• Nem Talált Eredményt

THESES, RECOMMENDATIONS FOR FUTURE WORKS

The  most  important  findings  of  the  research will follow in this section. In addition to achievements with significance to progress in science of biodiesel processing some technical and technological conclusions will also be presented in the form of recommendations to practice.

Feedstocks of biodiesel processing can be as different as many production variables can pertain. Based on the findings that the most valuable asset of any FAME production consists in the feedstock special attention must be paid to selection of the kind of the seed and to strictly adhering to recommended technology conditions. Production of biodiesel at small and medium scale units are at best incorporated into an (agro)-industrial ecological system.

Algae feedstocks do not seem to be explored in the near future, mainly because of cost and properties. The most beneficial feature of algae oil can be explored in the field of healthy food, because of high content in polyunsaturated fatty acids and phosphorous.

THESES:

1. BY THE USE OF SUITABLE APOLAR SOLVENT PHASE TRANSFER RESISTANCE AGAINST TRANS-ESTERIFICATION CAN BE AVOIDED

I have demonstrated through liquid-liquid equilibrium tests that there is a beneficial range of addition of apolar solvent to form a single liquid phase by reaction partners. By such removal of the interfacial resistance the rate of trans-esterification reaction could have been significantly improved. The outcome of avoiding phase transfer resistance complete conversion was achieved in 5 minutes, in comparison to 30-60 minutes times on stream for reaching the equilibrium conversion if the solvent was not present.

2. BY THE USE OF SUITABLE APOLAR SOLVENT PHASE TRANSFER RESISTANCE AGAINST METHANOLYSIS CAN BE INSTITUTED. BLOCKING THE CURSE OF REVERSIBLE REACTION THE FORWARD TRANS-ESTERIFICATION CAN BE SHIFTED TOWARD A COMPLETE CONVERSION:

I have found, that the byproduct can be instantaneously rejected from the reaction mixture to shift the conversion toward completion in a single contact event without including an intermittent operation for separation of the byproduct (and another if the solvent is polar). The proposed techniques were demonstrated both in batch and continuous counter current setups.

The mechanism is based on the engineered condition by the addition of the selected apolar solvent to reinstall an interfacial barrier against the return of the byproduct into the reaction phase. The reinstalled interfacial resistance efficiently bars the reverse glycerolysis reaction of FAME.

3. I IMPROVED THE RATE AND SELECTIVITY OF SEPARATION OF MAIN AND BYPRODUCTS BY THE USE OF A SUITABLE APOLAR SOLVENT:

It was pointed out in my work that if the suitable apolar solvent was added at proper rate the rejection of the glycerol has been almost instantaneous and complete. This finding made possible to execute the reaction contact and the phase separation in a single contact device.

This contact device is preferably a counter current reactor-extractor. For existing systems modification of reactors to a loop reactor configuration can be a practice for performing the same operations.

In addition to faster splitting of the fuel and glycerol phases the selectivity of this operation can be significantly increased to reduce the loss of product into the polar byproduct. The amount main product in the G phase could have been reduced to 0.5-1%.

4. I DEMONSTRATED THAT ESTERIFICATION AND TRANS-ESTERIFICATION PROVIDES IMPETUS TO SOLVENT REFINING OF THE PRODUCTS

I demonstrated by addition of glycerol that it forms a polar extractant to selectively extract gum and phosphorous components into the polar phase. Because of kinetic characteristics this can be accomplished in counter current mode of operation too. I have also demonstrated that these improvements in selectivity and kinetics of separation are controlled by colloid chemical characteristics of the system.

Because of the selective refining action of the newly formed polar phase pre-treatment of the feedstock must not be as strict as the requirement for first generation biodiesel plants to remove gum components.

5. I DISCOVERED THAT STERIFICATION OF FREE FATTY ACID FOLLOWS AN INTERFACIAL REACTION PATTERN

The mechanism of esterification must be of mixed type: partly in homogeneous phase and partly at the interface, I would call this course of reaction interfacial type. The kinetic rate measurements indicate this intermediary position, faster than in conventional systems, but much slower than in homogeneous systems. The rate limiting is being dependent on interface renewal. By the use of ion exchange resin the reaction is interfacial similar to heterogeneous catalytic chemistry.

6. I FOUND OUT THAT THE G-PHASE IS A DISPERSION OF THE TYPE OF MULTIPLE,

SOLID PARTICLES STABILIZED EMULSION OF PICKERING TYPE

I demonstrated that the more complex the colloid structure of the feedstock was the more difficult and more severe treatment conditions had to be employed. For refining the byproduct G-phase a model has been proposed that the G-phase is a multiple, solid particles stabilized emulsion structure (so called Pickering type emulsion) that encapsulates solid and oil components.

DEVELOPMENTS WITH RELEVANCE TO INDUSTRIAL REALIZATIONS: BY THE USE OF APOLAR SOLVENT

THE OVERALL SPECIFIC ENERGY DEMAND CAN BE REDUCED,

PROCESSING FOOTPRINT OF A UNIT CAN BE REDUCED,

OBSOLETE PLANTS CAN BE MODERNIZED

I have been looking for a technique to reduce the overall specific energy demand of biodiesel processing. The most important contribution to reduction of specific energy demand is associated with less energy consumed for intensive mixing. It has been proved that the specific energy demand of maintaining the disperse state for the promotion of contact of reaction mixture components surpasses the energy needed for pumping. I calculated that the additional amount of energy needed for solvent and reagent recycle is significantly lower (by 20-40%) than the specific energy consumption in cases of reference.

TECHNOLOGY DEVELOPED

These findings made possible to develop two variants of the apolar solvent assisted biodiesel processing.

A truly continuous operation realized with counter current reaction extraction and distillation columns as the main contact devices. The truly continuous operation makes possible to profit of heat exchangers for rational energy management. Footprint of the operational units and amount of inventory under operational conditions can be reduced accordingly. These features make the system more environmentally respectful, more safe than those mixer-settler based technologies in which the time on stream to product is more than 3 times longer than in the proposed system.

I have recommended a system for retrofit of conventional unites to more efficient, more ecological systems. This can be done switching from mixer-settler operation to loop reactor system by the use of suitable apolar solvent.

Future works are planned in the pilot plant of the truly continuous biodiesel processing and in industrial scale demonstration of retrofitting.

Future works are ongoing to explore other type of feedstocks that are high in essential fatty acids, such as algae and fish oil.

PAPERS RELATED TO THE SUBJECT OF THE THESIS IN JOURNALS:

INTERNATIONAL PEER REVIEWED JOURNALS, CONTRIBUTIONS DIRECTLY RELATED TO THE SUBJECT

1. KOVÁCS  A.:   The   potential   to   boost   capacity   and   efficiency   in   small   to   medium   sized   biodiesel   production  systems,  Journal  of  Industrial  Ecology,  Volume  16,  Issue  1,  pages  153–162,  February  2012   (IF:  2.446)  

2. KOVÁCS  A.:  Aspects  of  refining  biodiesel  byproduct  glycerin,  Petroleum  &  Coal  53  (1)  91-­‐97,   2011,  (IF:  0.5),  

3. KOVÁCS  A.,  Czinkota  I, Tóth J.:  Improving  Acid  Number  Testing  of  Biodiesel  Feedstock  and   Product,  Journal  of  the  American  Oil  Chemists'  Society,  2012,  Volume  89,  Number  3,  Pages  409-­‐417    (IF:  

1.587,  részesedés:  75%),  

4. KOVÁCS  A.,  Ball  C.:  Use  of  colloid  chemistry  to  improve  to  improve  biodiesel  production,   Periodica  Polytechnica,  Chemical  Engineering,  56/1,  37-­‐48,  2012  (IF:  0.2),    

INTERNATIONAL PEER REVIEWED JOURNALS, CONTRIBUTIONS PARTIALLY RELATED TO THE SUBKECT

5. Szele E.,  Gombos  K., KOVÁCS  A.,  Ember I.:  Feeding  Purified  Glycerol  from  Biodiesel  to  CBA/CA   Mice:  Effects  on  Gadd45a  and  Nfkb1  Expressions.  In  Vivo  2010,  24  (3):  303-­‐308  (IF:  1.143  részesedés:  

25%)  

6. Szele  E., Gombos K., KOVÁCS  A.,  Ember I:  Effects  of  Purified  Glycerol  from  Biodiesel  on  Cyp1a1   and  Cyp2e1  Expressions  in  CBA/CA  Mice.  In  Vivo  2011,  25  (2):  237-­‐240  (IF:  1.143  részesedés:  25%)   7. Szendi K.,  Gerencsér G.,  KOVÁCS  A., Varga Cs.:  Biodízel  előállításakor  képződött  glicerin  fázis   melléktermék  vizsgálata  in  vivo  genotoxikológiai  tesztekben.  Magyar  Epidemiológia  2011;  8(1):21-­‐26.  

8. Kovács P., Zsédey  E., KOVÁCS  A.,  Virág,  Gy.,Schmidt J.:  Apparent  digestible  and  metabolizable   energy  content  of  glycerol  in  feed  of  growing  pigs,  Livestock  Science,  Volume  142,  Issue  1  ,  Pages  229-­‐

234,  December  2011  (impact  factor:1.295  részesedés:  20%)

PRESENTATIONS IN INTERNATIONAL CONFERENCES:

9. KOVÁCS  A.,  Haas,  L,  Majoros,  I:  Research  and  application  examples  for  clean  technologies,  Intl.  

Conf.  on  21ST  Century  Environmental  Technologies,  June  13  and  14,    Budapest, 2002

10. KOVÁCS   A.,   Haas:   Biodiesel   technology,   a   step   closer   to   hydrocarbon   processing   practice,   Interfaces02,  Budapest,  Szept.  19-­‐20,  2002  

11. KOVÁCS   A.,   Haas:   Affordable   biodiesel   technology,   Bioenergy,   Proc.   P.   172,   2002,   Sept.   22-­‐26,   2002,  Boise,  Idaho

12. KOVÁCS  A.:Efficient  and  affordable  biodiesel  technology  with  reserves  to  improve  operational   technologies,  4th  European  Motor  BioFuels  Forum,  24  -­‐  26  Nov.,  2003  Berlin

13. KOVÁCS  A.:  Industrial  ecology  in  environmnetal  project  conception  building  and   implementation,  Industrial  Ecology  Conference  of  Visegrád  Countries,  June  2004,  Budapest  

14. KOVÁCS  A.: Biodiesel  perspectives  in  production  and  use,  Interfaces’05,  Sopron,  Sept  15-­‐17, 2005

15. KOVÁCS  A.:  Industrial  Ecology  Interfaces’05,  Sopron,  Sept  15-­‐17  

16. KOVÁCS  A.,  Haas L.:  Chemical  Engineering  Means  of  Improving  Efficiency  in  Biodiesel  KOVÁCS   A.,  Czinkota:  An  essay  on  environmental  and  rural  development  in  production  and  use  of  alternative   fuels  from  the  viewpoint  of  a  chemical  engineer,  Celje,  Slovenia,  invited  lecture, 2007

17. KOVÁCS  A.:  Feedstock  and  operational  aspects  of  ecologically  engineered  biodiesel  technologies,   WIREC2008,  Washington, 2007

18. KOVÁCS A., Haas L: Chemical Engineering Means of Improving Efficiency in Biodiesel Production Technologies, Eastern Biofuels Conference and Expo, II, Budapest, 2006, May-June

19. KOVÁCS  A.:  Are  renewable  energy  based  fuel  also  sustainable?  Interfaces08,  Sopron, 2008   20. KOVÁCS   A.,   Czinkota I,   Nagy L,   Issa   I,   Tolner L:   Use   of   biodiesel   byproduct   in   agriculture.  6th   ISMOM,   International   Symposium   of   Interactions   of   Soil   Minerals   with   Organic   Components   and   Microorganisms  ,  26th  June-­‐1st  July  2011,  Montpellier,  France          

21. KOVÁCS  A.:  Manipulation  of  colloid  chemistry  improves  the  efficiency  and  profitability  of   biodiesel  production,  poster  presentation,  International  Biomass  conference  and  expo,  ,  16-­‐20,  April   2012,  Denver,  Co.,  USA  

22. KOVÁCS  A.,    Ball,  C.:  Modification  of  colloid  chemistry  to  improve  biodiesel  production,   European  Biodiesel  2012,  13-­‐14  June  in  Krakow,  Poland  

23. KOVÁCS  A.,    Ball,  C.:  Exploring  the  Science  of  Colloid  Chemistry  to  Improve  Profitability  of   Biodiesel  Processing  Operations, BIT’s 2nd Low Carbon Earth summit, NEF-2012, Guangzhou, Oct. 17-21, 2012  

ARTICLES IN DOMESTIC PERIODICALS

24. KOVÁCS   A.:   Alternatív   üzemanyagok,   Hatékony   Energia,   4.   2-­‐3,   27-­‐28,   1999KOVÁCS   A.:  

Megújuló  alternatív  üzemanyagok,  Energia  Központ,  Phare,  EU  FP5  kiadvány  

25. KOVÁCS   A.,   Haas,   L:   Jobbított   biodízelel   technológia   kőolajipari   tudományos   alapokon   Magyar   Kémikusok  Lapja,  59.6-­‐7,  220-­‐225,  2004  

26. KOVÁCS  A.            Industrial  Ecology,  how  do  I  approach  on  the  basis  of  energy  related  disciplines,   Industrial  Ecology  in  favor  of  business  and  environment,  2.  Dec.,  2003,  Budapest  

27. KOVÁCS  A.,  Haas,  L:  Jobbított  biodízel  technológia  kőolajipari  tapasztaatok  alapján,  Olaj   Szappan,  Kozmetika,  vol  54.,  No,  1, 2005

28. KOVÁCS  A.,  Haas,  L:  Biodízel  gyártásának,  felhasználásának  műszaki,  gazdaságossági  kérdései,   Olaj  Szappan,  Kozmetika,  vol  54.,  No,  2, 2005

29. KOVÁCS   A.:   Agro-­‐industrial-­‐ecology   approach   to   renewable   energy   resources,   BioEnergia,   vol2.No.5,7-­‐10,  2007    

30. Szele  E., Gombos K, Juhász K, Wohler V, KOVÁCS   A,   Ember I: Biodízel előállításra felhasznált kukoricaolaj és sárgazsír karcinogenézisben betültött szerepének állatkísérletes vizsgálata különböző mRNS-ek és miRNS-ek kifejeződésének mérésével (Effect of corn oil and yellow grease on mRNAs and miRNAs which play central role in carcinogenesis in animal research, Magyar Epidemiológia, IX. 3., 173-182, 2012  

31. Szele  E, Gombos K, Juhász K, KOVÁCS  A,  Ember I: Biodízel gyártás során visszamaradt szappanos vízzel kezelt talajon termesztett búza metabolizmusra és karcinogenézisre gyakorolt hatásának vizsgálata állatkísérletes modellben (Effect of wheat raised on soil fertilized with soap water, the by-product of biodiesel, on carcinogenesis and metabolism in animal research), Magyar Epidemiológia, IX. 3., 183-192, 2012  

32. Gerencsér G, Szendi K, KOVÁCS   A,   Ember I: Biodízel gyártása során keletkező melléktermékkel kezelt talajok ökotoxikológiai vizsgálata (Ecotoxicity testing of soil treated with byproducts of biodiesel processing), Magyar Epidemiológia, IX. 3., 209-214, 2012  

33. Szendi K, Gerencsér G, KOVÁCS  A,  Ember I: Talajjavító és szelektív növényvédszer komponensek genotoxikológiai és ökotoxikológiai vizsgálata (Genotoxocity and ecotoxicity studies on soils treated with structural and selective pesticide components), Magyar Epidemiológia, IX. 3., 215-224, 2012  

PRESENTATIONS IN DOMESTIC CONFERENCES

34. KOVÁCS  A.,  Haas  L:  Új  Biodízel  technológia,  MKE,  VEN,  Veszprém,  p  352-­‐356, 2002  

35. KOVÁCS  A.,  Haas, L:  Az  energiastratégia  regionális  kérdéseinek  biodízelre  vonatkozó   szempontjai,  Energia  Fórum  Debrecen,  2004,  Szept.  17  

36. KOVÁCS   A.:   Megfizethető   és   hatékony   technológia   és   üzemi   körülmények   a   biodízel   gyártásáben,  Debrecen,  Energexpo  and  Conference,  2006

37. Tolner,  L Zőldi M., KOVÁCS  A.,  Kertész:  Biodízelgyártás  melléktermékeként  keletkező  glicerin   hatása  a  talaj  ásványi  nitrogéntartalmára.  Zöldenergia,  földhő  és  napenergia  hasznosítása  a  

hőtermelésben  Konferencia,  Gyöngyös,  2010.05.20.  Konferenciakiadvány  110-­‐114.  ISBN:

978-­‐963-­‐9941-­‐12-­‐0    

38. KOVÁCS  A.,  Czinkota I,  Tolner  L:  Agroökológiai  alapú  megújuló́  energiatermelési  rendszer.  

Zöldenergia,  földhő  és  napenergia  hasznosítása  a  hőtermelésben  Konferencia,  Gyöngyös,  2010.05.20.  

113-­‐114,  ISBN:  978-­‐963-­‐9941-­‐12-­‐0  

39. KOVÁCS   A.,   Tolner L,   Czinkota I, Tóth J:   Biodízel   technológia   hulladék   alapanyagokból.  

Zöldenergia,   földhő   és   napenergia   hasznosítása   a   hőtermelésben   Konferencia,   Gyöngyös,   2010.05.20.  

Konferenciakiadvány  106-­‐112.  ISBN:  978-­‐963-­‐9941-­‐12-­‐0    

40. Tolner L,   KOVÁCS   A.,   Kovács A,   Vágó I,   Czinkota I:   Ellentmondások   a   biodízelgyártás   melléktermék   mezőgazdasági   hasznosíthatóságában.   Zöldenergia,   földhő   és   napenergia   hasznosítása   a   hőtermelésben   Konferencia,   Gyöngyös,   2010.05.20.   Konferenciakiadvány   154-­‐158.   ISBN:  

978-­‐963-­‐9941-­‐12-­‐0  

41. KOVÁCS   A.,   ,   Czinkota I,   Kovács A,   Tolner L:   Biodízel   melléktermék   alkalmazása   a   talajvédelemben.  Erdei  Ferenc  VI.  Tudományos  Konferencia,  2011.  augusztus  25.,  Kecskemét        

PATENTS  

42. KOVÁCS   A. et others:   P014786,   Jobbított   biodízelel   technológia   növényi   olaj   átészterezésével,   2001  

43. KOVÁCS   A. et others.:   PCT/HU02/00114   Improvement   in   or   rellating   to   a   method   for   transesterifying  vegetable  oils,  2002

44. KOVÁCS  A.,  Sinoros  Szabó:  Alternatív  szilárd  tüzelőanyag  (Alternative  solid  fuel),  2009     45. KOVÁCS  A. Transesterification  of  vegetable  oils,  2009  UK  5633001:  PCT/GB2009/000246,   WO/2009/095668    

BOOK

46. KOVÁCS  A:  Biodízel technológia  2003,  KUKK  K+F,    ISBN963  00  9789  3,  Budapest,

                                                                                                               

L

ITERATURE  CITED

[1]       Rao,  K.  V.  C.:  Production  of  hydrocarbons  by  thermolysis  of  vegetable  oils  US  Patent  4102938,   1978

[2]       Wright  et  al:  Oil  &  Soap  1944,  145.,  26.  Freedman  et  al:  J.  Am.  Oil  Chem.  Soc.  1986,  63,  1375.

[3]       Jon   Van   Gerpen:     Biodiesel   processing   and   production,   Fuel   Processing   Technology   86,   1097–  

1107,  2005

[4]   Consortium:  Agroök07  project,  Hungarian  National  Board  for  Technology  under  the  call  of   Jedlik07  scheme,  2010  

[5]       DIRECTIVE  2009/28/EC  OF  THE  EUROPEAN  PARLIAMENT  AND  OF  THE  COUNCIL  of  23  April   2009   on   the   promotion   of   the   use   of   energy   from   renewable   sources   and   amending   and   subsequently  repealing  Directives  2001/77/EC  and  2003/30/EC  

[6]     Vidal,   J:   Sweden   Plans   to   Be   World's   First   Oil-­‐Free   Economy.   15-­‐year   limit   set   for   switch   to   renewable   energy.   Biofuels   favoured   over   further   nuclear   power,   The   Guardian,   02.8,   2006,   Energy  in  Sweden  2010,  ET2010_47w.pdf  (Size:  2.41  MB,  Pages:  144)  

[7]   A  joint  study  by  EUCAR  /  JRC  /  CONCAWE:  Well-­‐to-­‐Wheels  analysis  of  future  automotive  fuels   and  power  trains  in  the  European  context,  2007  

  Armstrong  et  al:  Energy  and  greenhouse  gas  balance  of  biofuels  for  Europe  -­‐  an  update,  report   no  2/02,  2002

[8]   Kovács  A.  -­‐  Czinkota  I.  -­‐  Nagy  A.  -­‐  Issa  I.  -­‐  Tolner  L.  (2011):  Use  of  biodiesel  byproduct  in   agriculture.  6th  ISMOM,  International  Symposium  of  Interactions  of  Soil  Minerals  with  Organic   Components  and  Microorganisms  ,  26th  June-­‐1st  July  2011,  Montpellier,  France        

[9]     Prankl,  Wörgette.:  Influence  of  the  Iodine  Number  of  Biodiesel  to  the  Engine  Performance.  

Proceedings  of  the  'International  Conference  on,  Standardization  and  Analysis  of  Biodiesel',  6-­‐7   Nov  1995,  Vienna.  ISBN  3  9014,  5701  1.

[10]     Mittelbach,  M.  and  Remschmidt,  C.  Biodiesel,  the  Comprehensive  Handbook;  Ed.:  M.Mittelbach,   2006,  Graz.  ISBN:  3-­‐200-­‐00249-­‐2

[11]     Sanford  et  al:  Feedstock  and  Biodiesel  Characteristics  Report,  Renewable  Energy  Group®,  Nov.  

2009

[12]   Razon,  L.F.:  Alternative  crops  for  biodiesel  feedstock,  CAB  Reviews:  Perspectives  in  agriculture,   veterinary  science,  nutrition  and  natural  resources,  vol.  4,  56,  2009  

[13] Körbitz  et  al.  2004:  Best  Case  Studies  on  Biodiesel  Production  Plants  in  Europe,  report  prepared   for  IEA  Bioenergy  Task  39  by  the  Austrian  Biofuel  Institute

[14]   Kocsisova,  Teodora,  Cvengros,  Jan  (2006):  G-­‐phase  from  methy  ester  production  –  splitting  and   refining,    Petroleum  and  Coal  48.  (2)  1-­‐5

[15]   Taylor,  Phil,  2008,    Synthetic  glycerine  is  back,  but  never  really  went  away,    

http://www.inpharmatechnologist.com/  Materials-­‐Formulation/Synthetic-­‐glycerine-­‐is-­‐back-­‐

but-­‐never-­‐really-­‐went-­‐away-­‐!.

[16] Eisentraut,   A.:   Sustainable   Production   of   Second   -­‐Generation   Biofuels.   Potential   and   perspectives   in   major   economies   and   developing   countries,   Information   paper,   International   Energy  Agency,  February,  2010

[17] Frosch,   R.   and   N.   Gallopoulos:   Strategies   for   manufacturing.  Scientific   American   Vol.  261   No.3   144–1521989

[18] COMMISSION  DECISION  of  10  June  2010  on  guidelines  for  the  calculation  of  land  carbon  stocks   for   the   purpose   of   Annex   V   to   Directive   2009/28/EC  (notified   under   document   C(2010)   3751)   (2010/335/EU),  Official  Journal  of  the  European  Union  L  151/19,  17.6.2010

[19] Collier,  P.  and  C.P.  Alles:  Materials  Ecology:  An  Industrial  Perspective,  Science,  Vol.  330  no.  6006   pp.  919-­‐920,  2010

[20] Martin,  M.:    Industrial  Symbiosis  in  Biofuel  Industries:  A  case  for  improved  environmental  and   economical   performance   in  http://www.iei.liu.se/envtech/omoss/michael_martin /1.122334/  

Industrial  SymbiosiswithBiofuels.pdf,  2009

[21] Chertow,  M.R.:    “Uncovering”  Industrial  Symbiosis,  Journal  of  Industrial  Ecology,  Vol  11,  No.  1.  11-­

30.,  2007

[22] Radich,   A.   2004:   Biodiesel   Performance,   Costs,   and   Use,   http://www.eia.doe.gov/oiaf/  

analysispaper/biodiesel/,  last  modified  on  Tue  Jun  08  2004

[23] Bacovsky,   D.   et   al.:   Biodiesel   Production:   Technologies   and   European   Providers.   IEA   Task   39   Report  T39-­‐B6,  104  pp.  2007

                                                                                                               

[24] Freedman,  Pryde,  Mounts:  Variables  affecting  the  yields  of  fatty  esters  from  transesterified   vegetable  oils,  JAOCS  61.    1638–  1643.  1984

[25] Noureddini,  H.  and  D.  Zhu.:  Kinetics  of  transesterification  of  soybean  oil,  Journal  of  the  American   Oil  Chemists  Society,  74,  11,  1457-­‐1463. 1997

[26]   Körbitz,  W:  Multi-­‐feedstock-­‐biodiesel:  The  modern  and  profitable  FAME  production  plant,  Int.  

Liquid  Biofuels  Congress,  Brasil,  1998  

[27]   Multi-­‐Client  Study:  Biodiesel  2020:  A  Global  Market  Survey,  2nd  Edition,  http://www.emerging-­‐

markets.com/PDF/Biodiesel2020Study.pdf,  2008  

[28]     Garti  at  al:  Polyglycerol  esters:  optimization  and  techno-­‐economic  evaluation,  JAOCS,  58,  9,  878-­‐

883,  1981

[29]       Stein,   Glaser:   Continuous   solvent   extraction   of   sunflower,   seed,   groundnuts,   palm   kernels,   rapeseed,  and  copra,  JAOCS,  53.,  6.  283-­‐285,  1976  

[30]       Pathak,  et  al:    Performance  of  oil  milling  technologies  in  India.  Agricultural  Mechanism  in  Asia,   Africa  and  Latin  America,  19.  4,  68-­‐72.  1988.  

[31]       Kovács  A.:  Biodízel  technológia,  KUKK  K+F  Kft,  Budapest,  ISBN:  9630097893,  2003  

[32]       Dufaure   et.   al:   A   twin-­‐screw   extruder   for   oil   extraction,   direct   expression   of   oleic   sunflower   seeds,  JAOCS,  76,  1073-­‐1077,  1999  

[33]       Johnson,  Lusas:  Comparison  of  alternative  solvents  for  oil  extraction,  JAOCS  60.  2  181-194,    1983 [34]       Gardarelli,  Grapiste:  Hexane  sorption  in  oil  seed  meals,  JAOCS  73.  12  1657-­‐1661,  1996  

[35]   Penninger  et  al.  (ed.):  Supecritical  fluid  technology,  Process  Technology  Proceedings,  Vol.  3.  

Elsevier,  1985  

[36]     Stahl  et  al:  Extraction  of  seed  oils  with  liquid  and  supercritical  carbon  dioxide,  J.  Agric.  Food   Chem.,    Vol.  28  (6),  1153–1157,  1980  

[37]     Simándi  et  al:  Szuperkritikus  oldószerek  alkalmazása  a  lignocellulózok  hasznosításában,  Olaj,   Szappan,  Kozmetika,  Vol.  50,  115-­‐118,  2001

[38]     Speight,  J,  G:  The  chemistry  and  technology  of  petroleum,  4th  ed.,  CRC  Press,  2007     [39]     Brunner,  G.:  Mass  transfer  in  gas  extraction,  in  Penninger  et  al.  (ed.):  Supecritical  fluid  

technology,  Process  Technology  Proceedings,  Vol.  3.  P.  245-­‐261,  Elsevier,  1985  

[40]     Reverchon,  E.:  Supercritical  fluid  extraction  and  fractionation  of  essential  oils  and  related   products.  The  Journal  of  Supercritical  Fluids,  Vol.10,  1,  1-­‐37.  1997.  

[41]     Gillis,  Van  Tine:  What’s  new  in  solvent  deasphalting?  UOP  &  FOSTER  WHEELER  team  up  in   solvent  deasphalting,  http://www.fwc.com/publications/tech_papers/oil_gas/Uop_fw~2.pdf   [42]     Le  Page  et  al:  Resid  and  heavy  oil  processing,  Editions  Technip,  1992  

[43]   Wenclawiak,  B  (Ed):    Analysis  with  suoercritical  fluids:  extraction  and  chromatography,   Apringer  Verlag,  1992

[44]       Riera  et  al:  Mass  transfer  enhancement  in  supercritical  fluids  extraction  by  means  of  power   ultrasound,  Ultrasonics  Sonochemistry  Vol.  11  p.  241–244,  2004  

[45]     Haas,  M:  Production  of  value  added  lipids,  biofuels,  and  biobased  products  from  fats  and  oils,   Project  No.:  1935-­‐41000-­‐066-­‐00,  2004-­‐2009  

[46]     Haas  et  al:  Production  of  fatty  acid  alkyl  esters,  US  Patent  7,612,221,  2009  

[47]     Kovács,   A:   Alternatív   üzemanyag   gyártástechnológiai   jobbítása,   új   alkalmazási   lehetőségek   vizsgálata,  GVOP  3.1.1-­‐2004-­‐04-­‐0004/3.0,  2004-­‐2005  

[48]   Zeng  et  al:  Rapid  in  situ  transesterification  of  sunflower  oil,  Industrial  and  Engineering     Chemistry  research,  Vol.48.,2,  850-­‐856,  2009

[49]     Petty,  H.  R.  Molecular  Biology  of  Membranes:  Structure  and  Function;  Plenum:  New  York,  1993   [50]     Yawata  ,Y  (ed.):  Cell  Membrane,  Wiley-­‐VCH  Verlag  GmbH  &  Co.  KGaA,  2003  (on/line:  2004)   [51]     Hübschner  et  al:  The  analysis  of  tissue  phospholipids,  procedure  and  results  :  hydrolysis  with  

pig  liver,  Vol1.,  No.5,  433-­‐438,  1960  

[52]       Zufarov  et  al:  Degumming  of  rapeseed  and  sunflower  oils,  Acta  Chimica  Slovaca,  vol.1  No.1  321-­‐

328,  2008  

[53]       Said  et  al:  Process  for  degumming  a  fatty  substance  and  fatty  substance  thus  obtained,  US  Patent   6015915,  2000

[54]         Bohsle,  Subramanian:  New  approaches  in  deacidification  of  edible  oils,  J.  Food.  Eng,  vol.  69,  481-­‐

494,  2005  

[55]     Coutinho  et  al:  State  of  art  of  the  application  of  membrane  technology  to  vegetable  oils:  A   review,  Food  Research  International  42    536–550,  2009  

[56]     Ochoa,  et  al:  Ultrafiltration  of  vegetable  oils.  Degumming  by  polymeric  membranes.  Separation   and  Purification  Technology,  417–422,  2001

                                                                                                               

[57]     Chow  and  Ho:  Surface  active  properties  of  palm  oil  with  respect  to  the  processing  of  palm  oil,   Journal  of  Oil  Palm  Research  Vol.  12  No.  1,  June  2000,  p.  107.116  

[58]     Xianglong  Yuan:  Evaluation  on  antioxidant  activities  of  soybean  oils  and  gums,  M.S.  Thesis,  M.S.,   Louisiana  State  University,  2006

[59]     Frega  et  al:  Effects  of  free  fatty  acids  on  oxidative  stability  of  vegetable  oil,  Journal  of  the   American  Oil  Chemists'  Society,  vol  76,  No  3,  325-­‐329,  1999  

[60]   Romanić  et  al:  Oxidative  stability  and  tocopherol  content  of  refined  sunflower  oil  during  long-­‐

term  storage  in  different  commercial  packagings,  Acta  Alimentaria,  vol.  38,  No.  3,  319-­‐327,  2009   [61]       Eychenne   and  Moulounguv:  Deacidification   of   a   synthetic   oil   with   an   anion   exchange   resin,  

JAOCS,  75,  10,  1437-­‐1440,  1998  

[62]         Kovács  et  al:  Polyol  ester  oils  for  industrial  purposes,  6-­‐th  Intl.  Coll,  Esslingen,  Germany  1988   [63] Soest  et  al:  Polyol  refining,  Patent  application  number:  20090030243,  2009

[64] Kalichevsky,  Kobe:  Petroleum  refining  with  chemicals,  Elsevier  Pub.  Co.,  1956

[65]         List  et  al:  Supercritical  CO2  degumming  and  physical  refining  of  soybean  oil,  JAOCS,  70,  5,  473-­‐

467,  1993  

[66]         Bohsle,  Subramanian:  New  approaches  in  deacidification  of  edible  oils,  J.  Food.  Eng,  vol.  69,  481-­‐

494,  2005  

[67]   Waintraub  et  al:  Conversion  of  a  deasphalting  unit  for  use  in  the  process  of  supercritical  solvent   recovery,  Braz.  J.  Chem.  Eng.  17,  3,  355-­‐360,  2000  

[68]     Speight,  J.G.:  The  Chemistry  and  Technology  of  Petroleum,  Fourth  Edition  CD  &  W  Inc.,  Laramie,   Wyoming,  USA,    ISBN:      9780849390678  ,  2006

[69]         Rodriges   et   al:   Deacidification   of   vegetable   oils   by   solvent   extraction,   Recent   patents   on     engineering,  1,  95-­‐102,  2007

[70]         Bollmann,  H:  Process  of  producing  an  article  of  food,  US  Patent  No.  1606052,  1926   [71]            van  Dijk:  Process  for  refining  fatty  compounds,  US  Patent  2268786,  1942  

[72]            Bertholet,  R:  Process  for  refining  fatty  substances,  US  Patent  6506916,  2003  

[73]         Turck,  :  R.:  Method  for  producing  fatty  acid  esters  of  monovalent  alkyl  alcohols  and  use  thereof,   US  Patent  6,538,146  

[74]         Kovács,  Haas:  Affordable  biodiesel  technology,  Bioenergy,  Proc.  P.  172,    2002,  Sept.  22-­‐26,  2002,   Boise,  Idaho

[75]       Anderson,   A.:   Refining   of   oils   and   fats   for   edible   purposes,   2.ed.,   92-­‐103,   Pergamon   Press,   London,  1962

[76]     Going,  L.H.:  Interesterification  products  and  processes,  JAOCS,  44,  9  414-­‐422,  1967  

  Cosmacini,  Vertuani:  New  developments  in  the  field  of  sznthetic  lubricants  from  natural  sources,   Journal  of  synthetic  lubrications,  5,1,  1-­‐12,  2006

[77]     Lee  et  al:  reducing  the  crystallization  temperature  of  biodiesel  by  winterizating  methyl  soyate,   JAOCS,  73.5  631-­‐640,  1996  

[78]     Lee  et  al:  Reducing  the  crystallization  temperature  of  biodiesel  by  winteriying  mthyl  soyate,   JAOCS,  vol.73,  5,  631-­‐636,  1996

[79]     De  Greyt  et  al:  Recent  Developments  in  Bleaching,  Deodorisation  and  Physical  Refining  of  Oils   and  Fats,  OFI  Middle  East  2008,  Technical  and  Commercial  Conference  Hilton  Hotel  Abu  Dhabi,   UAE,  April  15-­‐16,2008  

[80]     Munson  et  al:  Biodiesel  purification  by  a  continuous  regenerable  adsorbent  process,  US  Patent   20090199460,  http://www.freepatentsonline.com/y2009/0199460.html  

[81]   Marcetti  et  al:  Heterogeneous  esterification  of  oil  with  high  amount  of  FFA,  Fuels,  86,  906-­‐910.  

2007    

[82]   Goto  et  al:  Kinetics  f  the  transesterification  of  palmitic  acid  with  isobutyl  alcohol,  International   Journal  of  Chemical  Kinetics,  vol.  23,  1,  17-­‐26,  1991  

[83] Santacesaria  et  al:  Kinetics  and  Mass  Transfer  of  Free  Fatty  Acids  Esterification  with  Methanol  in   a  Tubular  Packed  Bed  Reactor:    A  Key  Pretreatment  in  Biodiesel  Production,  Ind.  Eng.  Chem.  Res.,   46  (15),  pp  5113–5121, 2007  

[84]   Chen  et  al:  Computational  studies  of  the  countercurrent  multistage  extraction  coupled   esterification  of  oleic  acid  with  methanol  using  excess  methanol  as  extractant,  Chemical   Engineering  research  and  Design,  vol  82.  5,  599-­‐604,  2004.  

[85]   Pasias  et  al:  Heterogeneously  Catalyzed  Esterification  of  FFAs  in  Vegetable  Oils,  Chemical   Engineering  &  Technology, Vol 29,  11,  1365–1371,  2006

[86]   Berrios  et  al:  Study  of  esterification  and  transesterification  in  biodiesel  production  from  used   frying  oils  in  a  closed  system,  Chemical  Engineering  Journal,  160,  473-­‐479,  2010