• Nem Talált Eredményt

Amberlite IRA 900 Cl Product Data Sheet, Rohm and Haas – Ion Exchange Resins, www.rohmhaas.com

ARMENTIA, H., WEBB, C.: Ferrous sulfate oxidation using Thiobacillus-ferrooxidans cells immobilized in polyurethane foam support particles. Applied Microbiology and Biotechnology 36, 697-700 (1992)

ASP, N.G.: Dietary carbohydrates: classification by chemistry and physiology. Food Chemistry 57, 9-14 (1996)

BALLESTEROS,A.,BOROSS,L.,BUCHHOLZ,K.,CABRAL,J.M.S.,KASCHE,V.: Biocatalyst performance. Applied Biocatalysis. (Eds.: Cabral, J.M.S., Best, D., Boross, L., Tramper, J.)Harwood Academic Publishers, pp.237-279(1994)

BAUTISTA, F.M., CAMPELO, J.M., GARCIA, A., JURADO, A., LUNA, D., MARINAS, J.M., ROMERO, A.A.: Properties of a glucose oxidase covalently immobilized on amorphous AlPO4 support. Journal of Molecular Catalysis B: Enzymatic, 11, 567-577 (2001) BEKERS, M., LAUKEVICS, J., UPITE, D., KAMINSKA, E., VIGANTS, A., VIESTURS, U., PANKOVA, L., DANILEVICS, A.: Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochemistry 38, 701-706 (2002)

BENGMARK, S.: Use of some pre-, pro- and synbiotics in critically ill patients. Best Practice and Research Clinical Gastroenterology 17 (5), 833-848 (2003)

BHATIA, I.S., NANDRA, K.S.: Studies on fructosyl-transferase from Agave americana.

Phytochemistry 18, 923-927 (1979)

BIEDRZYCKA,E., BIELECKA,M.: Prebiotic effectiveness of fructans of different degrees of polymerization. Trends in Food Science and Technology 15, 170-175 (2004)

BLACK,G.M.,WEBB,C.,MATTHEWS,T.M.,ATKINSON,T.: Practical reactor systems for yeast-cells immobilization using biomass support particles. Biotechnology and Bioengineering 26, 134-141 (1984)

BLANCO,R.M.,TERREROS,P.,FERNÁNDEZ-PÉREZ, M.,OTERO,C.,DÍAZ-GONZÁLEZ,G.:

Functionalization of mesoporous silica for lipase immobilization: Characterization of the support and the catalysts. Journal of Molecular Catalysis B: Enzymatic 30, 83-93 (2004) BLANDINO, A., MACIAS, M., CANTERO, D.: Glucose oxidase release from calcium alginate gel capsules. Enzyme and Microbial Technology 27, 319-324 (2000)

BLANDINO, A., MACIAS, M., CANTERO, D.: Immobilization of glucose-oxidase within calcium alginate gel capsules. Process Biochemistry 36, 601-606 (2001)

BLOCH, A., THOMSON, C.A.: Position of the American Dietetic Association:

Phytochemicals and functional foods. Journal of the American Dietetic Association 95, 493-496 (1995)

BORNET, F.R.J.,BROUNS,F., TASHIRO, Y., DUVILLIER, V.: Nutritional aspects of short-chain fructooligosaccharides: natural occurence, chemistry, physiology and health implications. Digestive and Liver Disease 34, 111-120 (2002)

CAMACHO-RUBIO,F., JURADO-ALAMEDA, E.,GONZÁLEZ-TELLO, P.,LUZÓN GONZÁLEZ, G.: A comparative study of the activity of free and immobilized enzymes and its application to glucose isomerase. Chemical Engineering Science 51, 4159-4165 (1996) CAO,L.: Immobilised enzymes: science or art? Current Opinion in Chemical Biology 9, 217-226 (2005)

CARVALHO, W., SANTOS, J.C., CANILHA, L., SILVA, J.B.A.E., FELIPE, M.G.A., MANCILHA, I.M., SILVA, S.S.: A study on xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Ca-alginate entrapped cells in a stirred tank reactor.

Process Biochemistry 39, 2135-2141 (2004)

CATANA,R.,ELOY, M.,ROCHA, J.R.,FERREIRA, B.S., CABRAL, J.M.S.,FERNANDES,P.:

Stability evaluation of an immobilized enzyme system for inulin hydrolysis. Food Chemistry 101, 260-266 (2007)

CHELLAPANDIAN, M., SASTRY, C.M.: Covalent linking of alkaline protease on trichlorotriazine activated nylon. Bioprocess and Biosystems Engineering 15, 1615-7591 (1996)

CHEN, J.P.,MCGILL, S.D.: Enzymatic-hydrolysis of triglycerides by Rhizopus delemar immobilized on biomass support particles. Food Biotechnology 6, 1-18 (1992)

CHIANG, C.J.,LEE,W.C.: Immobilization of b-fructofuranosidases from Aspergillus on methacrylamide-based polymeric beads for production of fructooligosaccharides.

Biotechnology Progress 13, 577-582 (1997)

CHIBATA, I., TOSA, T., SATO, T.: Biotechnology. A Comprehensive Treatise. (Ed.: J.F.

Kennedy) Vol. 7a. VCH Verlag GmbH, Weinheim, pp. 653. (1987)

CHIEN, C.S., LEE, W.C., LIN, T.J.: Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzyme and Microbial Technology 29, 252-257 (2001)

CHUICHULCHERM, S.: An integrated system for the bioremediation of wastewater containing xenobiotics and toxic metals. Engineering in Life Sciences 4, 354-357 (2004) COOPER, G.R., MCDANIEL, V.: The determination of glucose by the o-toluidine method.

Clinical Chemistry 6, 159-170 (1970)

CORSINI,A.,MAGGI,F.M.,CATAPANO,A.L.: Pharmacology of competitive inhibitors of HMG-CoA reductase. Pharmacological Research 31, 9-27 (1995a)

CORSINI, A., RAITERI, M., SOMA, M.R., BERNINI, F., FUMAGALLI, R., PAOLETTI, R.:

Pathogenesis of atherosclerosis and the role of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. The American Journal of Cardiology 79, 21-28 (1995b)

CREMONINI, F., DI CARO, S., SANTARELLI, L., GABRIELLI, M., CANDELLI, M., NISTA, E.C.,LUPASCU,A.,GASBARRINI,G.,GASBARRINI,A.: Probiotics in antibiotic-associated diarrhoea. Digestive and Liver Disease 34, 78-80 (2002)

DAVISON, B.H., SCOTT, C.D.: A proposed biparticle fluidized-bed for lactic-acid fermentation and simultaneous adsorption. Biotechnology and Bioengineering 39, 365-368 (1992)

DEL-VAL, M.I., OTERO, C.: Biphasic aqueous media containing polyethylene glycol for the enzymatic synthesis of oligosaccharides from lactose. Enzyme and Microbial Technology 33, 118-126 (2003)

DEWEY,K.G.,HEINIG,M.J.,NOMMSEN-RIVERS,L.A.: Differences in morbidity between breast-fed and formula-fed infants. The Journal of Pediatrics 126, 696-702 (1995) SHEU, D.C., LIO, P.J., CHEN, S.T., LIN, C.T., DUAN, K.J.: Production of fructooligosaccharides in high yield using a mixed enzyme system of -fructofuranosidase and glucose oxidase. Biotechnology Letters 23, 1499-1503 (2001) DICKERSON, A.G.: A β-D-fructofuranosidase from Claviceps purpurea. Biochemical Journal 129, 263-272 (1972)

DOIG, S.D.,BOAM, A.T., LEAK, D.I., LIVINGSTON, A.G., STUCKEY, D.C.: A membrane bioreactor for biotransformations of hydrophobic molecules. Biotechnology and Bioengineering 58, 587-594 (1998)

D'SOUZA, S.F., KUBAL, B.S.: A cloth strip bioreactor with immobilized glucoamylase.

Journal of Biochemical and Biophysical Methods 51, 151-159 (2002)

DUMITRIU, E., SECUNDO, F., PATARIN, J., FECHETE, L.: Preparation and properties of lipase immobilized on MCM-36 support. Journal of Molecular Catalysis B-Enzymatic 22, 119-133 (2003)

EDDY, D.N.: Setting priorities for cancer control programs. Journal of the National Cancer Institute 76, 187-199 (1986)

EDELMAN, J., DICKERSON, A.G.: The metabolism of fructose polymers in plants.

Biochemical Journal 98, 787-794 (1996)

EUZENAT, O., GUIBERT, A., COMBES, D.: Production of fructo-oligosaccharides by levansucrase from Bacillus subtilis C4. Process Biochemistry 32, 237-243 (1997)

FARR, D.R.: Functional foods. Cancer Letters 114, 59-63 (1997)

FREEMAN, A., WOODLEY, J.M., LILLY, M.D.: In situ product removal as a tool for bioprocessing - an overview. Biotechnology 11, 1007-1012 (1993)

GHAZI,I.,DE SEGURA,A.G.,FERNANDEZ-ARROJO,L.,ALCALDE,M.,YATES,M.,ROJAS -CERVANTES,M.L.,PLOU,F.J.,BALLESTEROS,A.:Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides. Journal of Molecular Catalysis-B 35, 19-27 (2005)

GILBERT,L.C.: The functional food trend: what’s next and what Americans think about eggs. Journal of the American College of Nutrition 19, 507-512 (2000)

GIRONO, L.,DRIOLI, E.: Biocatalytic membrane reactors: applications and perspectives.

Trends in Biotechnology 18, 339-349 (2000)

GODJEVARGOVA, T., DAYAL, R., TURMANOVA, S.: Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane. Macromolecular Bioscience 4, 950-956 (2004) GODJEVARGOVA, T., NENKOVA, R.,KONSULOV, V.: Immobilization of glucose oxidase by acrylonitrile copolymer coated silica supports. Journal of Molecular Catalysis B:

Enzymatic 38, 59-64 (2006)

GOLDBERG, I.: Functional foods. Designer foods, Pharmafoods, Nutraceuticals.

Chapman & Hall. New York, London, ISBN 0-412-98851-8, 544 (1994)

GOLDSTEIN, L.: Methods in Enzymology. (Ed.: K. Mosbach). Vol. 44. Acad. Press, New York, p. 397 (1976)

GRAHAM, H., AMAN, P.: Composition and digestion in the pig gastrointestinal-tract of Jerusalem-artichoke tubers. Food Chemistry 22, 67-76 (1986)

GRITTENDEN,R.G.,PLAYNE,M.J.: Production, properties and applications of food-grade oligosaccharides. Trends in Food Science and Technology 7, 353-361 (1996)

GROBOILLOT,A.F.,BOADI, D.K.,PONCELET,D., NEUFELD, R.J.: Immobilisation of cells for application in the food industry. Critical Reviews in Biotechnology 14, 75-107 (1994)

HANG, Y.D., WOODAMS, E.E.: Optimization of enzymatic production of fructo-oligosaccharides from sucrose. Food Science and Technology – Lebensmittel – Wissenschaft und Technologie 29, 578-580 (1996)

HAYASHI,S.,NONOKUCHI,M.,IMADA,K.,UENO,H.: Production of fructosyl-transferring enzyme by Aureobasidium sp. ATCC 20524. Journal of Industrial Microbiology 5, 395-400 (1990)

HAYASHI,S., ITO,K., NONOGUCHI, M.,TAKASAKI, Y., IMADA, K.: Immobilization of a fructosyl-transferring enzyme from Aureobasidium sp. on shirasu porous-glass. Journal of Fermentation and Bioengineering 72, 68-70 (1991a)

HAYASHI, S., NONOGUCHI, M., TAKASAKI, Y., UENO, H., IMADA, K.: Purification and properties of beta-fructofuranosidase from Aureobasidium sp. ATCC-20524. Journal of Industrial Microbiology 7, 251-256 (1991b)

HAYASHI,S.,HAYASHI,T.,KINOSHITA,J.,TAKASAKI,Y.,IMADA,K.: Immobilization of beta-fructofuranosidase from Aureobasidium sp. ATCC 20524 on porous silica. Journal of Industrial Microbiology 9, 247-250 (1992)

HAYASHI, S., SASAO, S., TAKASAKI, Y., IMADA, K.: Immobilization of beta-fructofuranosidase from Aureobasidium on DEAE-cellulose. Journal of Industrial Microbiology 13, 103-105 (1994)

HAYASHI, S., YOSHIYAMA, T., FUJII, N., SHINOHARA, S.: Production of a novel syrup containing neofructo-oligosaccharides by the cells of Penicillium citrinum.

Biotechnology Letters 22, 1465-1469 (2000)

HILLIAM,M.: The market for functional foods. International Dairy Journal 8, 349-353 (1998)

http://www.sigmaaldrich.com/sigma/bulletin /gago20bul.pdf

ILLANES, A., WILSON, L., CABALLERO, E., FERNANDEZ-LAFUENTE, R., GUISAN, J.M.:

Crosslinked penicillin acylase aggregates for synthesis of beta-lactam antibiotics in organic medium. Applied Biochemistry and Biotechnology 133, 189-202 (2006)

JANG,K.H.,SONG,K.B.,KIM,J.S.,KIM,C.H.,CHUNG,B.H.,RHEE,S.K.: Production of levan using recombinant levansucrase immobilized on hydroxyapatite. Bioprocess and Biosystems Engineering 23, 89-93 (2000)

JIN CHUAN WU, SELVAM,W.,HUI HUI TEO,CHOW,Y., TALUKDER, M.M.R.,WON JAE

CHOI: Immobilization of Candida rugosa lipase by cross-linking with glutaraldehyde followed by entrapment in alginate beads. Biocatalysis and Biotransformation 24, 352-357 (2006)

KATAN F.B.: Functional foods. The Lancet 354, 794 (1999)

KENNEDY,J.F.,WHITE,C.A.: Handbook of Enzyme Biotechnology. (Ed.: A. Wiseman) Elis Horwood, Chichester, pp. 147 (1985)

KESHAVARZ, T.,BUCKE,C.,LILLY,M.D.: Immobilized Cells: Basics and Applications.

(Eds.: R.H. Wijffels, R.M. Buitelaar, C. Bucke, J. Tramper) Elsevier, Amsterdam, 505 (1996)

KIM, C.J., CHANG, Y.K., CHUN, G.T., JEONG, Y.H., LEE, S.J.: Continuous culture of immobilized Streptomyces cells for kasugamycin production. Biotechnology Progress 17, 453-461 (2001)

KOLIDA,S.,GIBSON,G.R.:Prebiotic capacity of inulin-type fructans. Journal of Nutrition 137, 2503-2506 (2007)

KRUSE,B.,SCHÜGERL,K.: Investigation of ethanol formation by Pachysolen tannophilus from xylose and glucose xylose co-substrates. Process Biochemistry 31, 389-408 (1996) LEIB, T.M., PEREIRA, C.J., VILLADSEN, J.: Bioreactors: a chemical engineering perspective. Chemical Engineering Science 56, 5485-5497 (2001)

LEVY,J.: Immunonutrition: the pediatric experience. Nutrition 14, 641-647 (1998) L'HOCINE,L.,WANG,Z.,JIANG,B.,XU,S.Y.: Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. Journal of Biotechnology 81, 79-84 (2000)

LÓPEZ-GALLEGO, F., BETANCOR, L., MATEO, C., HIDALGO, A., ALONSO-MORALES,N., DELLAMORA-ORTIZ,G.,GUISÁN,J.M.,FERNÁNDEZ-LAFUENTE,R.: Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology 119, 70-75 (2005)

LÓPEZ-MOLINA,D.,NAVARRO-MARTÍNEZ,M.D.,ROJAS-MELGAREJO,F.,HINER,A.N.P., CHAZARRA, S., RODRÍGUEZ-LÓPEZ, J.N.: Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.), Phytochemistry 66, 1476-1484 (2005)

LOSADA, M.A., OLLEROS, T.: Towards a healthier diet for the colon: the influence of fructooligosaccharides and lactobacilli on intestinal health. Nutrition Research 22, 71-84 (2002)

LÖNNERDAL,B.: Breast milk: A truly functional food. Nutrition 16, 509-511 (2000) LUO, J., RIZKALLA, S.W., ALAMOWITCH, C., BOUSSAIRI, A., BLAYO, A., BARRY, J.L.:

Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. American Journal of Clinical Nutrition 63, 939-945 (1996)

LYE, J.G., WOODLEY, J.M.: Application of in situ product-removal techniques to biocatalytic processes. Trends in Biotechnology 17, 395-402 (1999)

MAYER,A.,REZESSY-SZABO,J.M.,BOGNAR,C.,HOSCHKE,A.:Research for creation of functional foods with Bifidobacteria.Acta Alimentaria 32, 27-39 (2003a)

MAYER,A.,SEILER,H.,SCHERER,S.: Isolation of Bifidobacteria from Food and Human Faeces and Rapid Identification by Fourier Transform Infrared Spectroscopy. Annals of Microbiology 53, 299-313 (2003b)

MATTIASSON, B.: Immobilized Cells and Organelles. (Ed.: B. Mattiasson) Vol. 1. CRC Press, Boca Raton, pp. 3 (1983)

MATTIASON, B., LARSSON, M.: Extractive bioconversions with emphasis on solvent production. Biotechnology and Genetic Engineering Reviews 3, 137-174 (1985)

MOLIS, C., FLOURIE, B., OUARNE, F., GAILING, M.F., LARTIGUE, S., GUIBERT, A.:

Digestion, excretion, and energy value of fructooligosaccharides in healthy humans. American Journal of Clinical Nutrition 64, 324-328 (1996)

MOO-YOUNG, M., CHISTI, Y.: Biochemical Engineering in Biotechnology. Pure and Applied Chemistry 66, 117-136 (1994)

MORELLI, L.: Probiotics: clinics and/or nutrition. Digestive and Liver Disease 34, 8-11 (2002)

MOYNIHAN,P.J.: Update on the nomenclature of carbohydrates and their dental effects.

Journal of Dentistry 26, 209-218 (1998)

NINESS,K.R.:Inulin and oligofructose: What are they? Journal of Nutrition 129, 1402-1406 (1999)

NISHIZAWA, K., NAKAJIMA, M., NABETANI, H.: A forced-flow membrane reactor for transfructosylation using ceramic membrane. Biotechnology and Bioengineering 68, 92-97 (2000)

OZYILMAZ, G.,TUKEL,S.S.: Simultaneous and sequential co-immobilization of glucose oxidase and catalase onto florisil. Journal of Microbiology and Biotechnology 17, 960-967 (2007)

PARK, J.P., OH, T.K., YUN, J.W.: Purification and characterization of a novel transfructosylating enzyme from Bacillus macerans EG-6. Process Biochemistry 37, 471-476 (2001)

PARK, H.E., PARK, N.H., KIM, M.J., LEE, T.H., LEE, H.G., YANG, J.Y., CHA, J.:

Enzymatic synthesis of fructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953. Enzyme and Microbial Technology 32, 820-827 (2003) PATEL,V.,SAUNDERS,G.,BUCKE,C.: Production of fructooligosaccharides by Fusarium oxysporum. Biotechnology Letters 11, 1139-1144 (1994)

PEREZ,J.,MONTESINOS,J.L.,ALBIOL,J.,GODIA,F.: Nitrification by immobilized cells in a micro-ecological life support system using packed-bed bioreactors: an engineering study. Journal of Chemical Technology and Biotechnology 79, 742-754 (2004)

PFIFFERI, P.G., BONORA, V., SPAGNA, G., TRAMONTINI, M.: Immobilization of catalase on macromolecular supports activated with acid dyes. Process Biochemistry 28, 29-38 (1993)

POLGÁR, M.: A probiotikumok és prebiotikumok hatása a bélflóra kialakulásában.

Hippocrates 5, (2003)

QURESHI, N., MADDOX, I.S.: Continuous production of acetone-butanol-ethanol using immobilized cells of Clostridium acetobutylicum and integration with product removal by liquid-liquid-extraction. Journal of Fermentation and Bioengineering 80, 185-189 (1995)

RANI, A.S., DAS, M.L.M.., SATYANARAYANA, S.: Preparation and characterization of amyloglucosidase adsorbed on activated charcoal. Journal of Molecular Catalysis B:

Enzymatic 10, 471-476 (2000)

RAUTAVA, S., KALLIOMAKI, M.,ISOLAURI, E.: Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant.

Journal of Allergy and Clinical Immunology 109, 119-121 (2002)

RAPOSO,F.,BORJA,R.,SANCHEZ,E.,MARTIN,M.A.,MARTIN,A.: Inhibition kinetics of overall substrate and phenolics removals during the anaerobic digestion of two-phase olive mill effluents (TPOME) in suspended and immobilized cell reactors. Process Biochemistry 39, 425-435 (2003)

ROBERFROID,M.B.: What is beneficial for health? The concept of functional food. Food and Chemical Toxicology 37, 1039-1041 (1999)

ROCHA,J.R.,CATANA,R.,FERREIRA,B.S.,CABRAL,J.M.S.,FERNANDES,P.: Design and characterisation of an enzyme system for inulin hydrolysis. Food Chemistry 95, 77-82 (2006)

ROCÍO,M.,LANGA,S.,REVIRIEGO,C.,JIMÉNEZ,E.,MARÍN,M.L.,XAUS,J.,FERNÁNDEZ, L.,RODRÍGUEZ,J.M.: Human milk is a source of lactic acid bacteria for the infant gut.

The Journal of Pediatrics 143, 754-758 (2003)

RONKART, S.N.,BLECKER, C.S., FOURMANOIR, H., FOUGNIES, C.,DEROANNE, C., VAN

HERCK,J-C.,PAQUOT,M.: Isolation and identification of inulooligosaccharides resulting frominulin hydrolysis. Analytica Chimica Acta 604, 81-87 (2007)

SANDERS, M.E.: Overview of functional foods: Emphasis on probiotic bacteria.

International Dairy Journal 8, 341-347 (1998)

SANGEETHA, P.T.,RAMESH, M.N.,PRAPULLA, S.G.: Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Applied Microbiology and Biotechnology 65, 530-537 (2004a)

SANGEETHA, P.T., RAMESH, M.N., PRAPULLA, S.G.: Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochemistry 39, 753-758 (2004b)

SANGEETHA, P.T., RAMESH, M.N., PRAPULLA, S.G.: Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends in Food science and Technology 16, 442-457 (2005)

SCHAFFER, B., SZAKÁLY, S., FIGLER, M., LELOVICS, ZS.: A magyar probiotikus K+F program. Új Diéta-A magyar dietetikusok lapja, 2005/4/6 (2005)

SCHOLZ-AHRENS,K.,SCHAAFSMA,G., VAN DEN HEUVEL,E.G.,SCHREZENMEIR,J.: Effect of prebiotics on mineral metabolism. American Journal of Clinical Nutrition 73, 459-464 (2001)

SCHÜGERL, K.: Three-phase-biofluidization - Application of three-phase fluidization in the biotechnology - A review. Chemical Engineering Science 52, 3661-3668 (1997) SCHÜGERL, K.: Integrated processing of biotechnology products. Biotechnology Advances 18, 581-599 (2000)

SEYHAN, T., ALPTEKIN, O.: Immobilization and kinetics of catalase onto magnesium silicate. Process Biochemistry 39, 2149-2155 (2004)

SISAK,CS.,BOROSS,L.,OROSZ,L.,SZAJÁNI,B.: Acta Biologica Debrecina. Tom 22. IX.

Fermentációs Kollokvium. Elıadás összefoglalók, 26 (2001)

SISAK, CS.: Mőszaki Kémiai Napok Veszprém, 2002. április 16-18., Konferenciakiadvány, 1 (2002)

SISAK, C., CSANÁDI, Z., RÓNAY, E., SZAJÁNI, B.: Elimination of glucose in egg white using immobilized glucose oxidase. Enzyme and Microbial Technology 39, 1002-1007 (2006)

SJÖMAN, E.,MÄNTTÄRI, M.,NYSTRÖM,M., KOIVIKKO,H.,HEIKKILÄ, H.:Separation of xylose from glucose by nanofiltration from concentrated monosaccharide solutions.

Journal of Membrane Science 292,106-115 (2007)

SZAJÁNI,B.,MOLNÁR,A.,KLÁMAR,G.,KÁLMÁN,M.: Preparation, characterization and potential application of an immobilized glucose oxidase. Applied Biochemistry and Biotechnology, 14, 37-47 (1987)

SZEKER,K.,BECZNER,J.,HALASZ,A.,MAYER,A.,REZESSY-SZABO,J.M.,GALFI,P.:

In vitro adhesion of lactic acid bacteria and bifidobacteria to Caco-2P and IEC-18 cells.

Acta Alimentaria 34, 91-99 (2005)

TANRISEVEN, A., ASLAN, Y.: Immobilization of Pectinex Ultra SP-L to produce fructooligosaccharides. Enzyme and Microbial Technology 36, 550-554 (2005)

TUNGLAND,B.C., MEYER, D.: Nondigestible oligo- and polysaccharides (dietary fiber):

their physiology and role in human health and food. Comprehensive Reviews in Food Science and Food Safety 3, 73-77 (2002)

YUN, J.W., JUNG, K.H., OH, J.W., LEE, J.H.: Semibatch production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans.

Applied Biochemistry and Biotechniology 24, 299-308 (1990)

YUN, J.W., SONG, S.K.: The production of high-content fructo-oligosaccharides from sucrose by the mixed-enzyme system of fructosyltransferase and glucose-oxidase.

Biotechnology Letters 15, 573-576 (1993)

YUN, J.W.: Fructooligosaccharides-Occurrence, preparation and application. Enzyme and Microbial Technology 19, 107-117 (1996)

VAN BALKEN, J.A.M., VAN DOOREN,T.J.G.M., VAN DEN TWEEL,W.J.J., KAMPHUIS,J., MEIJER, E.M.: Production of 1-kestose with intact mycelium of Aspergillus phoenicis containing sucrose 1F-fructosyltransferase. Applied Microbiology and Biotechnology 35, 216-221 (1991)

VAN DE WIELE, T., BOON,N., POSSEMIERS, S.,JACOBS, H.,VERSTRAETE, W.: Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem.

FEMS Microbiology Ecology 51, 143-153 (2004)

VANLOO, J., COUSSEMENT, P., DELEENHEER, L., HOEBREGS, H., SMITS, G.: On the presence of inulin and oligofructose as natural ingredients in the western diet. Critical Reviews in Food Science and Nutrition 35, 525-552 (1995)

VAN'T RIET,K., TRAMPER,J.: Basic bioreactor design. Marcel Dekker Inc., New York, NY, 1991

VÁRDAI, E., KOMÁROMY, P.,LÖVITUSZ, É., SISAK, CS.: Proceedings CIIA and MÉTE International Symposium in Energy and Food Industry, Hungarian Scientific Society for Food Industry, Budapest, Co. 1.4. (1998)

VLAEV,S.D.,VALEVA,M.: An extension of the pressure-test technique for immobilized biocatalyst preparations. Biotechnology and Bioengineering 39, 361-364 (1992)

VONACH, R., LENDL, B., KELLNER, R.: High-performance liquid chromatography with real-time Fourier-transform infrared detection for the determination of carbohydrates,

alcohols and organic acids in wines.

Journal of Chromatography A 824,159-167 (1998)

WALKER, W.A., DUFFY, L.C.: Diet and bacterial colonization: role of probiotics and prebiotics. Journal of Nutritional Biochemistry 9, 668-675 (1998)

WETALL, H.H., HERSH, L.S.: Preparation and characterization of glucose. oxidase covalently linked to nickel oxide. Biochemical and Biophysical Acta 206, 54-60 (1970) ZHOU, Q.Z.K., CHEN, X.D.: Immobilization of β-galactosidase on graphite surface by glutaraldehyde. Journal of Food Engineering 48, 69-74 (2001)

ZIJLSTRA,G.M.,DE GOOIJER,C.D.,TRAMPER,H.: Extractive bioconversions in aqueous

TÉZISEK

I. A fruktooligoszacharidok szintézisére alkalmazandó, fruktozil-transzferáz aktivitással rendelkezı kereskedelmi Pectinex Ultra SP-L enzimkészítményt rögzítettem abból a célból, hogy megnöveljem a biokatalizátor stabilitását. Az Amberlite IRA 900 Cl típusú anioncserélı gyantát alkalmasnak találtam hordozónak. A szilárd fázisú biokatalizátor elıállítására egy újszerő, kétlépéses rögzítési technikát dolgoztam ki. Elsı lépésben az enzimoldatot az aktivált gyantán adszorbeáltattam, így ionos jellegő kötések alakultak ki a gyanta és a fehérjemolekulák között. Második lépésben a gyantán megkötıdött enzimmolekulák között – stabilizálás céljából – keresztkötéseket alakítottam ki glutáraldehid segítségével. A kötıreagens nemcsak a fruktozil-transzferáz molekulákat vitte keresztkötésbe, hanem a Pectinex Ultra SP-L készítmény fı tömegét kitevı egyéb fehérjéket is. Így egy stabilizáló „fehérjeháló” alakult ki a biokatalizátorszemcsék külsı és belsı felületén. Az általam kidolgozott újszerő enzimrögzítési módszer tehát úgy tekinthetı, mint ionos és kovalens kötések konszekutív létrehozásán, továbbá segédfehérjék stabilizáló hatásán alapuló módszer. Fruktozil-transzferáz immobilizálására a módszert más szerzık biztosan nem alkalmazták, de alapos szakirodalmi vizsgálódásaim szerint más enzimre sem található ilyen módszer. (2.

publikáció)

II. Meghatároztam a fenti rögzítési módszer optimális körülményeit. Ennek során 16,7 g g

-1 biokatalizátor/hordozó arányt, 0,25 % kovalens rögzítıágens koncentrációt és 15 min keresztkötési idıt állapítottam meg, mint optimumokat. A kialakított immobilizált enzimkészítmény mőködési paramétereinek vizsgálata során pH=5,6 és 53°C értékeket kaptam optimumként. Az ezen körülmények között létrehozott és alkalmazott biokatalizátor felezési ideje ~ 40 nap, tehát mőködési stabilitása gyakorlati szempontból megfelelı. A megállapított optimális mőködési paraméterek mellett az új típusú szilárd fázisú biokatalizátor alkalmazásával, rázatott lombikos kísérletekben vizsgáltam a fruktooligoszacharidok elıállításának lehetıségét. A kísérletek során az optimális körülmények között 64,4 %-os termék-hozamot sikerült elérnem, amely megfelel a szakirodalomban talált adatoknak. (2. publikáció)

III. A fruktooligoszacharid szintézis reakció melléktermékeként keletkezı glükóz eliminálására glükóz-oxidáz – kataláz koimmobilizált enzimkészítményt állítottam elı.

Az alkalmazott hordozó és a kombinált rögzítési módszer analóg a fentiekben bemutatott módszerrel, de mivel azt a jelen esetben glükóz-oxidáz – kataláz rendszer szimultán koimmobilizálására alkalmaztam – a vonatkozó szakirodalom adatainak vizsgálata alapján – újnak minısül. Megállapítottam, hogy a koimmobilizált enzimek aktivitásai jó közelítéssel azonosak azokkal az aktivitásértékekkel, amelyeket akkor kaptam, amikor a két enzimet külön-külön rögzítettem. Meghatároztam a preparátum optimális rögzítési paramétereit (0,5 % glutáraldehid koncentráció és 60 min rögzítési idı), valamint a készítmény alkalmazási optimumait (pH=5,1 és 30°C hımérséklet). (1.

és 3. publikáció)

IV. A kialakított rögzített biokatalizátorok felhasználásával egy, az együttes termék-elıállításra és melléktermék-eltávolításra alkalmas, eredeti konfigurációjú, laboratóriumi mérető, két, oszlopból álló, integrált reaktorrendszert állítottam össze és vizsgáltam a kesztóz, nisztóz és fruktozil-nisztóz fruktooligoszacharidok elıállításának lehetıségét. A két oszlopreaktor közül a szintézisreaktor állóágyas, a glükóz-oxidációs reaktor kevert ágyas üzemben mőködött. A mőködési ciklusuk úgy volt beállítva, hogy a ciklus alatt azonos mennyiségő glükóz keletkezett a szintézis reaktorban, mint amennyi eliminálódott a glükóz-oxidációs reaktorban. Ezután a kapcsolt csı- és szeleprendszer és szivattyúk felhasználásával megcseréltem a két reaktor mőködési módját, majd egy újabb ciklust indítottam el. A ciklikus mőködéső kétreaktoros reaktorblokk az idıben integrált folyamatok megvalósítására alkalmas reaktorok új típusa.

A reaktorblokkban több ciklusból álló kísérletsorozatban 74,44 %-os termékhozamot sikerült elérnem, amely lényegesen nagyobb, mint a melléktermék eltávolítása nélkül kapott érték. (1. és 5. publikáció)

THESES

I. I immobilized a commercial grade enzyme product, Pectinex Ultra SP-L having fructosyl-transferase activity to enhance the stability of the biocatalyst. I found applicable the Amberlite IRA 900 Cl type anionic ion exchange resin as immobilization matrix. I established a new two step immobilization method for this biocatalyst: In first step the enzyme solution was adsorbed onto the activated resin particles and ionic bounds were formed. The second step was a covalent bound formation with glutaraldehyde between the protein molecules and enhanced the stability of the solid phase biocatalyst. (2. publication)

II. I determined the optimal immobilization parameters. They were as follows: 16.7 g g-1 biocatalyst/matrix ratio, 0.25 % covalent binding agent concentration and 15 min cross-linking time. I determined the optimal operational parameters of the developed biocatalyst, they were pH=5.6 and 53°C temperature. I studied the stability of the established solid phase biocatalyst and I appointed 40 day half-time period, which value is appropriate from the practical point of view. I studied the production of

II. I determined the optimal immobilization parameters. They were as follows: 16.7 g g-1 biocatalyst/matrix ratio, 0.25 % covalent binding agent concentration and 15 min cross-linking time. I determined the optimal operational parameters of the developed biocatalyst, they were pH=5.6 and 53°C temperature. I studied the stability of the established solid phase biocatalyst and I appointed 40 day half-time period, which value is appropriate from the practical point of view. I studied the production of