• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
33
0
0

Teljes szövegt

(1)

volume 7, issue 4, article 125, 2006.

Received 06 January, 2006;

accepted 16 August, 2006.

Communicated by:N.E. Cho

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON SIMULTANEOUS APPROXIMATION FOR CERTAIN BASKAKOV DURRMEYER TYPE OPERATORS

VIJAY GUPTA, MUHAMMAD ASLAM NOOR AND MAN SINGH BENIWAL

School of Applied Sciences

Netaji Subhas Institute of Technology Sector 3 Dwarka

New Delhi 110075, India EMail:vijay@nsit.ac.in Mathematics Department

COMSATS Institute of Information Technology Islamabad, Pakistan

EMail:noormaslam@hotmail.com Department of Applied Science

Maharaja Surajmal Institute of Technology C-4, Janakpuri, New Delhi - 110058, India EMail:man_s_2005@yahoo.co.in Department of Mathematics Ch Charan Singh University Meerut 250004, India

EMail:mkgupta2002@hotmail.com

2000c Victoria University ISSN (electronic): 1443-5756 009-06

(2)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of33

Abstract

In the present paper, we study a certain integral modification of the well known Baskakov operators with the weight function of Beta basis function. We estab- lish pointwise convergence, an asymptotic formula an error estimation and an inverse result in simultaneous approximation for these new operators.

2000 Mathematics Subject Classification:41A30, 41A36.

Key words: Baskakov operators, Simultaneous approximation, Asymptotic formula, Pointwise convergence, Error estimation, Inverse theorem.

The work carried out when the second author visited Department of Mathematics and Statistics, Auburn University, USA in fall 2005.

The authors are thankful to the referee for making many valuable suggestions, lead- ing to the better presentation of the paper.

Contents

1 Introduction. . . 3

2 Basic Results. . . 5

3 Direct Theorems . . . 13

4 Inverse Theorem . . . 27 References

(3)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of33

1. Introduction

For

f ∈Cγ[0,∞)≡ {f ∈C[0,∞) :|f(t)| ≤M tγ

for some M > 0, γ > 0} we consider a certain type of Baskakov-Durrmeyer operator as

Bn(f(t), x) =

X

k=1

pn,k(x) Z

0

bn,k(t)f(t)dt+ (1 +x)−nf(0) (1.1)

= Z

0

Wn(x, t)f(t)dt where

pn,k(x) =

n+k−1 k

xk (1 +x)n+k, bn,k(t) = 1

B(n+ 1, k)· tk−1 (1 +t)n+k+1 and

Wn(x, t) =

X

k=1

pn,k(x)bn,k(t) + (1 +x)−nδ(t),

δ(t)being the Dirac delta function. The norm- || · ||γ on the classCγ[0,∞)is defined as||f||γ = sup

0≤t<∞

|f(t)|t−γ.

The operators defined by (1.1) are the integral modification of the well known Baskakov operators with weight functions of some Beta basis functions. Very

(4)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of33

recently Finta [2] also studied some other approximation properties of these op- erators. The behavior of these operators is very similar to the operators recently introduced in [6], [9] and also studied in [8]. These operators reproduce not only the constant functions but also the linear functions, which is the interesting property of such operators. The other usual Durrmeyer type integral modifica- tion of the Baskakov operators [5] reproduce only the constant functions, so one can not apply the iterative combinations easily to improve the order of approx- imation for the usual Baskakov Durrmeyer operators. For recent work in this area we refer to [7]. In the present paper we study some direct results which include pointwise convergence, asymptotic formula, error estimation and in- verse theorem in the simultaneous approximation for the unbounded functions of growth of ordertγ.

(5)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of33

2. Basic Results

In this section we mention certain lemmas which will be used in the sequel.

Lemma 2.1 ([3]). Form∈N ∪ {0}, if themthorder moment be defined as Un,m(x) =

X

k=0

pn,k(x) k

n −x m

, thenUn,0(x) = 1, Un,1(x) = 0and

nUn,m+1(x) = x(1 +x)(Un,m(1) (x) +mUn,m−1(x)).

Consequently we haveUn,m(x) =O n−[(m+1)/2]

.

Lemma 2.2. Let the functionTn,m(x), m∈N ∪ {0}, be defined as Tn,m(x) =Bn (t−x)mx

=

X

k=1

pn,k(x) Z

0

bn,k(t)(t−x)mdt+ (1 +x)−n(−x)m. ThenTn,0(x) = 1, Tn,1 = 0, Tn,2(x) = 2x(1+x)n−1 and also there holds the recur- rence relation

(n−m)Tn,m+1(x) =x(1 +x)

Tn,m(1)(x) + 2mTn,m−1(x)

+m(1 + 2x)Tn,m(x).

(6)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of33

Proof. By definition, we have

Tn,m(1)(x) =

X

k=1

p(1)n,k(x) Z

0

bn,k(t)(t−x)mdt

−m

X

k=1

pn,k(x) Z

0

bn,k(t)(t−x)m−1dt

−n(1 +x)−n−1(−x)m−m(1 +x)−n(−x)m−1. Using the identities

x(1 +x)p(1)n,k(x) = (k−nx)pn,k(x) and

t(1 +t)b(1)n,k(t) = [(k−1)−(n+ 2)t]bn,k(t), we have

x(1 +x)

Tn,m(1)(x) +mTn,m−1(x)

=

X

k=1

pn,k(x) Z

0

(k−nx)bn,k(t)(t−x)mdt+n(1 +x)−n(−x)m+1

=

X

k=1

pn,k(x) Z

0

(k−1)−(n+ 2)t+ (n+ 2)(t−x) + (1 + 2x)

bn,k(t)(t−x)mdt+n(1 +x)−n(−x)m+1

(7)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of33

=

X

k=1

pn,k(x) Z

0

t(1 +t)b(1)n,k(t)(t−x)mdt

+ (n+ 2)[Tn,m+1(x)−(1 +x)−n(−x)m+1]

+ (1 + 2x)[Tn,m(x)−(1 +x)−n(−x)m] +n(1 +x)−n(−x)m+1

=−(m+ 1)(1 + 2x)[Tn,m(x)−(1 +x)−n(−x)m]

−(m+ 2)[Tn,m+1−(1 +x)−n(−x)m+1]

−mx(1 +x)[Tn,m−1(x)−(1 +x)−n(−x)m−1] + (n+ 2)[Tn,m+1−(1 +x)−n(−x)m+1]

+ (1 + 2x)[Tn,m(x)−(1 +x)−n(−x)m] +n(1 +x)−n(−x)m+1. Thus, we get

(n−m)Tn,m+1(x) =x(1 +x)[Tn,m(1)(x) + 2mTn,m−1(x)] +m(1 + 2x)Tn,m(x).

This completes the proof of recurrence relation. From the above recurrence relation, it is easily verified for allx∈[0,∞)that

Tn,m(x) = O n−[(m+1)/2]

.

Remark 1. It is easily verified from Lemma2.1that for eachx∈(0,∞) Bn(ti, x) = (n+i−1)!(n−i)!

n!(n−1)! xi+i(i−1)(n+i−2)!(n−i)!

n!(n−1)! xi−1+O(n−2).

(8)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of33

Corollary 2.3. Let δbe a positive number. Then for everyγ > 0, x ∈ (0,∞), there exists a constantM(s, x)independent ofnand depending onsandxsuch that

Z

|t−x|>δ

Wn(x, t)tγdt C[a,b]

≤M(s, x)n−s, s = 1,2,3, . . .

Lemma 2.4. There exist the polynomialsQi,j,r(x)independent ofnandksuch that

{x(1 +x)}rDr

pn,k(x)

= X

2i+j≤r i,j≥0

ni(k−nx)jQi,j,r(x)pn,k(x),

whereD≡ dxd.

By C0, we denote the class of continuous functions on the interval (0,∞) having a compact support and C0r is the class of r times continuously differ- entiable functions with C0r ⊂ C0. The functionf is said to belong to the gen- eralized Zygmund class Liz(α,1, a, b), if there exists a constant M such that ω2(f, δ) ≤ M δα, δ > 0, whereω2(f, δ)denotes the modulus of continuity of 2nd order on the interval[a, b]. The classLiz(α,1, a, b)is more commonly de- noted byLip(α, a, b).SupposeG(r) = {g : g ∈C0r+2,suppg ⊂[a0, b0]where [a0, b0]⊂(a, b)}. Forrtimes continuously differentiable functionsf withsupp f ⊂[a0, b0]the Peetre’s K-functionals are defined as

Kr(ξ, f) = inf

g∈G(r)

h

f(r)−g(r)

C[a0,b0]+ξ n

g(r)

C[a0,b0]+

g(r+2) C[a0,b0]

oi , 0< ξ ≤1.

(9)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of33

For0< α <2, C0r(α,1, a, b)denotes the set of functions for which sup

0<ξ≤1

ξ−α/2Kr(ξ, f, a, b)< C.

Lemma 2.5. Let 0 < a0 < a00 < b00 < b0 < b < ∞ and f(r) ∈ C0 with suppf ⊂[a00, b00]and iff ∈C0r(α,1, a0, b0),we havef(r) ∈Liz(α,1, a0, b0)i.e.

f(r) ∈Lip(α, a0, b0)whereLip(α, a0, b0)denotes the Zygmund class satisfying Kr(δ, f)≤Cδα/2.

Proof. Letg ∈G(r), then forf ∈C0r(α,1, a0, b0),we have 42δf(r)(x)

42δ(f(r)−g(r))(x) +

42δg(r)(x)

42δ(f(r)−g(r))

C[a0,b0]2

g(r+2) C[a0,b0]

≤4M1Kr2, f)≤M2δα.

Lemma 2.6. Iffisrtimes differentiable on[0,∞), such thatf(r−1) =O(tα), α >

0ast→ ∞,then forr = 1,2,3, . . . andn > α+rwe have B(r)n (f, x) = (n+r−1)!(n−r)!

n!(n−1)!

X

k=0

pn+r,k(x) Z

0

bn−r,k+r(t)f(r)(t)dt.

Proof. First

Bn(1)(f, x) =

X

k=1

p(1)n,k(x) Z

0

bn,k(t)f(t)dt−n(1 +x)−n−1f(0).

(10)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of33

Now using the identities

p(1)n,k(x) =n[pn+1,k−1(x)−pn+1,k(x)], (2.1)

b(1)n,k(t) = (n+ 1)[bn+1,k−1(t)−bn+1,k(t)].

(2.2)

fork ≥1,we have Bn(1)(f, x)

=

X

k=1

n[pn+1,k−1(x)−pn+1,k(x)]

Z

0

bn,k(t)f(t)dt−n(1 +x)−n−1f(0)

=npn+1,0(x) Z

0

bn,1(t)f(t)dt−n(1 +x)−n−1f(0) +n

X

k=1

pn+1,k(x) Z

0

[bn,k+1(t)−bn,k(t)]f(t)dt

=n(1 +x)−n−1 Z

0

(n+ 1)(1 +t)−n−2f(t)dt−n(1 +x)−n−1f(0) +n

X

k=1

pn+1,k(x) Z

0

−1

nb(1)n−1,k+1(t)f(t)dt.

Integrating by parts, we get

Bn(1)(f, x) =n(1 +x)−n−1f(0) +n(1 +x)−n−1 Z

0

(1 +t)−n−1f(1)(t)dt

(11)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of33

−n(1 +x)−n−1f(0) +

X

k=1

pn+1,k(x) Z

0

bn−1,k+1(t)f(1)(t)dt

=

X

k=0

pn+1,k(x) Z

0

bn−1,k+1(t)f(1)(t)dt.

Thus the result is true for r = 1. We prove the result by induction method.

Suppose that the result is true forr=i, then Bn(i)(f, x) = (n+i−1)!(n−i)!

n!(n−1)!

X

k=0

pn+i,k(x) Z

0

bn−i,k+i(t)f(i)(t)dt.

Thus using the identities (2.1) and (2.2), we have Bn(i+1)(f, x)

= (n+i−1)!(n−i)!

n!(n−1)!

×

X

k=1

(n+i)[pn+i+1,k−1(x)−pn+i+1,k(x)]

Z

0

bn−i,k+i(t)f(i)(t)dt + (n+i−1)!(n−i)!

n!(n−1)! (−(n+i)(1 +x)−n−i−1) Z

0

bn−i,i(t)f(i)(t)dt

= (n+i)!(n−i)!

n!(n−1)! pn+i+1,0(x) Z

0

bn−i,i+1(t)f(i)(t)dt

− (n+i)!(n−i)!

n!(n−1)! pn+i+1,0(x) Z

0

bn−i,i(t)f(i)(t)dt

(12)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of33

+ (n+i)!(n−i)!

n!(n−1)!

X

k=1

pn+i+1,k(x) Z

0

[bn−i,k+i+1(t)−bn−i,k+i(t)]f(i)(t)dt

= (n+i)!(n−i)!

n!(n−1)! pn+i+1,0(x) Z

0

− 1

(n−i)b(1)n−i−1,i+1(t)f(i)(t)dt + (n+i)!(n−i)!

n!(n−1)!

X

k=1

pn+i+1,k(x) Z

0

− 1

(n−i)b(1)n−i−1,k+i+1(t)f(i)(t)dt.

Integrating by parts, we obtain

Bn(i+1)(f, x) = (n+i)!(n−i−1)!

n!(n−1)!

X

k=0

pn+i+1,k(x) Z

0

bn−i−1,k+i+1(t)f(i+1)(t)dt.

This completes the proof of the lemma.

(13)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of33

3. Direct Theorems

In this section we present the following results.

Theorem 3.1. Letf ∈Cγ[0,∞)andf(r)exists at a pointx∈(0,∞).Then we have

Bn(r)(f, x) =f(r)(x) asn→ ∞.

Proof. By Taylor expansion off, we have f(t) =

r

X

i=0

f(i)(x)

i! (t−x)i+ε(t, x)(t−x)r, whereε(t, x)→0ast →x. Hence

Bn(r)(f, x) = Z

0

Wn(r)(t, x)f(t)dt

=

r

X

i=0

f(i)(x) i!

Z

0

Wn(r)(t, x)(t−x)idt +

Z

0

Wn(r)(t, x)ε(t, x)(t−x)rdt

=:R1 +R2.

First to estimateR1, using the binomial expansion of(t−x)iand Remark1, we

(14)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of33

have

R1 =

r

X

i=0

f(i)(x) i!

i

X

v=0

i v

(−x)i−vr

∂xr Z

0

Wn(t, x)tvdt

= f(r)(x) r!

dr dxr

(n+r−1)!(n−r)!

n!(n−1)! xr+terms containing lower powers ofx

=f(r)(x)

(n+r−1)!(n−r)!

n!(n−1)!

→f(r)(x) asn→ ∞.Next applying Lemma2.4, we obtain

R2 = Z

0

Wn(r)(t, x)ε(t, x)(t−x)rdt,

|R2| ≤ X

2i+j≤r i,j≥0

ni |Qi,j,r(x)|

{x(1 +x)}r

X

k=1

|k−nx|jpn,k(x) Z

0

bn,k(t)|ε(t, x)||t−x|rdt+(n+r+ 1)!

(n−1)! (1 +x)−n−r|ε(0, x)|xr. The second term in the above expression tends to zero as n → ∞. Since ε(t, x) → 0ast → xfor a given ε > 0there exists aδsuch that|ε(t, x)| < ε whenever0 <|t−x| < δ.Ifα ≥max{γ, r}, where αis any integer, then we can find a constant M3 > 0, |ε(t, x)(t−x)r| ≤ M3|t−x|α,for |t −x| ≥ δ.

(15)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of33

Therefore

|R2| ≤M3 X

2i+j≤r i,j≥0

ni

X

k=0

pn,k(x)|k−nx|j

×

ε Z

|t−x|<δ

bn,k(t)|t−x|rdt+ Z

|t−x|≥δ

bn,k(t)|t−x|αdt

=:R3+R4.

Applying the Cauchy-Schwarz inequality for integration and summation respec- tively, we obtain

R3 ≤εM3 X

2i+j≤r i,j≥0

ni (

X

k=1

pn,k(x)(k−nx)2j )12

× (

X

k=1

pn,k(x) Z

0

bn,k(t)(t−x)2rdt )12

.

Using Lemma2.1and Lemma2.2, we get

R3 =ε·O(nr/2)O(n−r/2) =ε·o(1).

Again using the Cauchy-Schwarz inequality, Lemma2.1and Corollary2.3, we

(16)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of33

get

R4 ≤M4 X

2i+j≤r i,j≥0

ni

X

k=1

pn,k(x)|k−nx|j Z

|t−x|≥δ

bn,k(t)|t−x|αdt

≤M4 X

2i+j≤r i,j≥0

ni

X

k=1

pn,k(x)|k−nx|j Z

|t−x|≥δ

bn,k(t)dt 12

× Z

|t−x|≥δ

bn,k(t)(t−x)dt 12

≤M4 X

2i+j≤r i,j≥0

ni (

X

k=1

pn,k(x)(k−nx)2j )12

× (

X

k=1

pn,k(x) Z

0

bn,k(t)(t−x)dt )12

= X

2i+j≤r i,j≥0

niO(nj/2)O(n−α/2) =O(n(r−α)/2) =o(1).

Collecting the estimates ofR1−R4,we obtain the required result.

Theorem 3.2. Letf ∈Cγ[0,∞).Iff(r+2)exists at a pointx∈(0,∞).Then

n→∞lim n

Bn(r)(f, x)−f(r)(x)

=r(r−1)f(r)(x) +r(1 + 2x)f(r+1)(x) +x(1 +x)f(r+2)(x).

(17)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of33

Proof. Using Taylor’s expansion off,we have f(t) =

r+2

X

i=0

f(i)(x)

i! (t−x)i +ε(t, x)(t−x)r+2,

where ε(t, x) → 0as t → x and ε(t, x) = O((t−x)γ), t → ∞ for γ > 0.

Applying Lemma2.2, we have n

Bn(r)(f(t), x)−f(r)(x)

=n

"r+2 X

i=0

f(i)(x) i!

Z

0

Wn(r)(t, x)(t−x)idt−f(r)(x)

#

+n Z

0

Wn(r)(t, x)ε(t, x)(t−x)r+2dt

=:E1+E2. First, we have

E1 =n

r+2

X

i=0

f(i)(x) i!

i

X

j=0

i j

(−x)i−j Z

0

Wn(r)(t, x)tjdt−nf(r)(x)

= f(r)(x) r! n

Bn(r)(tr, x)−(r!) + f(r+1)(x)

(r+ 1)! n

(r+ 1)(−x)Bn(r)(tr, x) +Bn(r)(tr+1, x) + f(r+2)(x)

(r+ 2)! n

"

(r+ 2)(r+ 1)

2 x2Bn(r)(tr, x)

(18)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of33

+ (r+ 2)(−x)Bn(r)(tr+1, x) +Bn(r)(tr+2, x)

# . Therefore, by Remark1, we have

E1 =nf(r)(x)

(n+r−1)!(n−r)!

n!(n−1)! −1

+ nf(r+1)(x) (r+ 1)!

(x−1)(−x)

(n+r−1)!(n−r)!

n!(n−1)!

+

(n+r)!(n−r−1)!

n!(n−1)! (r+ 1)!x+ (r+ 1)r(n+r−1)!(n−r−1)!

n!(n−1)! r!

+ nf(r+2)(x) (r+ 2)!

(r+ 2)(r+ 1)

2 x2(n+r−1)!(n−r)!

n!(n−1)! r!

+ (r+ 2)(−x)

(n+r)!(n−r−1)!

2 x(r+ 1)!

+(r+ 1)r(n−r−1)!(n−r−1)!

n!(n−1)! r!

+

(n+r+ 1)!(n−r−2)!

n!(n−1)!

(r+ 2)!

2 x2 + (r+ 2)(r+ 1) (n+r)!(n−r−2)!

n!(n−1)! (r+ 1)!x

+O(n−2).

In order to complete the proof of the theorem it is sufficient to show thatE2 →0 as n → ∞ which easily follows proceeding along the lines of the proof of Theorem3.1and by using Lemma2.1, Lemma2.2and Lemma2.4.

(19)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of33

Lemma 3.3. Let0 < α <2,0 < a < a0 < a00 < b00 < b0 < b < ∞.Iff ∈ C0 withsuppf ⊂[a00, b00]and

Bn(r)(f,·)−f(r)

C[a,b]=O(n−α/2),then Kr(ξ, f) =M5

n−α/2+nξKr(n−1, f) . ConsequentlyKr(ξ, f)≤M6ξα/2, M6 >0.

Proof. It is sufficient to prove

Kr(ξ, f) =M7{n−α/2+nξKr(n−1, f)},

for sufficiently large n. Because suppf ⊂ [a00, b00] therefore by Theorem 3.2 there exists a functionh(i) ∈G(r), i=r, r+ 2,such that

Bn(r)(f,•)−h(i)

C[a0,b0]≤M8n−1. Therefore,

Kr(ξ, f)≤3M9n−1+

Bn(r)(f,•)−f(r) C[a0,b0]

+ξn

Bn(r)(f,•)

C[a0,b0]+

Bn(r+2)(f,•) C[a0,b0]

o . Next, it is sufficient to show that there exists a constantM10such that for each g ∈G(r)

(3.1)

Bn(r+2)(f,•)

C[a0,b0]≤M10n{

f(r)−g(r)

C[a0,b0]+n−1

g(r+2) C[a0,b0].

(20)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of33

Also using the linearity property, we have (3.2)

Bn(r+2)(f,•) C[a0,b0]

B(r+2)n (f −g,•)

C[a0,b0]+

Bn(r+2)(g,•) C[a0,b0]. Applying Lemma2.4, we get

Z

0

r+2

∂xr+2Wn(x, t)

dt ≤ X

2i+j≤r+2 i,j≥0

X

k=1

ni|k−nx|j |Qi,j,r+2(x)|

{x(1 +x)}r+2

×pn,k(x) Z

0

bn,k(t)dt+ dr+2

dxr+2[(1 +x)−n].

Therefore by the Cauchy-Schwarz inequality and Lemma2.1, we obtain

(3.3)

Bn(r)(f −g,•)

C[a0,b0]≤M11n

f(r)−g(r) C[a0,b0],

where the constantM11is independent off andg.Next by Taylor’s expansion, we have

g(t) =

r+1

X

i=0

g(i)(x)

i! (t−x)i+ g(r+2)(ξ)

(r+ 2)! (t−x)r+2,

where ξ lies between t and x. Using the above expansion and the fact that R

0

m

∂xmWn(x, t)(t−x)idt = 0form > i,we get (3.4)

Bn(r+2)(g,•) C[a0,b0]

≤M12

g(r+2)

C[a0,b0]·

Z

0

r+2

∂xr+2Wn(x, t)(t−x)r+2dt C[a0,b0]

.

(21)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of33

Also by Lemma2.4and the Cauchy-Schwarz inequality, we have E ≡

Z

0

r+2

∂xr+2Wn(x, t)

(t−x)r+2dt

≤ X

2i+j≤r+2 i,j≥0

X

k=1

nipn,k(x)|k−nx|j |Qi,j,r+2(x)|

{x(1 +x)}r+2 Z

0

bn,k(t)(t−x)r+2dt

+ dr+2

dxr+2[(−x)r+2(1 +x)−n]

≤ X

2i+j≤r+2 i,j≥0

|Qi,j,r+2(x)|

{x(1 +x)}r+2

X

k=1

pn,k(x)(k−nx)2j

!12

×

X

k=1

pn,k(x) Z

0

bn,k(t)(t−x)2r+4dt

!12 Z

0

bn,k(t)dt 12

+ dr+2

dxr+2[(−x)r+2(1 +x)−n]

= X

2i+j≤r+2 i,j≥0

ni |Qi,j,r+2(x)|

{x(1 +x)}r+2O(nj/2)O

n(1+r2) .

Hence

(3.5) ||Bn(r+2)(g,•)||C[a0,b0] ≤M13||g(r+2)||C[a0,b0].

Combining the estimates of (3.2)-(3.5), we get (3.1). The other consequence follows form [1]. This completes the proof of the lemma.

(22)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of33

Theorem 3.4. Let f ∈ Cγ[0,∞) and suppose 0 < a < a1 < b1 < b < ∞.

Then for allnsufficiently large, we have Bn(r)(f,•)−f(r)

C[a

1,b1]≤max

M14ω2

f(r), n12, a, b

+M15n−1kfkγ , whereM14=M14(r), M15 =M15(r, f).

Proof. For sufficiently small δ >0, we define a functionf2,δ(t)corresponding tof ∈Cγ[0,∞)by

f2,δ(t) = δ−2 Z δ2

δ

2

Z 2δ

δ

2

f(t)−∆2ηf(t) dt1dt2,

where η = t1+t2 2, t ∈ [a, b]and ∆2ηf(t)is the second forward difference of f with step lengthη. Following [4] it is easily checked that:

(i) f2,δ has continuous derivatives up to order2kon[a, b], (ii) kf2,δ(r)kC[a1,b1]≤Mc1δ−rω2(f, δ, a, b),

(iii) kf−f2,δkC[a1,b1]≤Mc2ω2(f, δ, a, b), (iv) kf2,δkC[a1,b1]≤Mc3kfkγ,

whereMci, i= 1,2,3are certain constants that depend on[a, b]but are inde- pendent off andn[4].

(23)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of33

We can write Bn(r)(f,•)−f(r)

C[a1,b1]

Bn(r)(f −f2,δ,•)

C[a1,b1]+

Bn(r)(f2,δ,•)−f2,δ(r) C[a1,b1]

+

f(r)−f2,δ(r) C[a1,b1]

=:H1 +H2+H3. Sincef2,δ(r) = f(r)

2,δ(t), by property (iii) of the functionf2,δ,we get H3 ≤Mc4ω2(f(r), δ, a, b).

Next on an application of Theorem3.2, it follows that

H2 ≤Mc5n−1

r+2

X

j=r

f2,δ(j)

C[a,b]

.

Using the interpolation property due to Goldberg and Meir [4], for each j = r, r+ 1, r+ 2, it follows that

f2,δ(j)

C[a1,b1]

≤Mc6

||f2,δ||C[a,b]+ f2,δ(r+2)

C[a,b]

.

Therefore by applying properties (iii) and (iv) of the of the function f2,δ, we obtain

H2 ≤Mc74·n−1

||f||γ−2ω2(f(r), δ) .

(24)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of33

Finally we shall estimateH1, choosinga, b satisfying the conditions0< a <

a < a1 < b1 < b < b < ∞. Supposeψ(t)denotes the characteristic function of the interval[a, b], then

H1

Bn(r)(ψ(t)(f(t)−f2,δ(t)),•) C[a1,b1]

+

Bn(r)((1−ψ(t))(f(t)−f2,δ(t)),•) C[a1,b1]

=:H4+H5. Using Lemma2.6, it is clear that

Bn(r) ψ(t)(f(t)−f2,δ(t)), x

= (n+r−1)!(n−r)!

n!(n−1)!

X

k=0

pn+r,k(x) Z

0

bn−r,k+r(t)ψ(t)(f(r)(t)−f2,δ(r)(t))dt.

Hence

Bn(r)(ψ(t)(f(t)−f2,δ(t)),•)

C[a1,b1]≤Mc8

f(r)−f2,δ(r)

C[a,b]. Next for x ∈ [a1, b1]and t ∈ [0,∞)\[a, b], we choose a δ1 > 0 satisfying

|t−x| ≥δ1.

Therefore by Lemma2.4and the Cauchy-Schwarz inequality, we have I ≡Bn(r)((1−ψ(t))(f(t)−f2,δ(t), x)

(25)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of33

and

|I| ≤ X

2i+j≤r i,j≥0

ni |Qi,j,r(x)|

{x(1 +x)}r

X

k=1

pn,k(x)|k−nx|j

× Z

0

bn,k(t)(1−ψ(t))|f(t)−f2,δ(t)|dt +(n+r−1)!

(n−1)! (1 +x)−n−r(1−ψ(0))|f(0)−f2,δ(0)|.

For sufficiently largen, the second term tends to zero. Thus

|I| ≤Mc9||f||γ X

2i+j≤r i,j≥0

ni

X

k=1

pn,k(x)|k−nx|j Z

|t−x|≥δ1

bn,k(t)dt

≤Mc9||f||γδ1−2m X

2i+j≤r i,j≥0

ni

X

k=1

pn,k(x)|k−nx|j Z

0

bn,k(t)dt 12

× Z

0

bn,k(t)(t−x)4mdt 12

≤Mc9||f||γδ1−2m X

2i+j≤r i,j≥0

ni (

X

k=1

pn,k(x)(k−nx)2j )12

× (

X

k=1

pn,k(x) Z

0

bn,k(t)(t−x)4mdt )12

.

(26)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of33

Hence by using Lemma2.1and Lemma2.2, we have I ≤Mc10||f||γδ1−2mO

n(i+j2−m)

≤Mc11n−q||f||γ,

where q = m − r2. Now choosing m > 0 satisfying q ≥ 1, we obtain I ≤ Mc11n−1kfkγ.Therefore by property (iii) of the functionf2,δ(t),we get

H1 ≤Mc8

f(r)−f2,δ(r)

C[a,b]+Mc11n−1||f||γ

≤Mc12ω2(f(r), δ, a, b) +Mc11n−1||f|kγ. Choosingδ=n12, the theorem follows.

(27)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page27of33

4. Inverse Theorem

This section is devoted to the following inverse theorem in simultaneous ap- proximation:

Theorem 4.1. Let 0 < α < 2,0 < a1 < a2 < b2 < b1 < ∞ and suppose f ∈Cγ[0,∞).Then in the following statements(i)⇒(ii)

(i) ||Bn(r)(f,•)||C[a1,b1] =O(n−α/2), (ii) f(r) ∈Lip(α, a2, b2),

whereLip(α, a2, b2)denotes the Zygmund class satisfyingω2(f, δ, a2, b2)≤ M δα.

Proof. Let us choosea0, a00, b0, b00in such a way thata1 < a0 < a00 < a2 < b2 <

b00 < b0 < b1.Also supposeg ∈C0withsuppg ∈[a00, b00]andg(x) = 1on the interval[a2, b2].Forx∈[a0, b0]withD≡ dxd,we have

Bn(r)(f g, x)−(f g)(r)(x)

=Dr(Bn((f g)(t)−(f g)(x)), x)

=Dr(Bn(f(t)(g(t)−g(x)), x)) +Dr(Bn(g(x)(f(t)−f(x)), x))

=:J1+J2.

Using the Leibniz formula, we have J1 = ∂r

∂xr Z

0

Wn(x, t)f(t)[g(t)−g(x)]dt

(28)

On Simultaneous Approximation For Certain Baskakov Durrmeyer Type

Operators

Vijay Gupta, Muhammad Aslam Noor,

Man Singh Beniwal and M. K. Gupta

Title Page Contents

JJ II

J I

Go Back Close

Quit Page28of33

=

r

X

i=0

r i

Z

0

Wn(i)(x, t) ∂r−i

∂xr−i[f(t)(g(t)−g(x))]dt

=−

r−1

X

i=0

r i

g(r−i)(x)Bn(i)(f, x) + Z

0

Wn(r)(x, t)f(t)(g(t)−g(x))dt

=:J3+J4.

Applying Theorem3.4, we have

J3 =−

r−1

X

i=0

r i

g(r−i)(x)f(i)(x) +O nα2 ,

uniformly in x∈ [a0, b0].Applying Theorem3.2, the Cauchy-Schwarz inequal- ity, Taylor’s expansions off andgand Lemma2.2, we are led to

J4 =

r

X

i=0

g(i)(x)f(r−i)(x)

i!(r−i)! r! +o n12

=

r

X

i=0

r i

g(i)(x)f(r−i)(x) +o nα2 , uniformly inx∈[a0, b0].Again using the Leibniz formula, we have

J2 =

r

X

i=0

r i

Z

0

Wn(i)(x, t) ∂r−i

∂xr−i[g(t)(f(t)−f(x))]dt

=

r

X

i=0

r i

g(r−i)(x)Bn(i)(f, x)−(f g)(r)(x)

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Szász-Mirakyan operator, Polynomial weight space, Order of approximation, Voronovskaya type theorem.. Abstract: We introduce the modified Szász-Mirakyan operators S

Key words: Orthogonal polynomial expansion, Rate of pointwise and uniform convergence, Modulus of variation, Generalized variation.. Abstract: In this paper we estimate the rate

Key words: Linear positive operators, Summation-integral type operators, Rate of convergence, Asymptotic formula, Error estimate, Local direct results, K-functional, Modulus

Key words and phrases: Linear positive operators, Summation-integral type operators, Rate of convergence, Asymptotic for- mula, Error estimate, Local direct results,

Key words: Linear positive operators, Bernstein bivariate polynomials, GBS opera- tors, B-differentiable functions, approximation of B-differentiable func- tions by GBS operators,

Key words and phrases: Linear positive operators, Bernstein bivariate polynomials, GBS operators, B -differentiable func- tions, approximation of B-differentiable functions by

We study the simultaneous approximation properties of the Bézier variant of the well known Phillips operators and estimate the rate of convergence of the Phillips-Bézier operators

Key words: Multiplicative integral inequalities, Weights, Carlson’s inequality.. The research of the second named author was partially supported by a grant of Uni- versity of