• Nem Talált Eredményt

1.6.   STATE  OF  THE  ART  OF  BIODIESEL  PROCESSING

1.6.2   COLLOID  CHEMICAL  ASPECTS

Colloid   chemistry   constitutes   the   basis   of   the   improved   biodiesel   production   technology   presented   here.  Dorado   [103]   did   touch   the   subject   by   reporting   that   feasibility  of  biodiesel  production  was  “notoriously”  dependent  on  FFA  content  of  the   feedstock.   The   notorious   influence   on   feasibility   term   relates   to   loss   in   biodiesel   product  yield  and  increase  in  specific  consumption,  directly  accredited  to  FFA  contents.    

Losses   associated   to   soap   formation   in   which   the   catalyst   is   consumed   are   generally   accounted.  Accordingly,  on  this  basis  vendors  generally  ask  for  an  FFA  content  of  not   more  than  5%.  Additional  costs  associated  to  the  need  for  more  difficult  and  complex   refining  of  the  G-­‐phase  for  cleaner  grade  glycerol  production  have  not  been  accounted.  

The   necessary   amount   of   catalyst   is   calculated   in   practice   by   summing   the   amounts   needed   for   soap   formation   and   catalysis.   Any   feedstock   component   that   is   not  

converted  into  biodiesel  is  contributing  to  loss  of  profit  in  biodiesel  production,  as  the   most   important   cost   category   is   the   price   paid   for   the   most   valuable   asset,   the   feedstock   [104].     To   acknowledge   the   importance   of   feedstock   the   ultimate   and   accurate   cost   was   if   the   purchase   price   is   corrected   to   the   rate   of   final   yield   to   feedstock.   Such   account   attracts   attention   to   importance   of   feedstock   and   to   good   manufacturing  practice  alike.  

Kwicien   [105]   concluded,   without   referring   to   colloid   chemical   phenomena,   that   the  presence  of  salt  contributes  to  loss  of  product  into  the  glycerol  phase,  as  concluded   on  the  ground  of  experimental  yield  of  G-­‐phase.  It  is  to  report  that  in  many  samples  of   G-­‐phase  taken  from  conventional  technology  units  the  biodiesel  content  in  the  G-­‐phase   has  been  in  the  range  of  10-­‐20%.  This  corresponds  to  a  total  loss  of  1-­‐2%  of  biodiesel   on  feedstock  basis.    This  loss  is  due  to  phase  characteristics  and  by  such  it  cannot  be   avoided  in  conventional  technologies.    

The  view  of  Noureddini  and  Zhu [106]  on  trans-­‐esterification,  as  being  a  system  of   reversible  reactions,  is  that  there  is  a  time  span  needed  to  get  to  equilibrium  conditions   and   this   process   is   controlled   by   mass   transfer   characteristics.   Unfortunately   the   discussion   does   not   touch   the   matter   that   this   mass   transfer   takes   place   between   phases   of   a   disperse   system.     Mittelbach   [107]   made   a   step   toward   colloid   chemical   description   of   the   system,   by   reporting   that   soap   formation   is   a   necessary   process   initiator  in  alkaline  catalyzed  trans-­‐esterification.  It  is  needed  to  kick  start  the  reaction   in   the   disperse   oil-­‐methanol-­‐catalyst   system,   to   draw   the   methanol   and   catalyst   into   contact   with   the   substrate   oil.   This   is   a   clear   description   of   an   interfacial   reaction   system,   both   the   forward   and   the   backward   reactions   take   place   between   the   continuous   substrate   and   the   disperse   reagent-­‐reactant   globules   phases.   May   be   because  of  the  lack  of  translating  this  colloid  chemical  observations  into  the  language   of   trans-­‐esterification   chemistry   debates   are   still   open   about   the   mechanism   and   kinetics  matters.  Negy  [108]  stated  that  the  knowledge  of  mass  transfer  and  reaction   mechanism   is   still   far   from   complete.   Not   even   is   known   where   exactly   the   reaction   takes  place,  at  the  interface  or  in  one  or  both  the  phases,  in  bulk  or  in  film  or  both.  

When   revisiting   and   defining   trans-­‐esterification   from   engineering   and   colloid   chemical   viewpoints   the   objectives   are   to   shift   the   reversible   reaction   toward   methanolysis  and  to  remove    mass  transfer  limitations.    Barrier  to  phase  transfer  at  an   interface   can   be   overridden   by   freeing   the   interface   by   the   use   of   a   co-­‐solvent   that   brings   reaction   partners   into   a   single   phase   [109].   Boobcock   employed   and   recommended  the  use  of  tetra-­‐hydro-­‐furan,  a  characteristic  polar  solvent  on  the  ground   of  ease  of  recycle  by  distillation  (boiling  point:  66  °C).  Guan  [110]  proposed  the  use  of   dimethyl  ether  that  has  even  lower  boiling  point:  -­‐24  °C.  This  is  making  me  to  question   the   credibility   of   the   results   published4.     By   the   use   of   these   solvents   the   apparent   reaction  rates  become  much  faster  and  time  to  equilibrium  much  shorter.  Accordingly  a   suitable  polar  solvent  keeps  the  entire  system  in  solution,  including  the  starting  stocks   and   all   the   reaction   partners   and   products.   The   entire   system   stays   in   a   single   homogenous   phase.   Such   polar   solvents   are   known   in   petroleum   refining   practice   as   selective   refining   solvents   for   aromatics   and   lubricating   oil   fractions,   because   of                                                                                                                  

4 My   ethical   questions   beside   of   forgetting   that   the   polar   solvent   used   was   recommended   a   decade   earlier   by   Boccock   are   the   following:   it   is   stated   that   the   reaction   of   trans-­‐esterification   occurs   in   the   methanol   phase   without   knowing   which   phase   is   the   disperse   and   which   is   the   continuous   one,   if   the   reaction  mixture  remained  homogenous  how  could  have  been  the  limit  of  reversible  reaction  lifted?)

preferentially   dissolving   polar   constituents   into   the   extract   phase   and   rejecting   the   apolars   into   the   raffinate   phase.   Under   those   specified   phase   conditions   published   breaking  into  two  phases  is  avoided  and  operational  conditions  are  selected  to  maintain   a   single   phase   along   the   reactions   in   procedures   that   employ   polar   co-­‐solvent   technique.  Accordingly,  by  maintaining  a  monophase  system,  selectivity  of  the  solvent   has  been  ignored  and  not  profited.  Reactions  in  both  directions  are  equally  possible  and   promoted   by   kinetic   means.     The   net   gain   in   employing   this   non-­‐selective   polar   co-­‐

solvent  technique  results  in  reaching  close  to  equilibrium  conditions  in  much  shorter   time.  Another  important  handicap  of  using  polar  solvent  to  promote  trans-­‐esterification   is   the   need   for   intermediary   product   and   solvent   recycling   in   a   system   that   employs   close   to   6   times   the   stochiometric   amount   of   methanol.   The   equilibrium   limitation   applies   and   the   trans-­‐esterification   must   be   done   in   two   successive   steps   with   intermediary  solvent  recycling  and  separation  of  glycerol  byproduct.    

Shifting  the  equilibrium  toward  completion  can  be  achieved  by  applying  very  high   excess   of   methanol   reagent. This   approach  can   ruin   feasibility   of   the   process.  Under   normal  industrial  conditions  methanol:oil  ration  is  usually  6:1  (double  to  stochiometry)   and  the  equilibrium  condition  is  close  to  80%.  The  increase  of  excess  rate  to  quadruple   shifts   this   conversion   figure   to   close   to   90%,   see   figure   1.8   [111].  Even   under   such   conditions  reaching the  equilibrium  conversion  needed  about  1  hour of reaction.  

Relatively   mild   conditions   in   trans-­‐esterification   favour   methanolysis, for   hydro-lysis  higher  temperature  (180-­‐260  °C)  and  pressure  (3-­‐7  MPa)  and presence  of  water   are  needed  [112].  The  cited  work  has  a  merit  of  attracting  attention  to  work  in  counter   current  mode  of  operation  to  attain  the  highest  possible  conversion  and  productivity  in   hydrolysis.  This  conclusion  was  mainly  based  on  colloid  chemistry aspects  by  expressing   that  the  chemical  reactions  involved  are  very  slow.  This  view  was  in  fact  a  promoting   reason  to  work  on  bringing  the  batch  biodiesel  process  to  counter  current  mode.  

 

FIGURE  1.8.     KINETICS  OF  SUNFLOWER  TRANSESTERIFICATION  AT  MEOH:OIL=12:1    WITH   DIFFERENT  CATALYSTS  

(NaOH  catalyst:  lowest,  KOH:  high,  CsOH:  highest)

Removal  of  either  reaction  products  can  be  an  efficient  tool  in  shifting  equilibrium   toward  completion  and  chances  are  given  for  making  it  in  a  single  reaction  contact  step.  

For   such   scope   selectivity   of   the   solvent   must   be   reinstalled.   Barring   the   reverse   reaction   by   removing   one   of   the   products   from   reaction   media   could   only   be   done   within   the   frame   of   economic   operations   by   the   proposed   use   of   apolar   solvent. The   present   work   addresses   colloid   chemical   basis   on   this   basis.   Phase   transfer,   glycerol   rejection  and  trans-­‐esterification  kinetics  experiments  were  carried  out  to  de-scribe  the   phenomena  of  shifting  trans-­‐esterification  toward  completion  in  a  single  phase.

When  revisiting  colloid  chemical  aspects  micro-­‐emulsions  must  also  be  visited  and   considered.   Micro-­‐emulsions   with   short   chain   alcohols   can   yield   clear,   thermodynamically   stable   liquid   fuel   with   viscosities   in   the   range   of   diesel   fuel   specifications  [113].      The  special  benefit  of  water  and  oxygenates  containing  diesel  fuel   consists   in   freezing   NOx   chemistry   by   lowering   the   flame   temperature   and   by   such   reducing  the  emissions  of  this  regulated  compound  [114].  Similar  emissions  reduction   can   be   achieved   with   blending   water   in   fossil   diesel   fuel   too   [115].   Revisiting     this   aspect  can  be  reasoned  on  the  ground  of  ease  in  atomization  of  the  (micro)-­‐emulsified   fuels  similarly  to  biodiesel.  This  effect  compensates  for  the  slightly  lower  heating  value   in  operational  diesel  engines.  

It  is  to  report  that  the  patent  related  to  the  present  thesis  was  submitted  in  2001   and  full  grants  have  been  obtained  since.  This  is  worth  for  another  ethical  comment,   Shi  and  Bao  used  my  technique  (and  my  motives)  of  hexane  dilution  without  referring   to  my  works.  The  authors  have  not  even  observed  a  series  of  advantages  of  using  the   hexane  solvent  and  passed  next  to    finding  facts,  such  as:  a)  necessary  reaction  time  is   less   than   10   min   Shi   and   Bao   used   120   min.,   b)   settling   occurs   instantaneously   and   there   is   no   need   for   settling   over   2   h   of   time,   c)   ignored   the   fact   that   if   the   crude   biodiesel  is  simply  washed  with  distilled  water  emulsion  formation  must  be  present,  d)   there   is   no   need   for   employing   9   times   stochiometry,   even   2   times   stochiometry   is   excessive  under  such  conditions  [116].