• Nem Talált Eredményt

1. A molecule mechanical force field with precise reproducing capability was created based on the crystal structure database of [(alkoxycarbonyl)methyl]cobalt tricarbonyl tertphosphine compounds.

1.1. By statistically analyzing inner coordinates of numerous, 25 molecule structures, the initial parameter set of molecule mechanic force field was produced. High values were chosen for initial force constants, which were decreased to achieve the maximal elasticity of the parameter set.

1.2. Optimizing parameters was carried out in 31 steps, in the end the average error between calculated and X-ray structures were below 0.01 Å and below 1º for bind distance and angle, respectively.

1.3. After optimizing the modified MM2, force field was improved by 22 new parameters:

2 atom type, 4 bind distance-, 10 bind angle- and 6 torsion parameters.

1.4. The initial molecules were optimized geometrically with the improved force field. It was stated the average errors of calculations and the values of standard deviations were negligible. The force field reproduces precisely the complexes that have to be studied.

2. The clockwork mechanism taking place during the transformation of enantiomer pairs into each other, developed by myself, was modelled using improved MM2 parameter set and was confirmed, and it was improved by the 2:1 type mechanism of tertphosphane ligand inversion.

2.1. Two-dimensional, net method conformation analysis was made through the example of ethylester derivative. The controlled torsion angles were rotated by each 1 º among the values found in the equilibrium geometry of enantiomers. Thus, in the investigation 14414 structures were obtained, and their energies were represented in an energy surface diagram.

2.2. The route of transformation between enantiomers was determined. Structures in the trajectory were analyzed, and the clockwork mechanism taking place during the transformation of enantiomer pairs into each other was confirmed.

2.3. It was certified that reP → siP és a reP → reM epimerization was impeded by the substantial energy barrier originated from the encounter of phenyl rings.

2.4. It was determined during the transformation of complexes, inversion of triphenylphosphane occurred in a ratio of 2:1 similar to the free triphenylphosphane.

3. It was identified a well determined part of known compounds did not follow the clockwork mechanism, but they inverted according to the ordinary gear attached rotation mechanism.

3.1. It was established that the studied complexes can be easily divided into two main groups [(reP, siM) or (siP, reM)] due to their crystal-phase configuration.

3.2. It was observed groups (ester group, CO and triphenylphosphane ligand), building complexes with siP és reM configurations in the crystal cell, always rotate in opposite direction similar to the ordinary gear.

4. The only compound of the existing X-ray structures was investigated in which all of the four possible chiral conformers (reP, reM, siP, siM) can be equally found, and the potential reason for the existence of structures was verified by molecule mechanic calculations

4.1. Two-dimensional conformation analysis was used to establish stereoselectivity could not be shown in benzylester derivative.

4.2. It was stated that at complex formation only one of the enantiomer pairs (reP és siM vagy reM és siP) forms, but the conformers transform easily into each other (reP↔reM és siM↔siP) because of the low energy barrier of ‘phenyl inversion’.

Thermodynamical control prevails.

5. The possibility of selective formation of [(alkoxycarbonyl)methyl]cobalt tricarbonyl triphenylphosphane type complexes was explained through the example of ethylester by calculating chemistry.

5.1. Calculating the reaction route geometrical and energy data were received about intermediers not isolated so far in laboratory (cis-acyl and cis-alkyl complexes, C and F complex), which data could make the preparative work of researchers easier.

5.2. It was also established that two complexes formed at the end of the reaction instead of statistically possible four ones. These complexes are images of each other. The two complexes formed are reP és a siM, these configurations can be found in the crystal cell of investigated complex.

8 Köszönetnyilvánítás

Mindenekelőtt hálás köszönettel tartozom témavezetőmnek Dr. Bencze Lajosnak, aki az elmúlt évek alatt mindvégig támogatott, segített és értékes szakmai tanácsokkal látott el.

Örülök, hogy megismerhettem feleségét Judith nénit, akinek itt is köszönöm azt a rengeteg gyümölcsöt, süteményt, amiket nagy örömmel fogyasztottunk el férjével együtt az estébe nyúló szakmai és baráti beszélgetések alkalmával.

Köszönettel tartozom a Pannon Egyetem Szerves Kémia Intézeti Tanszéken dolgozó összes kollégának, hogy minden segítséget megadtak a dolgozatom elkészítéséhez. A teljesség igénye nélkül köszönöm tehát: Dr. Bakos József, Dr. Tőrös Szilárd, Dr. Ungváry Ferenc, Dr.

Kégl Tamás, Tóth Gergely, Horváth Anita, Kuik Árpád és Balogh János szakmai és emberi segítségét.

Természetesen hálás köszönettel tartozom szüleimnek, akikre mindenben számíthattam.

Köszönöm, hogy ragaszkodtattok ahhoz, hogy mindig felszálljak a buszra …

Utoljára, de nem utolsó sorban feleségemnek, Nórának és kislányomnak, Pannának adnék hálát, hogy a megerőltető munka után, otthon mindig szeretet, türelem és béke várt.

9 Hivatkozások

[1] (a) V. Galamb, G. Pályi, F.Cser, .G. Furmanova, Yu.T. Struchkov, J. Organomet.

Chem., 209 183-195 (1981);

(b) D. Turrini Dr.-Chem. értekezés, Modenai Egyetem, 1996.

(c) S. Tiddia Dr.-Chem. értekezés, Modenai Egyetem, 1997.

(d) A. Baldo, Dr.-Chem. értekezés, Modenai Egyetem, 1997.

(e) C. Zucchi, A. Conia, R. Boese, E. Kleinpeter, H. Alper, Gy. Pályi, J. Organomet.

Chem., 586 61-69 (1999)

[2] G. Pályi, K. Alberts, T. Bartik, R. Boese, G. Fráter, T. Herbrich, A. Herfurth, C.

Kriebel, A. Sorkau, C.M. Tschoerner, C. Zucchi, Organometallics, 15 3253-3255 (1996)

[3] (a) G. Pályi, C. Zucchi, T. Bartik, R. Boese, 1st J. Organomet. Chem. Conf. 4-5 'ovember 1993, München (Ger.), Abstr. p. 183.

(b) G. Pályi, C. Zucchi, T. Bartik, T. Herbrich, C. Kriebel, R. Boese, A. Sorkau, G.

Fráter, Atti Accad. Sci. Bologna, Rend. Cl. Sci. Fis., 281 [14/10] 159-167 (1992/93) [4] H. Dodziuk, Tetrahedron Asymmetry, 3 43-50 (1992)

[5] (a) G. Pályi, Transition Met. Chem., 2 273-275 (1977);

(b) G. Pályi, M. Kovács - Toplak, G. Váradi, Atti Accad. Sci. Bologna, Rend. Cl. Sci.

Fis., 266 [13/5] 139-146 (1978).

[6] M. J. Szabó, R.K. Szilágyi, L. Bencze, R. Boese, C. Zucchi, Luciano Caglotti and Gy.Pályi Enantiomer, 5 549 (2000)

[7] Tóth Gergely még nem publikált eredményei

[8] (a) O. Roelen (Ruhrchemie AG) D.B.P. 849 458, (1938) , Chem Zentr., 927 (1953);

(b) Orchin M. Acc. Chem. Res. 14 259 (1981) (c) Orchin M., W. Rupilius, Catal. Rev., 6 85 (1972)

(d) W. Hermann, B. Cornils Angew. Chem., 109 1074 (1997)

[9] F. Ungváry, I. Kovács, B. Hammerschmidt and G. Cordier, Organometallics, 12, 2849-2852 (1993)

[10] V. Galamb, G. Pályi, M. Kajtár, Inorg. Chim. Acta, 53 113-114 (1981)

[11] M. J. Szabo, R. K. Szilagyi, L. Bencze, Inor. Chim. Acta, 344 158-168 (2003)

[12] L. Bencze, R.K. Szilágyi, M.J. Szabó, R. Boese, C. Zucchi, Gy. Palyi, A molecular Clockwork: intramolecular transfer of chiral information in

carbonyl)methyl]cobalt tricarbonyl triphenilphosphine complexes Chapter III.9 Fundamentals of Life – Editions Scientifiques et médicales ELSEVIER SAS (2001) [13] (a) F. J. Britten, The Watch and Clock Marker’s Handbook, Dictionary and Guide,

11th Ed., Antique Collector’s Club Ltd., Woodbridge, Suftolk, UK (1976)

(b) F. W. Britten, Horological Hints and Helps, 4th Ed., Antique Collector’s Club Ltd., Woodbridge, Suftolk, UK (1996)

[14] Bencze L., Boese R., Pályi Gy., Szabó M.J., Szilágyi R.K. Zucchi C., Magyar Kémikusok Lapja, 6 215-219 (2001)

[15] (a) T.R. Kelly, M.C. Bowyer, K:V: Bhaskar, D. Bebbington, A. Garcia, F. Lang,

Acad. USA 77 6961-6964 (1980)

(b) F. Cozzi, A. Guenzi, A. Johnson, K. Mislow, J. Am. Chem. Soc. 103 957-958 (1981)

[19] (a) Y. Kawada, H. Iwamura, J. Org. Chem, 45 2547-2548 (1980) (b) Y. Kawada, H. Iwamura, J. Am. Chem. Soc. 103 958-960 (1981) [20] J.M. Chance, J.H. Geiger, K. Mislow, J. Am. Chem. Soc. 111 2326 (1989)

[21] K. Fuji, T. Oka, T. Kawabata, T. Kinoshita, Tetrahedron Lett. 39 1373-1376 (1998) [22] R. Ballardini, V. Balzani, A. Credi, M. T. Gandollini, M. Venturi, Acc. Chem. Res.

34 445 (2001)

[23] (a) A. M. Stevens, C. J. Richards, Tetrahedron Lett. 38 7805-7808 (1997)

(b) C. J. Richards, D. C. D. Butler, Abstr. Pap.-Am. Chem. Soc. 221st, 2001, ORGN-367

[24] (a) Keserű Gy. M., Náray-Szabó G., Molekulamechanika, A kémia újabb eredményei 80, Akadémiai Kiadó, Budapest, 1995

(b) U. Burkert, N.L. Allinger, Molecular Mechanics, ACS Monograph 177, American Chemical Society, Washington DC. 1982

(c) A. K. Rappe, C. J. Casewit, Molecular Mechanics Across Chemistry, University Science Books, 1997

(d) K. Machida, Principles of Molecular Mechanics, John Willey & Sons Inc., 1999 [25] D. H. Andrews, Phys. Rev. 36 544 (1930)

(b) H. Margenau, N.R. Kestner, Theory of Intermolecular Forces, Pergamon, Oxford 1969

[31] T.L. Hill, J. Chem. Phys. 16 399 (1948)

[32] J.E. Lennard-Jones, Proc. R. Soc. London Ser. A 106 463 (1924)

[33] R.F. McGuire, F.A. Momany, H.A. Scheraga, J. Phys. Chem. 76 375 (1972) [34] S. Lifson, A.T. Hagler, P. Dauber, J. Am. Chem. Soc. 101 5111 (1979) [35] C.R. Landis, D.M. Root, T. Cleveland, Rav. Comput. Chem. 6 73 (1995) [36] Serena Software, P. O. Boksz 3076, Bloomington, 47402-3076, IN, USA [37] (a) N. L. Allinger, Adv. Phys. Org. Chem. 13 1 (1976)

(b) N. L. Allinger, j. Am. Chem. Soc. 99 8127 (1977)

(c) T. Liljefor, J. C. Tai, S. Li, N. L. Allinger, J. Comp. Chem. 8 581-603 (1987) [38] (a) S. L. Mayo, B. D. Olafson, W. A. Goddard, J. Phys. Chem. 94 8897-8909 (1990)

(b) N. Karasawa, S. Dasgupta, W. A. Goddard, J. Phys. Chem. 95 2260-2272 (1991) [39] (a) U. Dinur, A.T. Hagler, Rev. Comput. Chem. 2 99 (1991) [44] Szilágyi Róbert Károly Doktori PhD értekezés, Wolfrám-karbén komplexek

szerkezetének molekulamechanikai szimulációja, Veszprémi Egyetem, 1998

[KE45] Kurdi R., Bencze L., Metil-kobalt-trikarbonil-foszfán-komplexek

molekulamecha-nikai paraméterezése, Fémorganikus Kémia Munkabizottság Munkaülése, 2002 május 26, Keszthely

[KE46] Kurdi R., Bencze L., Egy nanomotor modellezése, XXIV. Kémiai Előadói Napok, 2001 október 29-31, Szeged

[KE47] Bencze L., Kurdi R., A királis információ intramolekuláris vezetésének mechanizmusa; az óramodell, XXXVII. Komplexkémiai Kollokvium, 2002 május 29-31, Mátraháza

[48] SPARTAN Version 5.0, Wavefunction Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612, U.S.A.

[49] Cerius2 3.0, San Diego, Molecular Simulations Inc., 1997

[50] S. L. Mayo, B. D. Olafson, W. A. Goddard III, J. Phys. Chem. 94 8897 (1990) [51] A. K. Rappé, C. J. Casewitt, K. S. Colwell, W. A. Goddard III, W. M. Skiff, J. Am.

Chem Soc. 114 10024 (1992)

[52] (a) L. A. Casonguay, A. K. Rappe, J. Am. Chem. Soc. 114 5832 (1992) (b) A. K. Rappe, K. S. Colwell, Inorg. Chem. 32 3438 (1993)

(c) A. K. Rappe, W. A. Goddard III, J. Phys. Chem. 95 3358 (1991)

[53] (a) S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S.

Profeta Jr., P. Weiner, J. Am. Chem. Soc. 106765 (1984)

(b) S. J. Weiner, P. A. Kollman, D. T. Nguyen, D. A. Case, J. Comp. Chem. 7 230 (1986)

[54] B. W. H. van Beest, G. J. Kramer, R. A. Santen, Phys. Rev. Letters 64 1955 (1990) [55] N. Karasawa, W. A. Goddard III, Macromolecules 25 7268 (1992)

[56] (a) L. Bencze, R. K. Szilágyi, J. Organomet. Chem. 465 211 (1994) (b) L. Bencze, R. K. Szilágyi, J. Organomet. Chem. 475 183 (1994)

[57] J. J. Gajewski, K. E. Gilbert, J. McKelvey in Advances in Molecular Modelling (Ed.

D. Liotta), JAI Press: London, Vol.2, Chapter 2 (1990)

[58] K. A. Durkin, J. Sherrod, D. Liotta, Advances in Molecular Modelling (Ed. D.

Liotta) JAI Press: London, Vol.2, p 93 (1990)

[59] Szabó Miklós József Doktori PhD értekezés, Alkoxikarbonil-metilén-trikarboniltrifenilfoszfán-kobalt komplexek szerkezeti jellegzetességeinek vizsgálata, Veszprémi Egyetem, 2002

[K60] L. Bencze, R. Kurdi, Nanomachines: Concerted Development of Chiral Conformations ina n Oxo-Catalyst Intermediate, 'anoComputing – Technology Trends, Allied Publishers Ltd., 27-34 (2001)

[K61] L. Bencze, Gy. Pályi, R. Kurdi, Molecular-Level Machines; The Clockwork Model, Metal-Ligand Interactions in Molecular-, 'ano-, Micro-, and Macro-Systems in Complex Environments (Ed. '. Russo), Kluver Acad. Publ. Dordrecht, London, 343-354 (2003)

[62] Kurdi Róbert előkészítés alatt lévő publikációi.

[KE63] L. Bencze, R. Kurdi, G. Tóth, Evolution of Chirality and Fundamental Molecular Motions: Structures and Simulations, 3rd Interdisciplinary Symposium on Biological Chirality, 2003 július 10-15, Modena, Olaszország

[64] (a) V. Galamb, Gy. Pályi, F. Cser, M.G. Furmanova, Y.T. Struchkov, J Organomet.

Chem., 209 183-195 (1981)

(b) V. Galamb, Gy. Pályi, R. Boese, G. Schmid, Organometallics. 6 861-867 (1987) (c) J. Solmlyai-Haász, F. Haász, V. Galamb, A. Benedetti, C. Zucchi, Gy. Pályi, J.

Organomet. Chem. 419 205-217 (1991)

[65] (a) V. Galamb, G. Pályi, Coord. Chem. Rev., 59 203-238 (1984) (b) I. Kovács, F. Ungváry, Coord. Chem. Rev., 161 1-32 (1997) [66] (a) F. Calderazzo, Angew. Chem. Int. Ed. Engl., 16 299-311 (1977)

(b) J.C. Flood, Top. Inorg. Organomet. Stereochem, 12 37-117 (1981) (c) L.J. Kulhman, J.J. Alexander, Coord. Chem. Rev., 33, 195-225 (1980) [67] (a) F. Calderazzo, F.A. Cotton, Inorg. Chem., 1 30-36 (1962)

(b) K. Noack, F. Calderazzo, J. Organomet. Chem., 10 101-104 (1964) (c) K. Noack, M. Ruch, F. Calderazzo, Inorg. Chem., 7 345-349 (1968) (d) M.E. Ruiz, A. Flores-Riveros, O. Navarro, J. Catal., 64 1-12 (1980)

[68] C. Zucchi, A. Cornia, R. Boese, E. Kleinpeter, H. Alper, G. Palyi, J. Organomet.

Chem., 586 61-69 (1999)

[69] (a) K. Stanley, D.W. McBride, Can. J. Chem., 53 2537-2541 (1975)

(b) I. Kovacs, G. Szalontai, F. Ungvary, J. Organomet. Chem., 524 115-123 (1996) [70] (a) J.A. Altman, K. Yates, I.G. Csizmadia, J. Am. Chem. Soc., 98 1450-1454 (1976)

(b) J. Demuynk, A. Strich, A. Viellard, 'ouv. J. Chim., 1 217-228 (1977)

[71] Spartan ’02 Windows, Wavefunction Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612, U.S.A.

[72] M. Lei, W. Feng, Z. Xu, Chinese Science Bulletin, 13 1176-1178 (2000)

[KE73] L. Bencze, R. Kurdi, 'anoscale molecular analogues of macromechanical devices;

simulations, XXth International Conference on Organomettallic Chemistry, 2002 július 7-12, Korfu, Görögország

[KE74] L. Bencze, R. Kurdi, Molecular 'anomachines: Simulation and Design, NATO ASI on Metal-Ligand interactions in Molecular-, Nano-, Micro-, and Macro-Systems in Complex Environments, 2002 szeptember 1-12, Cetraro, Olaszország