• Nem Talált Eredményt

1.6.   STATE  OF  THE  ART  OF  BIODIESEL  PROCESSING

1.6.4     TECHNOLOGIES

individual   unit   operations   of   reaction   and   settling.   For   such   BDI   pioneered   with   centrifuge   [133]   to   reduce   the   volume   and   residence   time   in   settlers.   The   cost   of   speeding   up   the   throughput   was   the   higher   specific   consumption   of   electric   energy.  

This  made  that  this  technique  can  feasible  employed  at  capacities  above  30  kt/y.  This   limit  can  be  illustrated  in  taking  into  account  that  the  cost  of  centrifugal  separation  of   about  2%  water  from  the  biodiesel  stream  costs  -at  this  scale-  ~320000  USD/y  [134].

  FIGURE  1.10.     LURGI  BIODIESEL  TECHNOLOGY  WITH  TWO  SPECIAL  TRANS-­‐ESTERIFICATION   REACTORS  INCLUDING  A  MIXER  AND  A  COALESCER  IN  THE  DOWNSTREAM  SECTION.  

Another   attempt   to   shorten   the   residence   time   is   the   approach   of   Lurgi   [135]   by   employing   a   coalescer   in   the   downstream   section   of   the   two   trans-­‐esterification   reactors  (figure  1.10).  Beside  this  merit  of  enhanced  phase  separation  in  a  horizontal   reactor  structured  into  zones  of  mixing  and  coalescing  there  are  a  series  of  weaknesses   that  make  this  technology  less  attractive  today.  

The  most  sophisticated  and  advanced  technology  to  produce  standard  diesel  fuel  is   represented   by   high   pressure   trans-­‐esterification   operation   of   Axens   (figure 1.11) [136].   It   is   customary   to   classify   this   technology   as   first   representative   of   second   generation   units.   Publications   about   this   technology   are   addressing   more   marketing   priorities  than  scientific  aspects.  The  intellectual  property  related  to  this  technology  is   most   probably   from   patent   literature   with   reference   to   a   heterogeneous   spinnel   catalyst  for  trans-­‐esterification.  The  same  type  of  catalyst  was  patented  by  Südchemie     and  many other   catalyst   manufacturers[137].   All   claim   to   have   developed   efficient   heterogeneous   catalyst   of   this   type   for   trans-­‐esterification.   From   the   viewpoint   of   a   chemical   engineering   technology,   those   severe   operational   conditions,   temperature   exceeding  200  °C,  pressure  levels  above  60  bar  and  the  very  high  inventory  of  reagent   common  to  heterogeneous  catalyst  technology  systems  raise  the  scale  to  economy  to   very  high  throughputs  of  the  level  of  160  kt/y.  Feedstock  specifications  are  also  strict   and   demanding.   Very   low   gum   and   free   fatty   acid   content   is   required   to   protect   the   catalyst.   There   have   been   no   published   data   about   the   losses   incurred   in   feedstock   pretreatment   operations.   “Gossiped”   industrial   communications   state   that   the   loss  

exceeds  the  level  of  5-­‐8%.  

Without  sticking  to  chronological  order,  published  technology  scheme  of  IFP’s   next   generation   unit   (Esterfip   H-­‐   figure  1.11)   operates  with   two  consecutive reactors with phase separation in between of these.   The   scheme   shows   that   equilibrium   considerations   limit   the   operation   of   this   second   generation   heterogeneous   catalyst     system  too.    The  amounts  of  oil  and  methanol  fed  in  these  reactors  are  the  same,  high   specific  energy  consumption  can  be  calculated  for  such  evaporative  duties.  

  FIGURE  1.11   ESTERFIP-­‐H  TECHNOLOGY  OF  IFP    

High  costs  associated  to  high  pressure  operations  can  be  hedged  (a  term  borrowed   from   finance   for   coupling   securities   to   averse   risks   of   losses)   by   incorporating   secondary  use  of  byproducts  or  even  the  main  product.  Deshpande  evaluated  the  use  of   this  technique  in  supercritical  condition  synthesis  of  biodiesel  [138],  but  this  approach   is   simple   an   attempt   to   hide   disadvantage   of   high   specific   energy   costs   that   will   not   hide  the  carbon  footprint  of  the  scheme.  

Another   remarkable   and   must   visit   feature   of   this   technology   is   the   statement   of   producing  clean  glycerol.  This  statement  provoked  my  critics.  Clean  glycerol  can  only   be   produced   if   the   feedstock   was   perfectly   refined   to   contain   nothing   else   but   tri-­‐

glycerides   and   fatty   acids.   This   is   almost   impossible   in   practice.   In   this   case   the   question  must  address  the  fate  of  the  separated  components.  In  this  case  if  the  rule  of   thumb  that  5  times  of  the  amount  of  polars  are  separated  into  the  rejected  stream  the   extent   of   losses   must   be   extremely   high.   A   trivial   answer   to   where   to   place   this   byproduct  was  answered  in  our  research  for  G-­‐phase  use  as  animal  feed  component.  

For   technical   realization   the   case   can   be   very   similar   to   pretreatment   of   gasoline   fractions   in   reforming   to   protect   the   high   value   Pt   catalyst   from   poisoning.   If   the   sorbent   for   such   is   inert   and   inexpensive   zeolite   than   this   is   an   excellent   example   to   industrial   ecology   serving   the   agriculture.   On   this   ground   the   arguments   for   ecologically  acceptable  systems  must  be  revisited.  The  glycerol  can  only  be  clean  if  the  

technology  converts clean TG into FAME and G. This cannot be the case either with refined or refuse feedstocks.  

An  independent  expert  [139]  declared  the  technology  of  the  present  thesis  to  be  also   of   second   generation.   The   basis   of   evaluation   was   to   take   into   account   the   efficiency   and  specific  consumption  figures.    For  an  overview  of  the  mostly  known  technologies   offered  by  vendors  table  1.2 was  compiled  with  the  main  features  of  the  systems.

Early   days   technologies   have   almost   exclusively   scoped   trans-­‐esterification   of   refined   rapeseed   oil.   Those   most   selling   technologies   of   AT   Technique,   of   BDI   and   of   other   followers   used   the   basic   know   how   of   IFP   and   contributed   to   it   with   some   improvements   in   executing   one   or   more   unit   operations   of   the   whole   process.   This   contribution  has  not  lacked  scandals  and  juridical  processes  in  which  vendors  blamed   concurrent  vendors  for  breaching  intellectual  property  rights.  BDI  and AT  Techniques   sued  each other in  several  cases.

To  avoid  operational  problems  most  vendors  uniformly  set  strict  criteria  for  clean   feedstock  qualities.  Phospho-­‐lipids,  gummy  substances,  free  fatty  acids  and  water  have   been   maximized   in   the   feedstock   close   to   the   level   of   refined   food   grade   products.  

Vendors  of  these  technologies    ask  for  phosphorous  content  usually  below  10  ppm,  for   FFA   content   below   0.5%,   or   even   below   0.1%,   water   content   down   to   0.1%.     These   dictate  very  high  price  for  agricultural  commodities.  

Those  early  day  technologies  had  capacities  that  did  not  make  feasible  to  employ  a   decanter  and  the  rate  of  volumes  of  settlers  to  reactors  were  in  the  range  of  10-­‐15:1.  

Processes   were   only   apparently   continuous,   batch   process   steps   have   been   harmonized  but  rare  are  the  examples  for  use  (and  presence)  of  heat  exchangers,  heat   economizers.  The  only  environmental  incentive  to  reduce  the  footprint  of  the  units  was   to  consider  the  use  of  coalescer  or  decanter.      

Colloid  chemistry  aspects  have  only  been  observed  and  considered  right  factors  that   complicate   unit   operations   along   with   solubility   problems,   because   methanol   is   not   soluble   in   the   starting   material   triglyceride   nor   the   end   products   glycerol   but   the   formed  fatty  acid  methyl  esters  are  miscible  with  methanol.  Fatty  acid  methyl  esters  do   form  solution  with  methanol.  It  has  been  reported  that  at  the  beginning  there  is  a  two-­‐

phase  system,  followed  by  an  almost  complete  solution.  Then  as  soon  as  a  considerable   amount  of  glycerol  is  formed,  a  new  two  phase  system  will  again  prevail.

There  is  another  technology  that  uses  solvent  for  avoiding  phase  transfer  resistance   to   trans-­‐esterification.   This   is   the   BIOX   process.   The   basic   difference   between   the   presented  and  the  BIOX  technology  consists  in  the  selection  of  the  kind  of  solvent.  In   BIOX   process   the   polar   solvent   dissolves   both   the   starting   and   the   reaction   products   materials.   Because   of   complete   solubility   without   selectivity   the   solvent   does   not   discriminate   between   synthesis   products.   The   main   differences   between   the   two   approaches:  Reversible  nature  of  the  trans-­‐esterification  reaction  determines  that  the   operation   must   be   conducted   in   at   least   two   consecutive   steps.   The   solvent   must   be   separated   between   the   two   contacting   events   in   order   to   separate   the   main   and   byproduct  of  the  synthesis (figure 1.12)

TABLE  1.2   AN  OVERVIEW  OF  BIODIESEL  TECHNOLOGY  MARKET Designation   Main  

operations  

Limiting   capacity  

Critics  to   features

Time  to   product(h)  

Typical   vendor   Early  day,  still  

prevailing  in  the   market  simple   techniques  

Mix  and  settle     No  known   limit,  units   range  from   1-­‐3  t/y  to   80000  t/y  

Vsettlers>>Vreactors  

Difficult  to   control,  batch,   two  stage,   apparently   continuous  

18-­‐36   AT  Technik,   Pacific   Biodiesel,   Biorafineria   SK,  etc.  

Clean  FAME  by   distillation

Mix,  settle  and   distill  

No  known   limit  

FAME  distillation   is  energy  

intensive  

N.A. DeSmet,    

Improved  by  the  

use  of  centrifuge Mix  and  settle   <30-­‐35  kt/y,     Additional   energy,  batch,   two  stage,   apparently   continuous  

8-­‐16   BDI  

Improved  by   built-­‐in  centrifuge  

Mix  and  settle   <80  kt/y   Additional   energy,  batch,   two  stage,   apparently   continuous  

8-­‐16   Lurgi   (developed   by  

Connemann)   Improved  by  

coalescer   Mix  and  settle   No  limit   Batch,  two  stage,   apparently   continuous  

8-­‐16   Lurgi

Modular  systems   with  coalescer

Mix  and  settle   5-­‐8  

kt/y/module  

Batch,  apparently   continuous,  two   stage,  parallel   operations  for   large  capacities  

8-­‐16   D1  Oil,   BioDiesel   Technologies,   etc.  

Phase  transfer   avoidance  

Mix,  distill   and  settle  

No  known   limit  

Batch,  two  stage,   apparently   continuous,  large   inventories  

3-­‐8   Biox  Corp.  

Heterogeneous   catalyst  

React  and   settle  

<160  kt/y   No  proof  for   energy,  resource   efficiencies,  not   reported  for   multifuel   operation  

3-­‐5   Axens  

Microwave/ultra-­‐

sound  assisted    

Mix  and  settle   Not  to   industrial   scale  

Additional   energy,  batch,   two  stage,   apparently   continuous  

?   Intech  

Engenharia  &  

Meio   Ambiente,   CPI   Critical  conditions   Mix  and  settle   Not  to  

industrial   scale  

Additional   energy,  batch,   two  stage,    

?   Nedo  

2nd  generation   Hydrotreating   under  severe   conditions  

>150-­‐365-­‐

800  kt/y   No  proof  for   energy,  resource   efficiencies  

?   Canmet,  

Neste,  UOP  

FIGURE  1.12   OPERATIONAL UNITS OF BIOX TECHNOLOGY TE: trans-esterification reactor, SD: solvent distillation unit, SE: settler  

In   severe   hydrotreatment   the   problem   of   glycerol   byproduct   treatment   has   been   eliminated,  as  in  severe  hydrogenation  every  oxygen  and  other  hetero-­‐atom  containing   molecules  are  converted  into  pure  hydrocarbons  with  the  prevailing  reaction  schemes   of  hydrodesulphurization,  hydrodeoxygenation,  hydrodenitrogenation,  hydrocracking,   etc.  It  is  known  from  early  days  of  hydrogenation  that  at  a  temperature  of  400  °C  all   sulfur,  nitrogen  and  oxygen  atoms  can  be  completely  removed  [140].  First  patent  for   severe   hydrotreatment   of   vegetable   oil   was   issued   to   Canmet   in   1991   [141]   and   a   series  of  followers  developed  commercial  technologies,  among  them  Neste  Oil  and  UOP   having   excellence   records.   Madsen[142]   conducted   experiments     with   a   reaction   mixture   of   90%   apolar   solvent   -­‐10%   fatty   stock,   with   5%   Pt,   Pd   and   Ni   catalysts   on   alumina  substrate  with  residence  time  to  10  h.  It is a bit unusual to use an apolar solvent in a system in which easily recyclable hydrogen could serve for the same function. Water   gas   shift   reaction   (CO+H2   CO2+H2)   is   also   promoted   by   the   catalyst   selected   and   methanation   of   CO   and   CO2   to   CH4   are   additional   features   of   complete   conversion   of   triglycerides.  No  note  on  the fate of minor  vegetable  oil  and  grease  components  have   been  made.  With  this  concern  it  must  be  acknowledged  that  above  a  certain  capacity   (around  200  kt/y)  this  must  be  the  preferred  technology  in  a  petroleum  refinery.