily check that

D.˛/n .1Ix/D1 and D.˛/n .tIx/Dx:

Letg2W2andt2Œ0; 1. By Taylor’s expansion we have g.t /Dg.x/C.t x/g0.x/C

Z t x

.t u/g00.u/du:

(6)

Applying the operatorD.˛/n on both sides of the above relation, we may write D.˛/n .gIx/Dg.x/CD.˛/n

Z t x

.t u/g00.u/du

Dg.x/CDn.˛/

Z t x

.t u/g00.u/du; x

Z nx.nC2/C1

x

nxC1 nC2 u

g00.u/du:

Hence

jD.˛/n .gIx/ g.x/j Dn.˛/

ˇ ˇ ˇ ˇ

Z t

x jt ujjg00.u/jdu ˇ ˇ ˇ ˇ

; x

C ˇ ˇ ˇ ˇ

Z .nnxC1

C2/

x

ˇ ˇ ˇ ˇ

nxC1 nC2 u

ˇ ˇ ˇ

ˇjg00.u/jdu ˇ ˇ ˇ ˇ

Dn.˛/..t x/2Ix/C

nxC1 nC2 x

2 jjg00jj D

Dn.˛/..t x/2Ix/C

1 2x nC2

2

jjg00jj: (4.2) From Lemma5, we have

Dn.˛/..t x/2Ix/C

1 2x nC2

2

2

.nC2/n2.x/C

1 2x nC2

2

2

.nC2/n2.x/C 1 .nC2/2

3

.nC2/n2.x/: (4.3)

Thus, by (4.2) we have

jD.˛/n .gIx/ g.x/j 3

.nC2/n2.x/jjg00jj; (4.4) wherex2Œ0; 1:Furthermore, by Lemma4, we have

jD.˛/n .fIx/j 3jjfjj; (4.5) for allf 2C Œ0; 1andx2Œ0; 1.

Now, forf 2C Œ0; 1andg2W2, using (4.4) and (4.5) we obtain that jDn.˛/.fIx/ f .x/j

ˇ ˇ ˇ ˇ

D.˛/n .fIx/ f .x/Cf

nxC1 nC2

f .x/

ˇ ˇ ˇ ˇ

(7)

jD.˛/n .f gIx/j C jD.˛/n .gIx/ g.x/j C jg.x/ f .x/j C

ˇ ˇ ˇ ˇ f

nxC1 nC2

f .x/

ˇ ˇ ˇ ˇ 4jjf gjj C 3

.nC2/n2.x/jjg00jj C!

f;

ˇ ˇ ˇ ˇ

1 2x nC2

ˇ ˇ ˇ ˇ

:

Taking the infimum on the right hand side over allg2W2;we get jDn.˛/.fIx/ f .x/j4K2

f; 1

.nC2/n2.x/

C!

f;

ˇ ˇ ˇ ˇ

1 2x nC2 ˇ ˇ ˇ ˇ

:

Now considering the relation (4.1), we obtain jDn.˛/.fIx/ f .x/jM!2

f; .nC2/ 1=2n.x/

C!

f;

ˇ ˇ ˇ ˇ

1 2x nC2 ˇ ˇ ˇ ˇ

;

which completes the proof.

Leta10,a2> 0and let us now consider the Lipschitz-type space [24]:

LipM ./WD

f 2C Œ0; 1W jf .t / f .x/j M jt xj

.tCa1x2Ca2x/2Ix; t2.0; 1/

;

where2.0; 1:

Theorem 3. Letf 2LipM ./:Then, for allx2.0; 1;we have jDn.˛/.fIx/ f .x/j M n˛;2.x/

a1x2Ca2x

!2

;

wheren˛;2.x/DDn.˛/..t x/2Ix/:

Proof. First, we show the result for the caseD1:We may write jDn.˛/.fIx/ f .x/j .nC1/

n

X

kD0

pn;k.˛/.x/

Z 1

0 jf .t / f .x/jdt M.nC1/

n

X

kD0

pn;k.˛/.x/

Z 1 0

pn;k.t / jt xj

p.tCa1x2Ca2x/dt:

Using the fact that 1

p.tCa1x2Ca2x/< 1

p.a1x2Ca2x/ and the Cauchy-Schwarz inequality, we have

jD.˛/n .fIx/ f .x/j M.nC1/

p.a1x2Ca2x/

n

X

kD0

pn;k.˛/.x/

Z 1 0

pn;k.t /jt xjdt

(8)

D M

p.a1x2Ca2x/D.˛/n .jt xjIx/M 0

@ s

n˛;2.x/

a1x2Ca2x 1 A;

hence the result is obtained for D1: Now, we prove the theorem for the case 0 < < 1:By the H¨older’s inequality withpD1 andqD1 1 ;we get

jD.˛/n .fIx/ f .x/j .nC1/

n

X

kD0

pn;k.˛/.x/

Z 1 0

pn;k.t /jf .t / f .x/jdt

n

X

kD0

pn;k.˛/.x/

.nC1/

Z 1 0

pn;k.t /jf .t / f .x/jdt

1

.nC1/

n

X

kD0

p.˛/n;k.x/

Z 1 0

pn;k.t /jf .t / f .x/j1dt

M

.nC1/

n

X

kD0

pn;k.˛/.x/

Z 1 0

pn;k.t / jt xj

p.tCa1x2Ca2x/dt

M

.a1x2Ca2x/2

.nC1/

n

X

kD0

p.˛/n;k.x/

Z 1 0

pn;k.t /jt xjdt

M

.a1x2Ca2x/2.Dn.˛/.jt xjIx//M ˛;2n .x/

a1x2Ca2x

!2 :

Thus, the proof is completed.

Next, we study the local direct estimate of the operators defined in (1.3) applying the Lipschitz-type maximal function of ordergiven by Lenze [22] as

e!.f; x/D sup

t¤x; t2Œ0;1

jf .t / f .x/j

jt xj ; x2Œ0; 1 and 2.0; 1: (4.6) Theorem 4. Letf 2C Œ0; 1and0 < 1:Then, for allx2Œ0; 1;we have

jDn.˛/.fIx/ f .x/j e!.f; x/

2

.nC2/n2.x/

2 :

Proof. In view of (4.6), we have

jf .t / f .x/j e!.f; x/jt xj and

jDn.˛/.fIx/ f .x/j Dn.˛/.jf .t / f .x/jIx/e!.f; x/Dn.˛/.jt xjIx/:

(9)

Now, applying the H¨older’s inequality withpD2 and 1

q D1 1

p;we have jDn.˛/.fIx/ f .x/j e!.f; x/Dn.˛/..t x/2Ix/2

e!.f; x/

2

.nC2/n2.x/

2 :

5. GLOBAL APPROXIMATION

Letf 2C Œ0; 1and'.x/Dp

x.1 x/; x2Œ0; 1:The second order Ditzian-Totik modulus of smoothness and correspondingK-functional are given by, respectively,

!2'.f;p

ı/D sup

0<hp ı

sup

x˙h'.x/2Œ0;1

jf .xCh'.x// 2f .x/Cf .x h'.x//j; KQ2;'.x/.f; ı/Dinffjjf gjj Cıjj'2g00jj Cı2jjg00jj Wg2W2.'/g; .ı > 0/;

whereW2.'/D fg2C Œ0; 1Wg02AClocŒ0; 1; '2g002C Œ0; 1gandg02AClocŒ0; 1

means that g is differentiable andg0is absolutely continuous on every closed interval Œa; b.0; 1/:It is known ([12], Theorem 1.3.1) that there exists a positive constant M > 0;such that

KQ2;'.x/.f; ı/M!2'.f;p

ı/: (5.1)

Also, the Ditzian-Totik modulus of first order is given by

!!.f; ı/D sup

0<hı

sup

x˙h2 .x/2Œ0;1

ˇ ˇ ˇ ˇ f

xCh

2 .x/

f

x h

2 .x/

ˇ ˇ ˇ ˇ

;

where WŒ0; 1!Ris an admissible step-weight function.

Now we state our next main result.

Theorem 5. Letf 2C Œ0; 1and0˛1:Then, forx2Œ0; 1;

jjDn.˛/f fjj M!2'.f; .nC2/ 1=2/C !! f; .nC2/ 1

C! fI.nC2/ 1

;

where'2.x/Dx.1 x/and .x/D

1 2x x2Œ0; 1=2

2x 1 x2Œ1=2; 1 : Proof. We consider the auxiliary operators as follows:

D.˛/n .fIx/DD.˛/n .fIx/Cf .x/ f

nxC1 nC2

:

(10)

Letg2W2.'/then by using Taylor’s expansion ofg;on proceeding as in the proof of Theorem2, we obtain that

jD.˛/n .gIx/ g.x/j Dn.˛/

ˇ ˇ ˇ ˇ

Z t

x jt ujjg00.u/jdu ˇ ˇ ˇ ˇ

; x

C Z .nnxC1

C2/

x

ˇ ˇ ˇ ˇ

nxC1 nC2 u

ˇ ˇ ˇ

ˇjg00.u/jdu: (5.2) SettinguDˇxC.1 ˇ/t; ˇ2Œ0; 1;and also applying the concavity ofn2, we have

jt uj

n2.u/ D ˇjt xj

n2.ˇxC.1 ˇ/t / ˇjt xj

n2.x/ˇCn2.t /.1 ˇ/ jt xj

n2.x/ : (5.3) Thus, inequality (5.2), in view of (5.3) leads us to

jD.˛/n .gIx/ g.x/j Dn.˛/

ˇ ˇ ˇ ˇ

Z t x

jt uj n2.u/du

ˇ ˇ ˇ ˇ

; x

jjn2g00jj

C 0 B B

@ Z .nnxC1

C2/

x

ˇ ˇ ˇ ˇ

nxC1 nC2 u

ˇ ˇ ˇ ˇ n2.u/ du

1 C C

Ajjn2g00jj: 1

n2.x/jjn2g00jj

D.˛/n ..t x/2Ix/C

1 2x nC2

2

: (5.4) Now, using inequality (4.3), we get

jD.˛/n .gIx/ g.x/j 3

.nC2/jjn2g00jj

3

.nC2/

jj'2g00jj C 1

.nC2/jjg00jj

:

Applying (4.5) and (5.4), we have forf 2C Œ0; 1;

jDn.˛/.fIx/ f .x/j jD.˛/n .f g; x/j C jD.˛/n .gIx/ g.x/j C jg.x/ f .x/j C

ˇ ˇ ˇ ˇ f

nxC1 nC2

f .x/

ˇ ˇ ˇ ˇ 4jjf gjj C 3

.nC2/jj'2g00jj C 3

.nC2/2jjg00jj C

ˇ ˇ ˇ ˇ f

nxC1 nC2

f .x/

ˇ ˇ ˇ ˇ

Taking the infimum on the right hand side over allg2W2.'/;we get jD.˛/n .fIx/ f .x/j4KQ2;'

f; 1

nC2

C ˇ ˇ ˇ ˇ f

nxC1 nC2

f .x/

ˇ ˇ ˇ ˇ

: (5.5)

(11)

Also, ˇ ˇ ˇ ˇ f

nxC1 nC2

f .x/

ˇ ˇ ˇ ˇD

ˇ ˇ ˇ ˇ f

xC1 2x nC2

f .x/

ˇ ˇ ˇ ˇ

ˇ ˇ ˇ ˇ f

xC.1 2x/

nC2

f

x .1 2x/

nC2 ˇ

ˇ ˇ ˇ

(5.6) C

ˇ ˇ ˇ ˇ f

x .1 2x/

nC2

f .x/

ˇ ˇ ˇ ˇ !! f; .nC2/ 1

C! fI.nC2/ 1

: (5.7)

Hence, combining (5.1), (5.5) and (5.6), the desired relation is immediate.

6. POINTWISE CONVERGENCE OFDn.˛/

Now we present a Voronovskaja type asymptotic formula for the operatorsDn.˛/: Theorem 6. Letf 2C Œ0; 1and˛ 2Œ0; 1: Iff0; f00 exists at a pointx2Œ0; 1

then

nlim!1n

Dn.˛/.fIx/ f .x/

D.1 2x/f0.x/Cx.1 x/f00.x/; (6.1) Further, iff002C Œ0; 1then (6.1) holds uniformly inŒ0; 1.

Proof. By Taylor’s formula, we can write f .t /Df .x/C.t x/f0.x/C1

2.t x/2f00.x/C.t; x/.t x/2; (6.2) where.t; x/!0ast!xand is a continuous function onŒ0; 1. OperatingDn.˛/to (6.2) and Remark1, we get

Dn.˛/.fIx/ f .x/Df0.x/Dn.˛/..t x/Ix/C1

2f00.x/Dn.˛/..t x/2Ix/

CDn.˛/..t; x/.t x/2Ix/;

nlim!1n

Dn.˛/.fIx/ f .x/

D.1 2x/f0.x/Cx.1 x/f00.x/

C lim

n!1nDn.˛/..t; x/.t x/2Ix/:

Since.t; x/!0ast!x;for a given > 0;there exists aı > 0such thatj.t; x/j<

wheneverjt xj< ı:Forjt xj ı;we havej.t; x/j M.t x/ı2 2;for someM >

0:Let ı.t / denote the characteristic function of the interval .x ı; xCı/: From Lemma3, we get

jDn.˛/..t; x/.t x/2Ix/j Dn.˛/.j.t; x/j.t x/2ı.t /Ix/

CDn.˛/.j.t; x/j.t x/2.1 ı.t //Ix/

(12)

< Dn.˛/..t x/2Ix/CM

ı2Dn.˛/..t x/4Ix/

D O 1

n

CO 1

n2

;

which implies that lim

n!1nDn.1=n/..t; x/.t x/2Ix/D0;due to the arbitrariness of > 0:This proves the first assertion of the theorem.

To prove the uniformity assertion, due to the uniform continuity off inŒ0; 1, the ıin the above proof can be chosen independent ofxand all the other estimates hold

uniformly inx2Œ0; 1:

7. RATE OF CONVERGENCE

DBV Œ0; 1denotes the class of all absolutely continuous functionsf defined on Œ0; 1, having onŒ0; 1a derivativef0 equivalent to a function of bounded variation onŒ0; 1. We notice that the functionsf 2DBV Œ0; 1possess a representation

f .x/D Z x

0

g.t /dtCf .0/

whereg2BV Œ0; 1, i.e.,gis a function of bounded variation onŒ0; 1.

The operatorsDn.˛/.fIx/also admit the integral representation Dn.˛/.fIx/D

Z 1 0

Nn.˛/.x; t /f .t /dt; x2Œ0; 1; (7.1) where the kernelNn.˛/.x; t /is given by

Nn.˛/.x; t /D.nC1/

n

X

kD0

pn;k.˛/.x/pn;k.t /:

Lemma 6. For a fixedx2.0; 1/and sufficiently largen, we have (i) #n.x; y/D

Z y 0

Nn.˛/.x; t /dt 2 .nC2/

n2.x/

.x y/2; 0y < x;

(ii) 1 #n.x; ´/D Z 1

´

Nn.˛/.x; t /dt 2 .nC2/

n2.x/

.´ x/2; x < ´ < 1:

Proof. (i) Using Lemma5we get

#n.x; y/D Z y

0

Nn.˛/.x; t /dt Z y

0

x t x y

2

Nn.˛/.x; t /dt

DDn.˛/..t x/2Ix/.x y/ 2 2 .nC2/

n2.x/

.x y/2:

The proof of (ii) is similar hence the details are omitted.

(13)

Theorem 7. Letf 2DBV Œ0; 1: Then for everyx2.0; 1/and sufficiently large n, we have

jD.˛/n .fIx/ f .x/j ˇ ˇ ˇ ˇ

.1 2x/

nC2 ˇ ˇ ˇ ˇ

jf0.xC/Cf0.x /j 2

C s

2

.nC2/n.x/jf0.xC/ f0.x /j 2

C2n2.x/

.nC2/x 1

Œp

X

kD1 x

_

x .x=k/

.fx0/C x pn

x

_

x .x=p n/

.fx0/

C 2n2.x/

.1 x/.nC2/

Œp

X

kD1

xC..1 x/=k/

_

x

.fx0/

C.1 x/

pn

xC..1 x/=p n/

_

x

.fx0/;

whereWb

a.fx0/denotes the total variation offx0onŒa; bandfx0is defined by

fx0.t /D 8

<

:

f0.t / f0.x /; 0t < x

0; tDx

f0.t / f0.xC/ x < t < 1:

(7.2)

Proof. SinceDn.˛/.e0Ix/D1;by applying (7.1), for everyx2.0; 1/we obtain Dn.˛/.fIx/ f .x/D

Z 1 0

Nn.˛/.x; t /.f .t / f .x//dt

D Z 1

0

Nn.˛/.x; t / Z t

x

f0.u/dudt: (7.3) For anyf 2DBV Œ0; 1;by (7.2) we may write

f0.u/Dfx0.u/C1

2.f0.xC/Cf0.x //C1

2.f0.xC/ f0.x //sg n.u x/

x.u/Œf0.u/ 1

2.f0.xC/Cf0.x //; (7.4) where

ıx.u/D

1 ; uDx 0 ; u¤x:

Obviously, Z 1

0

Z t x

f0.u/ 1

2.f0.xC/Cf0.x //

ıx.u/du

Nn.˛/.x; t /dtD0:

(14)

By (7.1) and simple calculations we have Z 1

0

Z t x

1

2.f0.xC/Cf0.x //du

Nn.˛/.x; t /dt

D1

2.f0.xC/Cf0.x //

Z 1 0

.t x/Nn.˛/.x; t /dt

D1

2.f0.xC/Cf0.x //D.˛/n ..t x/Ix/

andˇ ˇ ˇ ˇ

Z 1 0

Nn.˛/.x; t / Z t

x

1

2.f0.xC/ f0.x //sg n.u x/du

dt ˇ ˇ ˇ ˇ

1

2 jf0.xC/ f0.x /j Z 1

0 jt xjNn.˛/.x; t /dt 1

2 jf0.xC/ f0.x /jDn.˛/.jt xjIx/

1

2 jf0.xC/ f0.x /j

Dn.˛/..t x/2Ix/

1=2

:

Considering Lemmas3and5and using (7.3), (7.4) we obtain the following estim- ate

jDn.˛/.fIx/ f .x/j 1

2jf0.xC/Cf0.x /j ˇ ˇ ˇ ˇ

1 2x .nC2/

ˇ ˇ ˇ ˇ

C1

2jf0.xC/ f0.x /j s 2

.nC2/n.x/

C ˇ ˇ ˇ ˇ

Z x 0

Z t x

fx0.u/du

Nn.˛/.x; t /dt

C Z 1

x

Z t x

fx0.u/du

Nn.˛/.x; t /dt ˇ ˇ ˇ ˇ

: (7.5)

Let

Fn.˛/.fx0; x/D Z x

0

Z t x

fx0.u/du

Nn.˛/.x; t /dt;

Gn.˛/.fx0; x/D Z 1

x

Z t x

fx0.u/du

Nn.˛/.x; t /dt:

To complete the proof, it is sufficient to estimate the terms Fn.˛/.fx0; x/ and Gn.˛/.fx0; x/:SinceRb

a dt#n.x; t /1for allŒa; bŒ0; 1;using integration by parts

(15)

and applying Lemma6withyDx .x=p

n/;we have jFn.˛/.fx0; x/j D

ˇ ˇ ˇ ˇ

Z x 0

Z t x

fx0.u/du

dt#n.x; t / ˇ ˇ ˇ ˇD

ˇ ˇ ˇ ˇ

Z x 0

#n.x; t /fx0.t /dt ˇ ˇ ˇ ˇ

Z y 0 C

Z x y

jfx0.t /j j#n.x; t /jdt 2n2.x/

.nC2/

Z y 0

x

_

t

.fx0/.x t / 2dtC Z x

y x

_

t

.fx0/dt

2n2.x/

.nC2/

Z y 0

x

_

t

.fx0/.x t / 2dtC x pn

x

_

x .x=p n/

.fx0/:

By the substitution ofuDx=.x t /;we obtain 2n2.x/

.nC2/

Z x .x=p n/

0

.x t / 2

x

_

t

.fx0/dtD2n2.x/

.nC2/x 1 Z pn

1 x

_

x .x=u/

.fx0/du

2n2.x/

.nC2/x 1

Œp

X

kD1

Z kC1 k

x

_

x .x=k/

.fx0/du

2n2.x/

.nC2/x 1

Œp

X

kD1 x

_

x .x=k/

.fx0/:

Thus,

jFn.˛/.fx0; x/j 2n2.x/

.nC2/x 1

Œp

X

kD1 x

_

x .x=k/

.fx0/C x pn

x

_

x .x=p n/

.fx0/: (7.6)

Using integration by parts and applying Lemma6with ´DxC..1 x/=p n/;we have

jGn.˛/.fx0; x/j D ˇ ˇ ˇ ˇ

Z 1 x

Z t x

fx0.u/du

Nn.˛/.x; t /dt ˇ ˇ ˇ ˇ D

ˇ ˇ ˇ ˇ

Z ´ x

Z t x

fx0.u/du

dt.1 #n.x; t //

C Z 1

´

Z t x

fx0.u/du

dt.1 #n.x; t //

ˇ ˇ ˇ ˇ D

ˇ ˇ ˇ ˇ

Z t x

fx0.u/.1 #n.x; t //du ´

x

Z ´ x

fx0.t /.1 #n.x; t //dt

(16)

C Z 1

´

Z t x

fx0.u/du

dt.1 #n.x; t //

ˇ ˇ ˇ ˇ D

ˇ ˇ ˇ ˇ

Z ´ x

fx0.u/du.1 #n.x; ´//

Z ´ x

fx0.t /.1 #n.x; t //dt

C Z t

x

fx0.u/du.1 #n.x; t //

1

´

Z 1

´

fx0.t /.1 #n.x; t //dt ˇ ˇ ˇ ˇ D

ˇ ˇ ˇ ˇ

Z ´ x

fx0.t /.1 #n.x; t //dtC Z 1

´

fx0.t /.1 #n.x; t //dt ˇ ˇ ˇ ˇ

2n2.x/

.nC2/

Z 1

´ t

_

x

.fx0/.t x/ 2dtC Z ´

x t

_

x

.fx0/dt

D2n2.x/

.nC2/

Z 1

xC..1 x/=p n/

t

_

x

.fx0/.t x/ 2dt

C.1 x/

pn

xC..1 x/=p n/

_

x

.fx0/:

By the substitution ofvD.1 x/=.t x/;we get jGn.˛/.fx0; x/j 2n2.x/

.nC2/

Z pn 1

xC..1 x/=v/

_

x

.fx0/.1 x/ 1dv (7.7)

C.1 x/

pn

xC..1 x/=p n/

_

x

.fx0/

2n2.x/

.1 x/.nC2/

Œp

X

kD1

Z kC1 k

xC..1 x/=v/

_

x

.fx0/dv (7.8)

C.1 x/

pn

xC..1 x/=p n/

_

x

.fx0/

D 2n2.x/

.1 x/.nC2/

Œp

X

kD1

xC..1 x/=k/

_

x

.fx0/ (7.9)

C.1 x/

pn

xC..1 x//=p n

_

x

.fx0/: (7.10)

Combining the estimates (7.5)-(7.7), we get the required result.

(17)

REFERENCES

[1] U. Abel, V. Gupta, and M. Ivan, “Asymptotic approximation of functions and their derivatives by generalized Baskakov-Sz´asz-Durrmeyer operators,”Anal. Theory Appl., vol. 21, no. 1, pp. 15–26, 2005, doi:10.1007/BF02835246. [Online]. Available:http://dx.doi.org/10.1007/BF02835246 [2] T. Acar, “Asymptotic formulas for generalized Sz´asz-Mirakyan operators,” Appl. Math.

Comput., vol. 263, pp. 233–239, 2015, doi: 10.1016/j.amc.2015.04.060. [Online]. Available:

http://dx.doi.org/10.1016/j.amc.2015.04.060

[3] T. Acar and A. Aral, “On pointwise convergence of q-Bernstein operators and their q-derivatives,” Numer. Funct. Anal. Optim., vol. 36, no. 3, pp. 287–304, 2015, doi:

10.1080/01630563.2014.970646. [Online]. Available: http://dx.doi.org/10.1080/01630563.2014.

970646

[4] T. Acar, A. Aral, and I. Ras¸a, “Modified Bernstein-Durrmeyer operators,”General Mathematics, vol. 22, pp. 27–41, 2014.

[5] T. Acar, V. Gupta, and A. Aral, “Rate of convergence for generalized Sz´asz operators,”Bull.

Math. Sci., vol. 1, no. 1, pp. 99–113, 2011, doi:10.1007/s13373-011-0005-4. [Online]. Available:

http://dx.doi.org/10.1007/s13373-011-0005-4

[6] T. Acar and G. Ulusoy, “Approximation by modified Sz´asz-Durrmeyer operators,”Period. Math.

Hungar., vol. 72, no. 1, pp. 64–75, 2016, doi:10.1007/s10998-015-0091-2. [Online]. Available:

http://dx.doi.org/10.1007/s10998-015-0091-2

[7] P. N. Agrawal, M. Goyal, and A. Kajla, “q-Berntsein-Schurer-Kantorovich type operators,”Boll.

Unione Mat. Ital., vol. 8, pp. 169–180, 2015.

[8] P. N. Agrawal, V. Gupta, A. Sathish Kumar, and A. Kajla, “Generalized Baskakov-Sz´asz type operators,”Appl. Math. Comput., vol. 236, pp. 311–324, 2014, doi: 10.1016/j.amc.2014.03.084.

[Online]. Available:http://dx.doi.org/10.1016/j.amc.2014.03.084

[9] D. C´ardenas-Morales, P. Garrancho, and I. Ras¸a, “Asymptotic formulae via a Korovkin-type result,”Abstr. Appl. Anal., pp. Art. ID 217 464, 12, 2012, doi: 10.1155/2012/217464. [Online].

Available:http://dx.doi.org/10.1155/2012/217464

[10] X. Chen, J. Tan, Z. Liu, and J. Xie, “Approximation of functions by a new family of generalized Bernstein operators,”J. Math. Anal. Appl., vol. 450, no. 1, pp. 244–261, 2017, doi:

10.1215/20088752-3764507. [Online]. Available:http://dx.doi.org/10.1016/j.jmaa.2016.12.075 [11] R. A. DeVore and G. G. Lorentz, Constructive Approximation, ser. Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer- Verlag, Berlin, 1993, vol. 303. [Online]. Available:http://dx.doi.org/10.1007/978-3-662-02888-9.

doi:10.1007/978-3-662-02888-9

[12] Z. Ditzian and V. Totik, Moduli of smoothness, ser. Springer Series in Computational Mathematics. Springer-Verlag, New York, 1987, vol. 9. [Online]. Available: http:

//dx.doi.org/10.1007/978-1-4612-4778-4. doi:10.1007/978-1-4612-4778-4

[13] A. D. Gadjiev and A. M. Ghorbanalizadeh, “Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables,” Appl. Math. Comput., vol.

216, no. 3, pp. 890–901, 2010, doi: 10.1016/j.amc.2010.01.099. [Online]. Available:

http://dx.doi.org/10.1016/j.amc.2010.01.099

[14] M. Goyal, V. Gupta, and P. N. Agrawal, “Quantitative convergence results for a family of hybrid operators,”Appl. Math. Comput., vol. 271, pp. 893–904, 2015, doi: 10.1016/j.amc.2015.08.122.

[Online]. Available:http://dx.doi.org/10.1016/j.amc.2015.08.122

[15] V. Gupta and A. M. Acu, “Direct results for certain summation-integral type Baskakov-Sz´asz operators,”Results. Math., pp. 10.1007/s00 025–016–0603–2., 2017.

(18)

[16] V. Gupta, A. M. Acu, and D. F. Sofonea, “Approximation of Baskakov type P´olya-Durrmeyer operators,”Appl. Math. Comput., vol. 294, pp. 318–331, 2017, doi: 10.1016/j.amc.2016.09.012.

[Online]. Available:http://dx.doi.org/10.1016/j.amc.2016.09.012

[17] V. Gupta and R. P. Agarwal,Convergence Estimates in Approximation Theory. Springer, Cham, 2014. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-02765-4. doi: 10.1007/978-3- 319-02765-4

[18] V. Gupta and T. M. Rassias, “Lupas¸-Durrmeyer operators based on Polya distribution,”

Banach J. Math. Anal., vol. 8, no. 2, pp. 146–155, 2014. [Online]. Available: http:

//projecteuclid.org/euclid.bjma/1396640060

[19] A. Kajla and T. Acar, “A new modification of Durrmeyer type mixed hybrid operators,”Carpath- ian J. Math., vol. 34, no. 1, pp. 47–56, 2018.

[20] A. Kajla, A. M. Acu, and P. N. Agrawal, “Baskakov-Sz´asz-type operators based on inverse P´olya-Eggenberger distribution,” Ann. Funct. Anal., vol. 8, no. 1, pp. 106–123, 2017, doi:

10.1215/20088752-3764507. [Online]. Available:http://dx.doi.org/10.1215/20088752-3764507 [21] A. Kajla and P. N. Agrawal, “Sz´asz-Durrmeyer type operators based on Charlier polynomials,”

Appl. Math. Comput., vol. 268, pp. 1001–1014, 2015, doi:10.1016/j.amc.2015.06.126. [Online].

Available:http://dx.doi.org/10.1016/j.amc.2015.06.126

[22] B. Lenze, “On Lipschitz-type maximal functions and their smoothness spaces,” Nederl. Akad.

Wetensch. Indag. Math., vol. 50, no. 1, pp. 53–63, 1988.

[23] M. Mursaleen, K. J. Ansari, and A. Khan, “On .p; q/-analogue of Bernstein operators,”

Appl. Math. Comput., vol. 266, pp. 874–882, 2015, doi: 10.1016/j.amc.2015.04.090. [Online].

Available:http://dx.doi.org/10.1016/j.amc.2015.04.090

[24] M. A. ¨Ozarslan and H. Aktu˘ glu, “Local approximation properties for certain King type operators,” Filomat, vol. 27, no. 1, pp. 173–181, 2013, doi: 10.2298/FIL1301173O. [Online].

Available:http://dx.doi.org/10.2298/FIL1301173O

[25] M. Wang, D. Yu, and P. Zhou, “On the approximation by operators of Bernstein-Stancu types,”

Appl. Math. Comput., vol. 246, pp. 79–87, 2014, doi: 10.1016/j.amc.2014.08.015. [Online].

Available:http://dx.doi.org/10.1016/j.amc.2014.08.015

Authors’ addresses

Arun Kajla

Department of Mathematics, Central University of Haryana, Haryana-123031, India E-mail address:rachitkajla47@gmail.com

Tuncer Acar

Department of Mathematics,Faculty of Science, Selcuk University, Selcuklu, Konya, 42003, Turkey E-mail address:tunceracar@ymail.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Kirov in [8] defined the new Bernstein polynomials for m-times differentiable functions and showed that these operators have better approximation properties than classical

Key words: Linear positive operators, Bernstein bivariate polynomials, GBS opera- tors, B-differentiable functions, approximation of B-differentiable func- tions by GBS operators,

Key words and phrases: Linear positive operators, Bernstein bivariate polynomials, GBS operators, B -differentiable func- tions, approximation of B-differentiable functions by

Key words: Baskakov operators, Simultaneous approximation, Asymptotic formula, Pointwise convergence, Error estimation, Inverse theorem.. The work carried out when the second

We study the simultaneous approximation properties of the Bézier variant of the well known Phillips operators and estimate the rate of convergence of the Phillips-Bézier operators

We estimate the rate of the pointwise approximation by operators of Bleimann, Butzer and Hahn of locally bounded functions, and of functions having a locally bounded derivative..

We estimate the rate of the pointwise approximation by operators of Bleimann, Butzer and Hahn of locally bounded functions, and of functions having a locally bounded deriv- ative..

It is observed that the analysis for our Bezier variant of new Bernstein Durrmeyer operators is different from the usual Bernstein Durrmeyer operators studied by Zeng and Chen