• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
15
0
0

Teljes szövegt

(1)

volume 7, issue 4, article 141, 2006.

Received 28 July, 2006;

accepted 17 November, 2006.

Communicated by:F. Qi

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

SIMULTANEOUS APPROXIMATION FOR THE PHILLIPS-BÉZIER OPERATORS

VIJAY GUPTA, P.N. AGRAWAL AND HARUN KARSLI

School of Applied Sciences

Netaji Subhas Institute of Technology Sector 3 Dwarka

New Delhi 110075, India.

EMail:vijay@nsit.ac.in Department of Mathematics Indian Institute of Technology Roorkee 247667, India.

EMail:pnappfma@iitr.ernet.in Ankara University

Faculty of Sciences Department of Mathematics 06100 Tandogan-Ankara-Turkey.

EMail:karsli@science.ankara.edu.tr

c

2000Victoria University ISSN (electronic): 1443-5756 204-06

(2)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

Abstract

We study the simultaneous approximation properties of the Bézier variant of the well known Phillips operators and estimate the rate of convergence of the Phillips-Bézier operators in simultaneous approximation, for functions of bounded variation.

2000 Mathematics Subject Classification:41A25, 41A30.

Key words: Rate of convergence, Bounded variation, Total variation, Simultaneous approximation.

Contents

1 Introduction. . . 3 2 Auxiliary Results. . . 5 3 Proof. . . 8

References

(3)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

1. Introduction

Forα≥1, the Phillips-Bézier operator is defined by (1.1) Pn,α(f, x) =n

X

k=1

Q(α)n,k(x) Z

0

pn,k−1(t)f(t)dt+Q(α)n,0(x)f(0), wheren∈N, x∈[0,∞),

Q(α)n,k(x) = [Jn,k(x)]α−[Jn,k+1(x)]α, Jn,k(x) =

X

j=k

pn,j(x) and

pn,k(x) =e−nx(nx)k k! .

Forα= 1, the operator (1.1) reduces to the Phillips operator [1]. Some approx- imation properties of the Phillips operators were recently studied by Finta and Gupta [2]. The rates of convergence in ordinary and simultaneous approxima- tions on functions of bounded variation for the Phillips operators were estimated in [3], [4] and [5]. In the present paper we extend the earlier study and here we investigate and estimate the rate of convergence for the Bézier variant of the Phillips operators in simultaneous approximations by means of the decompo- sition technique of functions of bounded variation. We denote the class Br,β by

Br,β =n

f :f(r−1) ∈C[0,∞), f±(r)(x) exist everywhere and are bounded on every finite subinterval of

[0,∞)and f±(r)(x) = O(eβt) (t → ∞), for someβ >0o ,

(4)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

r = 1,2, . . .. By f±(0)(x)we mean f(x±).Our main theorem is stated as:

Theorem 1.1. Letf ∈Br,β, r = 1,2, ...andβ >0.Then for everyx∈(0,∞) andn≥max{r2+r, 4β},we have

Pn,α(r)(f, x)− 1 α+ 1

n

f+(r)(x) +α f(r)(x)o

≤ r+α−1

√2enx

f+(r)(x)− f(r)(x)

+ 1 n

1 + 2α(1 + 2x) x2

n X

k=1 x+x/

k

_

x−x/ k

(gr,x) +α

√2x+ 1 x√

n 2r/2e2βx, wheregr,x is the auxiliary function defined by

gr,x(t) =









f(r)(t)−f+(r)(x), x < t <∞

0, t =x

f(r)(t)−f(r)(x), 0≤t < x ,

Wb

a(gr,x(t)) is the total variation of gr,x(t) on[a, b]. In particular g0,x(t) ≡ gx(t),defined in [4].

(5)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

2. Auxiliary Results

In this section we give certain lemmas, which are necessary for proving the main theorem.

Lemma 2.1. For allx∈(0,∞), α≥1andk ∈N∪ {0},we have pn,k(x)≤ 1

√2enx and

Q(α)n,k(x)≤ α

√2enx, where the constant1/√

2eand the estimation ordern−1/2(forn→ ∞) are the best possible.

Lemma 2.2 ([3]). If f ∈ L1[0,∞), f(r−1) ∈ A.C.loc, r ∈ N and f(r) ∈ L1[0,∞), then

Pn(r)(f, x) =n

X

k=0

pn,k(x) Z

0

pn,k+r−1(t)f(r)(t)dt.

Lemma 2.3 ([3]). Form∈N∪ {0}, r∈N, if we define the m-th order moment by

µr,n,m(x) = n

X

k=0

pn,k(x) Z

0

pn,k+r−1(t) (t−x)mdt thenµr,n,0(x) = 1, µr,n,1(x) = nr andµr,n,2(x) = 2nx+r(r+1)n2 .

(6)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

Also there holds the following recurrence relation

r,n,m+1(x) =x[µ(1)r,n,m(x) + 2mµr,n,m−1(x)] + (m+r)µr,n,m(x).

Consequently by the recurrence relation, for allx∈[0,∞), we have µr,n,m(x) =O n−[(m+1)/2]

.

Remark 1. In particular, by Lemma2.3, for given any numbern ≥r2+rand 0< x <∞,we have

(2.1) µr,n,2(x)≤ 2x+ 1

n .

Remark 2. We can observe from Lemma2.2and Lemma2.3that forr= 0, the summation overk starts from 1. Forr = 0, Lemma 2.3may be defined as [5, Lemma 2], withc= 0.

Lemma 2.4. Supposex∈(0,∞),r ∈N∪ {0}, α≥1and Kr,n,α(x, t) = n

X

k=0

Q(α)n,k(x)pn,k+r−1(t).

Then forn ≥r2+r,there hold Z y

0

Kr,n,α(x, t)dt ≤ α(2x+ 1)

n(x−y)2, 0≤y < x, (2.2)

Z z

Kr,n,α(x, t)dt ≤ α(2x+ 1)

n(z−x)2, x < z <∞.

(2.3)

(7)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

Proof. We first prove (2.2) as follows:

Z y 0

Kr,n,α(x, t)dt≤ Z y

0

(x−t)2

(x−y)2Kr,n,α(x, t)dt

≤ α

(x−y)2Pn((t−x)2, x)

≤ αµr,n,2(x)

(x−y)2 ≤ α(2x+ 1) n(x−y)2, by using (2.1). The proof of (2.3) follows along similar lines.

(8)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

3. Proof

Proof of Theorem1.1. Clearly

(3.1)

Pn,α(r)(f, x)− 1 α+ 1

n

f+(r)(x) +α f(r)(x)o

≤n

X

k=0

Q(α)n,k(x) Z

0

pn+r−1,k(x)|gr,x(t)|dt

+ 1

α+ 1

f+(r)(x)− f(r)(x)

Pn,α(r)(sgnα(t−x), x) . We first estimatePn,α(r)(sgnα(t−x), x)as follows:

Pn,α(r)(sgnα(t−x), x)

=n

X

k=0

Q(α)n,k(x) Z

0

αpn,k+r−1(t)dt−(1 +α) Z x

0

pn,k+r−1(t)dt

=α−(1 +α)n

X

k=0

Q(α)n,k(x) Z

0

pn,k+r−1(t)dt

=α−(1 +α)n

X

k=0

Q(α)n,k(x) 1−

k+r−1

X

j=0

pn,j(x)

!

= (1 +α)n

X

k=0

Q(α)n,k(x)

k+r−1

X

j=0

pn,j(x)−1

(9)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

= (1 +α)n

X

k=0

Q(α)n,k(x)

k

X

j=0

pn,j(x) + r−1

√2enx

!

−1

= (1 +α)

" X

j=0

pn,j(x)

X

k=j

Q(α)n,k(x) + r−1

√2enx

#

−1

= (1 +α)

" X

j=0

pn,j(x) [Jn,j(x)]α+ r−1

√2enx

#

X

j=0

Q(α)n,j(x).

By the mean value theorem, we find that

Q(α+1)n,j (x) = [Jn,j(x)]α+1−[Jn,j+1(x)]α+1 = (α+ 1)pn,j(x) [γn,j(x)]α, where

Jn,j+1(x)< γn,j(x)< Jn,j(x).

Hence by Lemma2.1, we have Pn,α(r)(sgnα(t−x), x)

(1 +α)

" X

j=0

pn,j(x) ([Jn,j(x)]α−[γn,j(x)]α)

#

+(1 +α)(r−1)

√2enx

≤(1 +α)

" X

j=0

pn,j(x)Q(α)n,k(x) + r−1

√2enx

#

≤(1 +α) α

√2enx + r−1

√2enx

= (1 +α)(r+α−1)

√2enx . (3.2)

(10)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

Next we estimate Pn(r)(gr,x, x). By the Lebesgue-Stieltjes integral representa- tion, we have

Pn,α(r)(gr,x, x) = Z

0

gr,x(t)Kr,n,α(x, t)dt

= Z

I1

+ Z

I2

+ Z

I3

+ Z

I4

gr,x(t)Kr,n,α(x, t)dt

=R1+R2+R3+R4, (3.3)

say, whereI1 = [0, x−x/√

n], I2 = [x−x/√

n, x+x/√

n], I3 = [x+x/√ n,2x]

andI4 = [2x,∞).Let us define ηr,n,α(x, t) =

Z t 0

Kr,n,α(x, u)du.

We first estimateR1.Writingy=x−x/√

nand using integration by parts, we have

R1 = Z y

0

gr,x(t)dtr,n,α(x, t))

=gr,x(y)ηr,n,α(x, y)− Z y

0

ηr,n,α(x, t)dt(gr,x(t)).

By Remark1, it follows that

|R1| ≤

x

_

y

(gr,xr,n,α(x, y) + Z y

0

ηr,n,α(x, t)dt

x

_

t

(gr,x)

!

(11)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

x

_

y

(gr,x)α(2x+ 1) n(x−y)2 +λx

n Z y

0

1

(x−t)2dt

x

_

t

(gr,x)

! .

Integrating by parts the last term, we have after simple computation,

|R1| ≤ α(2x+ 1) n

Wx 0(gr,x)

x2 + 2 Z y

0

Wx t(gr,x) (x−t)3dt

.

Now replacing the variableyin the last integral byx−x/√

t, we get

(3.4) |R1| ≤ 2α(2x+ 1)

nx2

n

X

k=1 x

_

x−x/ k

(gr,x).

Next we estimateR2.Fort∈[x−x/√

n, x+x/√

n], we have

|gr,x(t)|=|gr,x(t)−gr,x(x)| ≤

x+x/ n

_

x−x/ n

(gr,x).

Also by the fact thatRb

adtr,n(x, t))≤1for(a, b)⊂[0,∞),therefore

(3.5) |R2| ≤

x+x/ n

_

x−x/ n

(gr,x)≤ 1 n

n

X

k=1 x+x/

k

_

x−x/ k

(gr,x).

(12)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

To estimateR3,we takez =x+x/√ n, thus R3 =

Z 2x z

Kr,n,α(x, t)gr,x(t)dt

=− Z 2x

z

gr,x(t)dt(1−ηr,n,α(x, t))

=−gr,x(2x)(1−ηr,n,α(x,2x)) +gr,x(z)(1−ηr,n,α(x, z)) +

Z 2x z

(1−ηr,n,α(x, t))dt(gr,x(t)).

Thus arguing similarly as in the estimate ofR1,we obtain

(3.6) |R3| ≤ 2α(2x+ 1)

nx2

n

X

k=1 x+x/

k

_

x

(gr,x).

Finally we estimateR4as follows

|R4|=

Z 2x

Kr,n,α(x, t)gr,x(t)dt

≤nα

X

k=0

pn,k(x) Z

2x

pn,k+r−1(t)eβtdt

≤ nα x

X

k=0

pn,k(x) Z

0

pn,k+r−1(t)eβt|t−x|dt

(13)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

≤ α x n

X

k=0

pn,k(x) Z

0

pn,k+r−1(t) (t−x)2dt

!12

× n

X

k=0

pn,k(x) Z

0

pn,k+r−1(t)e2βtdt

!12 .

For the first expression above we use Remark1. To evaluate the second expres- sion, we proceed as follows:

n

X

k=0

pn,k(x) Z

0

pn,k+r−1(t)e2βtdt

=n

X

k=0

pn,k(x) nk+r−1 (k+r−1)!

Z 0

tk+r−1e−(n−2β)tdt,

n

X

k=0

pn,k(x) nk+r−1 (k+r−1)!

Γ(k+r) (n−2β)k+r

= nr

(n−2β)r

X

k=0

n n−2β

k

pn,k(x),

nr

(n−2β)re−nx

X

k=0

n2x n−2β

k

1

k! = nr

(n−2β)re2nxβ/(n−2β) ≤2re4βx

(14)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

forn >4β.Thus

|R4| ≤ α x n

X

k=0

pn,k(x) Z

0

pn,k+r−1(t) (t−x)2dt

!12

× n

X

k=0

pn,k(x) Z

0

pn,k+r−1(t)e2βtdt

!12

≤ α√ 2x+ 1 x√

n 2r/2e2βx. (3.7)

Combining the estimates of (3.1)-(3.7), we get the required result.

(15)

Vijay Gupta, P.N. Agrawal and Harun Karsli

Vijay Gupta, P.N. Agrawal and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of15

J. Ineq. Pure and Appl. Math. 7(4) Art. 141, 2006

http://jipam.vu.edu.au

References

[1] R.S. PHILLIPS, An inversion formula for semi-groups of linear operators, Ann. Math. (Ser. 2), 59 (1954), 352–356.

[2] Z. FINTA AND V. GUPTA, Direct and inverse estimates for Phillips type operators, J. Math Anal Appl., 303 (2005), 627–642.

[3] N.K. GOVIL, V. GUPTA ANDM.A. NOOR, Simultaneous approximation for the Phillips operators, International Journal of Math and Math Sci., Vol.

2006 Art Id. 49094 92006, 1-9.

[4] V. GUPTAANDG.S. SRIVASTAVA, On the rate of convergence of Phillips operators for functions of bounded variation, Ann. Soc. Math. Polon. Ser. I Commentat. Math., 36 (1996), 123–130.

[5] H.M. SRIVASTAVA AND V. GUPTA, A certain family of summation- integral type operators, Math. Comput. Modelling, 37 (2003), 1307–1315.

[6] X.M. ZENG AND J.N. ZHAO, Exact bounds for some basis functions of approximation operators, J. Inequal. Appl., 6 (2001), 563–575.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

There were a number of hypotheses about the modification of household saving behavior: lowering of household real incomes results in decreasing of saving rate, ruble

Is the most retrograde all it requires modernising principles and exclusive court in the world Mediaeval views and customs still prevailing Solemn obsequies at the late Emperor's

In this work, we study the convergence properties of these operators in the weighted spaces of continuous functions on positive semi-axis with the help of a weighted Korovkin

We estimate the rate of the pointwise approximation by operators of Bleimann, Butzer and Hahn of locally bounded functions, and of functions having a locally bounded derivative..

A heat flow network model will be applied as thermal part model, and a model based on the displacement method as mechanical part model2. Coupling model conditions will

The present paper reports on the results obtained in the determination of the total biogen amine, histamine and tiramine content of Hungarian wines.. The alkalized wine sample

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

We have provided ready to implement exact formulae for the rational Bézier rep- resentation of caustics (if exist) of planar Bézier curves of degree greater than...