• Nem Talált Eredményt

3. RESULTS AND DISCUSSIONS

3.2.   PHASE  BEHAVIOR TESTS

This   section   deals   with   equilibrium   phase   behavior   of   components   employed   in   trans-­‐esterification   of   vegetable   oils8.   It   has   been   known   that   vegetable   oil,   the   substrate   of   biodiesel   synthesis   (TG:   tri-­‐gliceride)   does   not   dissolve   (in)   methanol   (reagent)  [166].  If  methanol  is  poured  over  a  vegetable  oil  the  methanol  will  form  a  layer   above   the   oil.   It   has   therefore   been   generally   recommended   to   use   intensive   mixing   and  excess  amount  of  reagent  to  achieve  equilibrium  conditions  in  trans-­‐esterification   within   a   period   of   close   to   ½   hour   if   conventional   conditions:   55°C,   2   times   the   stochiometric  rate  of  reagent  to  feedstock  and  K-­‐methoxy  catalyst  are  employed.  Since   the  reagent  and  the  substrate  form  two  distinct  immiscible  phases  intensive  mixing  is   needed  to  bring  them  and  the  catalyst  methoxy  into  intimate  contact  along  the  entire   reaction  step.  This  intensive  mixing  does  not  only  promote  the  forward  (methanolysis),   but  the  reverse  (hydrolysis)  reactions  alike.  If  water  is  present  the  forward  reaction  is   slowed  down  and  even  frozen.  Water  is  being  the  byproduct  of  soap  formation  and  is   brought  to  the  system  if  the  catalyst  is  prepared  from  K/Na-­‐OH  and  MeOH.  

ROOH  +  KOH    ROOK  +  H2O MeOH  +  KOH    [K+][OMe-­‐]  +  H2O  

I  proposed  the  use  of  an  apolar  solvent  to  avoid  phase  transfer  related  transport  and   phase   separation   difficulties   in   biodiesel   synthesis   and   refining   steps.   It   must   be   confessed   that   the   idea   came   from   techniques   of   acid   number   test   of   lubricating   oils   and  from  experience  gained  in  refining  lubricating  oils  and  separation  of  aromatics  of   BTX  boiling  range  gasolines.  In  contrast  to  Boobcock’s  [167]  idea  of  using  polar  solvent  – tetra-­‐hydro-­‐furan:  THF-­‐  to  eliminate  the  mass  transfer  resistance  through  the  interface   I  opted  for  the  use  of  an  apolar  solvent.    My  reasons  have  emerged  from  considering   basic  chemical  engineering  principles:    

• the  use  of  a  polar  solvent  makes  necessary  to  employ  16  times  the  stochiometric   rate  of  methanol,  

• because  of  maintaining  a  single  phase  condition  all  along  the  biodiesel  synthesis     full  conversion  cannot  be  achieved  in  a  single  reaction  step.  The  polar  solvent  keeps  all   the   components   in   a   single   phase   and   by   such   the   glycerol   is   being   kept   readily   available  for  reverse  reaction  routes  (glycerolysis),    

• to  pass  beyond  the  conversion  limit  set  by  the  chemical  equilibrium  (at  around   80%  conversion  progress)  to  separate  the  glycerol  it  is  necessary  to  separate  first  the   solvent  by  distillation.  Only  after  this  can  the  glycerol  be  settled  or  centrifuged.  Upon   separation  of  the  glycerol  the  addition  of  polar  solvent  and  reagent/catalyst  mixture  is   necessary.    

In  contrast,  my  intention  was  to  perform  the  trans-­‐esterification  to  full  conversion   in   a   single   operational   sequence.   The   phase   behavior   experience   affirmed   that   the   apolar  solvent  can  bring  the  substrate  and  reagent  into  a  single  phase  and  rejects  the   glycerol   into   a   distinct   phase   as   the   reaction   progresses.   This   has   an   additional   beneficial  effect  of  expelling  water,  the  most  poisonous  for  methanolysis,  from  the  so   called  reaction  phase  into  the  glycerol  phase.    

                                                                                                               

8 One   could rationally ask why the system of esterification has not been included in testing the phase behavior? It is because these tests have been performed as a preparatory exercise for trans-esterification.

Beneficial   use   of   hexane   (alkanes, ranging   from   C3   to   C9)   as   an   apolar   solvent   in   biodiesel   trans-­‐esterification   has   been   demonstrated   and   patent   rights   have   been   granted  in  a  series  of  countries.      

To   elucidate   phase   behavior   phenomena   in   biodiesel   synthesis   in   hexane   media   a   series  of  non-­‐catalytic  liquid-­‐liquid  equilibrium  tests  have  been  performed.  

Mode of operation: liquid-liquid equilibrium tests have been performed in apparatus given in figure 2.2. Feedstock   and   solvent were introduced from the doping funnel.

Temperature of the experiment was controlled by the thermostated circulator. When the system reached the desired temperature the overhead stirrer was turned on (normal range of operations: 200-300 RPM) and reagent, but no catalyst was added through the doping funnel. The mixture was mixed for 30 min. and left in still (the overhead stirrer turned off) for another 30 min. If the interface between the layers was sharp the contents of the upper and lower layer have been drained separately. Samples of both layers have been taken for headspace GC analysis.

Results  are  given  in  tables  3.4  to  3.6.  Findings  of  phase  behavior  tests:  

The   test   readings   can   be   evaluated   for   phase   behavior,   because   there   were   no   chemical   reaction   involved   in   the   equilibrium   tests.   This   conclusion   can   be   easily   drawn  on  the  basis  of  viscosity  range  of  the  raffinate  streams.  

Moderate   changes   in   viscosity   of   raffinates   and   moderate   color   change   of   the   glycerol  phase  indicated  that  there  were  minor  –physical  -­‐refining  activities.  

The  moderate  refining  effect  is  shown  in  refractive  indices  of  the  solvent  free  apolar   phase  samples.  The  lower  the  refractive  index,  the  more  apolar  the  raffinate  stream  is,   hence   some   removal   of   polar   compounds   must   have   taken   place.     (Figure   3.6.)     We   know   from   other   experiments   that   the   glycerol   acts   as   a   selective   polar   solvent.   By   such   the   system   resembles   a   duo-­‐sol   extraction   system:   hexane   dissolves   apolar   and   glycerol  dissolves  polar  compounds  of  the  vegetable  oil.    Higher  hexane  rate  results  in   lower  overall  viscosity,  in  better  rejection  of  polar  compounds  from  the  apolar  phase,   mainly   due   to   lower   viscosity   of   the   medium.       On   the   basis   of   these   data   it   can   be   stated  that  hexane  contributes  to  improving  feedstock  refining.    

Caution   must   be   applied   to   feedstock   pretreatment.   Presence   of   water   exerts   influence  on  selectivity  of  the  glycerol  solvent.  If  there  is  glycerol  present,  than  this  can   only  happen  if  catalyst  (alkali  or  acidic)  was  present  in  the  system.  If  the  catalyst  was   alkalic,   than   the   free   fatty   acids   present   in   the   feedstock   are   neutralized   into   soap.  

Soaps   are   surface   active   agents   and   phase   behavior   is   influenced   by   formation   of   disperse   systems.   Similarly   on   colloid   chemistry   principles   salting   effect   cannot   be   disclosed  if  the  catalyst  is  acidic.  

Hexane  made  that  water  was  repelled  almost  completely  into  the  glycerol  phase.  

Source  of  water:  the  glycerol  used  contained  5%  water.  It  had  influence  on  MeOH-­‐nC6   distribution  between  phases  

Hexane   as   a   solvent   had   clean   effect   of   avoiding   emulsion   formation   and   in   breaking  emulsion  

Hexane   is   necessary   to   bring   vegetable   oil   and   methanol   into   a   single   phase.  

Despite   earlier   myths   vegetable   oil   does   not   dissolve   methanol,   but   intensive   mixing   can   solubilize   some.   This   solubilized   (encapsulated)   amount   of   methanol   can   initiate   trans-­‐esterification  under  optimal  conditions.  Even  in  this  case  phase  transfer  cannot  

be   avoided   because   the   catalyst   is   preferably   dissolved   in   the   polar   phase   and   for   activation  at  least  0.5%  catalyst    must  be  present  in  the  “reaction  phase”.  It  is  shown  in   Figure  3.9  that  small  amount  of  methanol  can  be  solubilized  into  the  vegetable  oil  even   without  added  solvents.    It  is  interesting  to  compare  and  comment  trend-­‐line  matches:    

Second   order   approximation   gives   perfect   match:   y   =   -­‐0.8557x2   +   5.6867x   -­‐  

0.4765,    R2  =  1;  in  which  y:    g  methanol  in  100  g  vegetable  oil,  x:    hexane:  methanol  rate   [g:g].  This  trend-­‐line  is  a  proof  for  no  methanol  dissolution  in  vegetable  oil.  This  can   only  be  true  from  strict  physical-­‐chemistry  view  points,  but  not  from  reaction  kinetics.  

The   hazy   appearance   of   the   single   phase   tells   that   there   is   no   dissolution,   but   dispersion   (solubilization),   but   such   dispersion   would   allow   initiation   of   reaction   between  the  substrate  and  reagent.  This  is  a  proof  for  that  experimental  technique  to   mix  the  substrate  with  catalyst  and  add  reagent  in  discrete  amounts.    

Second   order   approximation   with   a   line   through   the  origo   gives   quite   accurate   match:        y  =  -­‐0.7304x2  +  5.1601x,    R2  =  0.9989.    

Linear  approximation  gives  the  poorest  match,  but  indicates  that  small  amount  of   methanol   (2.3g)   could   have   been   dissolved   (solubilized?)   in   100   g   vegetable   oil.   y   =   2.2638x  +  2.376;      R2  =  0.9545    

TABLE  3.4   MASS  BALANCE  OF  LIQUID-­‐LIQUID  EQUILIBRIA  IN  PHASE  TRANSFER  EXPERIMENTS   NO   OIL  

[g]  

HEXANE

[g]

METHANOL   [g]  

GLYCEROL   [g]  

TEMP

[°C]  

UPPER   PHASE  [g]  

LOWER   PHASE  [g]  

SR   TOTAL  

SE  

1 100   30 10   10   50   131,2   15,7   30.2   9.8  

2   100   20 10   10   50   122,8   15,8   26.3   3.7  

3   100   10 10   10   50   111,8   16,8   17.05   2.95  

4   100   0   10   10   50   103,8   16,2   8.4   1.6  

5   100   0   20   10   50   106,3   23,4   9.6   10.4  

6 100   0   30   10   50   35,5   104,5   27.2   2.8  

7 100   30   30   10   50   138,5   30,5   54.4   5.6  

8   100   30   20   10   50   135,5   23,6   39.7   10.3  

9   100   30   10   10   50   132,0   15,0   36.6   3.4  

10   100   0   10   0   50   110   0   10   n.a  

11   100.4   0   21.3   0   50   9.5   110.5   9.5   10.5  

12   100.4   10   21.3   0   50   4.1   125   23.6   4.1  

13   100.4   20   21.3   0   50   0   137.8   36.4   0  

TABLE  3.5     RAFFINATE  CHARACTERISTICS  IN  PHASE  TRANSFER  EXPERIMENTS   R'   LOWER  SOLVENT  PHASE:  SR-­ME   UPPER  SOLVENT  SR-­HEX   NO   OIL  [G]    

 

VISCOSITY  

[mm2/s]   [g]     MeOH,%   nC6,%   [g]     MEOH,%   nC6,%  

1   99,8   1.4747   33.8   3.2   1.3375   82   18   21.1   1.3795   18   82   2   99,2   1.4751   34.4   3.1   1.339   83   17   16.9   1.3783   29   71  

3   98,9 1.4767   34.7   2.95   1.337   57   43   8.1   1.378   33   67  

4   98,9 1.4768   34.4   2.9   1.3335   100   0   0   -­‐   -­‐   -­‐  

5   98,8   1.4768   33.9   4.8   1.3375   100   0   0   -­‐   -­‐   -­‐  

6   12,4   1.4758   35.7   22.6   1.465   100   0   0   -­‐   -­‐   -­‐  

7   99,1   1.4742   34.8   10.8   1.3372   83   17   23.3   1.3781   17   83   8   99,3   1.4749   34.5   7.3   1.3345   85   15   16.2   1.3789   15   85   9   99,5   1.4748   35.4   3.4   1.3375   86   14   26.2   1.3796   13   87  

10   100   1.4748   35.4   8.5   1.3371   -­‐   100          

11   99.6   1.4749   33.8   9.5   1.3331   100   0   10.5   1.3331   100   0   12   99.1   1.4742   33.7   3.6   1.3369   82   18   18.4   1.3792   18   82   13   99.2   1.4738   33.5   4.6   1.3376   81   19   36.4   1.3572   52   48  

TABLE  3.6     EXTRACT  CHARACTERISTICS  IN  PHASE  TRANSFER  EXPERIMENTS   SOLVENT

NO     GLYCE

-ROL  [g]      

[g]     MEOH,%   C6,%

1   1.4012   8.2   1.4718   5.9   1.3391   98   22  

2   1.4018   7.6   1.4704   6.3   1.339   98   2  

3   1.4016   9.2   1.4716   6   1.3345   99   1  

4   nd   8.2   1.4693   5.5   1.3329   100   0  

5   nd   7.9   1.4708   4.8   1.3331   100   0

6   nd   99.9   1.4716   4.6   1.3335   100   0  

7   nd   7.5   1.4723   20.3   1.3336   99   1  

8   nd   8.2   1.4718   16.2   1.3365   98   2  

9   nd   8.1   1.4717   7   1.3391   97   3  

10   nd              

11   1.3402   0.5     9.6   1.3388   97   3  

12   1.3417   0.5     3.4   1.3376   98   2  

13   nd              

nD20

nD20

nD20

nD20

nD20

nD20

FIGURE  3.6        HIGHER  HEXANE:METHANOL  RATES  ARE  SHOWING  EVIDENCE  OF    REFINING

FIGURE  3.7         HEXANE  BRINGS  METHANOL  INTO  VEGETABLE  OIL  PHASE

Either   of   the   second   order   trend-­‐line   can   be   expected   a   correct.   This   can   be   interpreted  as  there  must  be  a  limit  to  hexane  usage  to  promote  trans-­‐esterification,  to   maintain  as  high  methanol  concentration  in  reaction  phase  as  possible.  See:  figure  3.15.  

y = -7E-05x2 - 0.0006x + 1.4769 R² = 0.89608

1.474 1.4745 1.475 1.4755 1.476 1.4765 1.477 1.4775

0 0.5 1 1.5 2 2.5 3 3.5

RI of rafinate

hexane:MeOH [g:g]

0 1 2 3 4 5 6 7 8 9 10

0 0.5 1 1.5 2 2.5 3 3.5

MeOH in substrate phase [g]

hexane:methanol [g:g]

FIGURE  3.8     THERE  IS  AN  OPTIMAL  RATE  OF  HEXANE  USAGE

Lack  of  hexane  makes  that  less  methanol  is  available  for  getting  into  contact  with   the  substrate  and  with  an  increase  of  excess  to  stochiometry  makes  the  addition  less   efficient.   This   is   why   in   commercial   technologies   a   6:1   [mol:mol],   i.e.   double   to   stochiometry  rate  is  applied,  with  the  exception  of  the  Biox  process  in  which  as  high  as     16:1  [mol:mol]  rate  is  employed.  See  figure  3.9.    

FIGURE  3.9     25-­‐30%  OF  THE  METHANOL  CAN  EASILY  BE  WASTED  

The  amount  of  available  methanol  can  significantly  increased  if  hexane  is  present,   see   figure   3.10.   In   such   case   it   is   not   necessary   to   differentiate   between   solution   (dissolved)  or  dispersed  (solubilized)  methanol  amounts.  Positive  influence  of  hexane   is  clearly  seen,  even  though  there  is  a  less  strict  correlation  than  in  previous  case.    

y = -7.3042x2 + 51.602x R² = 0.99983

0 10 20 30 40 50 60 70 80 90 100

0 1 2 3 4 5 6

available MeOH for reaction [%]

hexane:methanol [g:g]

y = 2.8333x2 - 13.5x + 39.667 R² = 1

0 5 10 15 20 25 30 35

0 0.5 1 1.5 2 2.5 3 3.5

available MeOH for contract [%]

excess to stochiometry [times]

MeOH available if hexane is not used

FIGURE  3.10   HEXANE  BRINGS  METHANOL  INTO  REACTION  PHASE

 Lack  of  hexane  resulted  in  difficulty  in  mixing  and  in  formation  of  emulsion  like   dispersion,   and   even   switching   position   of   phases.     High   excess   to   stochiometry   by   operational   units   can   be   reasoned   on   this   ground   to   reduce   viscosity   for   boosting   mixing  of  insoluble  phases.  

All these observations are correct for the system of hexane diluted fresh oil, methanol reagent and catalyst that is soluble in the reagent or in the oil. It had to be learned later, that the phase equilibrium tests are not valid for the system containing sulfuric acid as a catalyst.  

Observations are also valid for solid catalyst (including ion exchange resin) systems is all the liquid constituents form a homogeneous phase.  

0 10 20 30 40 50 60 70 80 90 100

0 0.5 1 1.5 2 2.5 3 3.5

methanol available for contact [%]

hexane: MeOH [g:g]