• Nem Talált Eredményt

1.6.   STATE  OF  THE  ART  OF  BIODIESEL  PROCESSING

1.6.3.   CATALYSIS  ASPECTS

Removal  of  either  reaction  products  can  be  an  efficient  tool  in  shifting  equilibrium   toward  completion  and  chances  are  given  for  making  it  in  a  single  reaction  contact  step.  

For   such   scope   selectivity   of   the   solvent   must   be   reinstalled.   Barring   the   reverse   reaction   by   removing   one   of   the   products   from   reaction   media   could   only   be   done   within   the   frame   of   economic   operations   by   the   proposed   use   of   apolar   solvent. The   present   work   addresses   colloid   chemical   basis   on   this   basis.   Phase   transfer,   glycerol   rejection  and  trans-­‐esterification  kinetics  experiments  were  carried  out  to  de-scribe  the   phenomena  of  shifting  trans-­‐esterification  toward  completion  in  a  single  phase.

When  revisiting  colloid  chemical  aspects  micro-­‐emulsions  must  also  be  visited  and   considered.   Micro-­‐emulsions   with   short   chain   alcohols   can   yield   clear,   thermodynamically   stable   liquid   fuel   with   viscosities   in   the   range   of   diesel   fuel   specifications  [113].      The  special  benefit  of  water  and  oxygenates  containing  diesel  fuel   consists   in   freezing   NOx   chemistry   by   lowering   the   flame   temperature   and   by   such   reducing  the  emissions  of  this  regulated  compound  [114].  Similar  emissions  reduction   can   be   achieved   with   blending   water   in   fossil   diesel   fuel   too   [115].   Revisiting     this   aspect  can  be  reasoned  on  the  ground  of  ease  in  atomization  of  the  (micro)-­‐emulsified   fuels  similarly  to  biodiesel.  This  effect  compensates  for  the  slightly  lower  heating  value   in  operational  diesel  engines.  

It  is  to  report  that  the  patent  related  to  the  present  thesis  was  submitted  in  2001   and  full  grants  have  been  obtained  since.  This  is  worth  for  another  ethical  comment,   Shi  and  Bao  used  my  technique  (and  my  motives)  of  hexane  dilution  without  referring   to  my  works.  The  authors  have  not  even  observed  a  series  of  advantages  of  using  the   hexane  solvent  and  passed  next  to    finding  facts,  such  as:  a)  necessary  reaction  time  is   less   than   10   min   Shi   and   Bao   used   120   min.,   b)   settling   occurs   instantaneously   and   there   is   no   need   for   settling   over   2   h   of   time,   c)   ignored   the   fact   that   if   the   crude   biodiesel  is  simply  washed  with  distilled  water  emulsion  formation  must  be  present,  d)   there   is   no   need   for   employing   9   times   stochiometry,   even   2   times   stochiometry   is   excessive  under  such  conditions  [116].    

levels   were   only   slightly   higher   than   the   level   commensurable   to   FFA   content.     I   concluded   that   steric   hindrance   of   tri-­‐glycerides   limits   the   contact   of   substrate   and   reagent  on  an  active  site  of  p-­‐toluene-­‐sulphonic  acid  containing  cation-­‐exchange  resins   and   acidic   catalysts   fixed   on   the   surface   of   macroporous   gels.   The   kinetics   of   the   reaction  requires  intimate  contact  of  the  reagent  and  substrate  over  an  active  site  of   the   catalyst.   Protonation   could   not   have   been   performed   at   large   distance   from   the   active  sites.    The  steric  hindrance  is  caused  by  the  existence  of  three  long  and  stretched   hydrocarbon  chains  that  form  barrier  against  the  contact  for  the  ester  link  to  come  in   contact  with  the  active  site  inside  the  pore  of  a  catalyst.  Under  high  temperature,  high   pressure   conditions   the   hydrocarbon   chain   can   be   pressed   into   the   pores   and   the   necessary  contact  can  be  realized.  On  the  other  hand  the  mobile  homogeneous  catalyst   can   easily   diffuse   between   the   arms   of   the   tri-­‐acyl-­‐glyceride   to   come   in   contact   with   carbon  molecule  in  ester  link.  [120]  illustrates  how  the  electrons  distribution    changes   in  alkali  catalyzed  exchange  (hydrolysis)  reaction:

 

 Technologies   that   employ   solid   catalyst   for   trans-­‐esterification   work   under   high   pressure   conditions,   at   which   both   the   reagent   and   the   substrate   are   forced   into   the   macro  pores  where  the  active  sites  of  the  catalyst  have  been  formed.  It  is  to  mention,   that   under   such   conditions   spontaneous,   catalyst   free   trans-­‐esterification   also   takes   place.  Attempts  to  employ  supercritical  methanol  requires  very  severe  conditions,  that   are  not  possible  to  get  scaled  to  industrial  process,  even  with  allowing  FFA  in  the  feed   to  act  right  as  catalyst  (temp>250  °C,  p>20  MPa,  reagent  to  substrate  rate  20-­‐60  times   to  stochiometry),  just  as  in  paraffin  oxidation.  Wang  managed  to  reduce  the  severity  to   15   MPa   reaction   pressure   even   under   such   circumstances   the   yield   of   biodiesel   was   low    (91.4%)  with  reaction  temperature  of  350  °C,  methanol:oil  molar  ratio  40:1  and   acidity   the   soybean   oil   feedstock   15.0   mg   of   KOH/g   [121].   It   was   revealed   by   the   authors  that  the  trans-­‐esterification  reaction  was  controlled  by  reaction  kinetics.

Heterogeneous   catalyst   based   technologies   offer   neat   advantage   of   ease   in   crude   biodiesel   refining   operation   [122].   The   first   heterogeneous   trans-­‐esterification   technology  was  patented  by  IFP  and  brought  into  commercial  scale  by  Axens.    Even  this   technique  operates  in  two  consecutive  trans-­‐esterification  steps.    Equilibrium  controls   the  progress  to  completion  in  individual  reaction  steps.  Hillion  [123]  prepared  a  mixed   spinnel  (Yn+Al)  catalyst  that  operates  at  a  temperature  above  200  °C  and  a  pressure  of   about   10   MPa   [124]   for   the   aforementioned   system.   Severe   operational   conditions   dictate   that   the   scale   to   economy   is   about   150   kt/y   for   heterogeneous   trans-­‐

esterification  plants.  Axens  received  the  Kirk  Patrick  award  for  this  type  of  process  in   2007.  Most  heterogeneous  catalyst  developers  accept  that  reaction  rates  are  still  low   and  two  step  conversion  is  needed.      

Because   of   the   simple   reaction   chemistry   in   biodiesel   synthesis  there   is   a   wide   variety   of   solid   catalysts   that   have   been   reported   to   work   properly.     Compilation   of   Mittelbach   [125]   lists   mainly   simple   carbonates   as   potential   catalysts   for   biodiesel   synthesis.  Most  of  the  heterogeneous  catalyst  development  works  started  to  reproduce  

the   catalytic   activity   of   homogeneous   alkali   (Brönsted)   basic   catalysts   that   is   formed   when  an  alkali  (NaOH,  KOH,  Na2CO3)  and  the  reagent  are  metered  into  the  reactor:

K+OH+CH3OH⎯ methoxy⎯ ⎯ → ← ⎯ hydrolysis⎯ ⎯ ⎯ CH3OK++H2O

  The  alkoxide  group  attacks  the  hydroxyl  link  in  the  tri-­‐acyl-­‐glyceride.  To  avoid   unwanted  effects  of  water  some  technologies  employ  synthesized,  water  free  alkoxide   catalyst,   usually   dissolved   in   the   reagent   methanol.   K   is   the   preferred   alkali   element   with  a  view  to  utilize  the  separated  salt  as  fertilizer.  

 Other  approaches  followed  similar  track  by  choosing  basic  zeoiltes  that  act  right  as   heterogeneous  alkali  catalyst  in  the  form  of  Broensted  basics[126].  Even  in  this  case,   the  formed  catalytic  specie  is    a  homogeneous  alkoxide.  In  the  case  of  heterogeneous   basic   Broensted   catalyst   such   as   resin   with   quaternary   ammonium   functionality   (QN+OH-­‐),   the   positive   counter-ions   (organic   ammonium   groups),   being   bonded   are   only  active  if  the  alkoxide  is  rented  to  the  homogeneous  liquid  phase.

Hydrotreatment   of   tri-­‐glyceride   bearing   stocks   result   in   the   most   advanced   diesel   fuel,   but   because   the   treatment   results   in   full   hydrogenation   to   mixtures   of   n-­‐   and   i-­‐

alkanes  this  approach  falls  beyond  the  scope  of  biodiesel  production.  This  is  a  typical   petroleum  refinery  process  under  similarly  severe  conditions  such  are  present  in  the   Axens   technology.   The   so called   hydrodiesel   is   an   excellent   high   cetane   number   (around   90)   component   to   improve   quality   of   automotive   diesel   fuels.   Without   any   reference   in   technical   literature   plain   hydrodiesel   must   provoke   similar   problems   as   did  the  ultra  low  sulfur  content  variants,  mainly  because  of  lack  of  antiwear  properties.  

The  wear  protecting  feature  of  the  polar  head  in  the  biodiesel  must  be  replenished  by   adding  antiwear  and  extreme  pressure  additives  in  hydrodiesel  fuels.  

The   number   of   publications   on   enzyme   catalyzed   trans-/esterification   has   been   growing   for   the   last   20   years.   This   biochemical   approach   is   beyond   the   scope   of   my   interest   mainly   because   of   the   very   slow   conversion   and   difficulties   in   scaling   to   industrial  technology.    While  alkali  catalysis  is  preferred  in  conventional  technologies   because  the  trans-­‐esterification  reactions  can  be  brought  to  completion  within  an  hour,   for   acid   catalysis   this   time   span   can   be   12   hours   or   more,   for   enzyme   catalysis   to   complete  the  conversion  the  necessary  contact  time  extends  for  more  than  2  days.    

A   new   paradigm   for   biodiesel   production   has   been   proposed   by   Haas   [127].   It   consists  in  direct  incubation  of  the  oil  source  with  the  alcohol  and  alkali  to  produce  and   liberate  fatty  acid  esters  from  the  oilseed.  With  regard  to  this  technique  I  feel  obligate   to  report  that  I  proposed  and  experienced  to  explore  the  same  technique  [128]  without   knowing  about  trials  in  the  US  Agricultural  Research  Center.  I  discontinued  to  follow   this  route  because  of  difficulties  foreseen  for  scaling  up  to  industrial  technology.  The   main   problem   was   associated   to   presence   of   network   solids   (protein   and   fiber)   configured  into  an  encapsulated  disperse  liquid  system.  These  encapsulated  disperse   structures  resulted  in  very  accentuated  loss  in  yield.  In  a  private  discussion  I  learned   that   the   system   of   Haas   consisted   of   a   very   slowly   rotated   (5/min)   V-­‐shape   reactor.  

They  are  using  very  high  excess  of  methanol.    Somehow  similar  attempts  with  Jatropha   Curcas   L.   seed   as   feedstock   was   attempted   at   laboratory   scale   [129].   The   optimum   reaction  condition  for  biodiesel  yield  of  98.1%  were:  temp:  60  °C,  reaction  time  10  h,   methanol  to  seed  ratio    [10.5:1,    ml/g],  catalyst:  H2SO4,  in  rate  of  21.8  %  (sic!).