• Nem Talált Eredményt

Optical Spectroscopy 2018

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Optical Spectroscopy 2018"

Copied!
47
0
0

Teljes szövegt

(1)

1

Optical Spectroscopy 2018

1.Fluorescent dye probes (KM), 26 Sept 2.Photochromic materials (BP), 3 Oct

3.Luminescent metal complexes (BP), 10 Oct 4.Photodynamic therapy (VT), 17 Oct

5.Fluorescence imaging (VT), 24 Oct

6.Near Infrared Spectroscopy (GSz) 31 Oct

7.Spectroscopy of chiral compounds (KM), 7 Nov

(2)

2

ALAPISMERETEK

(vizsgára, doktori szigorlatra átismételni)

Kémiai anyagszerkezettan

V. OPTIKAI SPEKTROSZKÓPIA (Optsp05)

VI. A MOLEKULÁK FORGÓMOZGÁSA (Forgo05) VII. A MOLEKULÁK REZGŐMOZGÁSA (Rezgo05)

VIII. A MOLEKULÁK ELEKTRONSZERKEZETE (Molel05)

X. LÉZEREK, LÉZERSPEKTROSZKÓPIAI MÓDSZEREK (Lezer05)

(3)

3

Nobel prize in Chemistry 2008

Martin Chalfie

Osamu Simamura

Roger Y. Tsien

GFP = Green

Fluorescent Protein

(4)

4

Nobel prize in Chemistry 2014

Eric

Betzig Stefan W.

Hell

William E.

Moerner

STED = Stimulated Emission Depletion

(5)

Jablonski-diagram

V R

V R

S 0 S 1

T 1 T 2 S 2

s z i n g u l e t t a b s z o r b c i ó

I S C

I C

f lu o r e s z c e n c i a

t r ip l e t t a b s z o r b c i ó

f o s z f o r e s z c e n c i a I C

V R : I S C : I C : S : T :

r e z g é s i r e l a x á c i ó

S p i n v á l t ó á t m e n e t ( I n t e r S y s t e m C r o s s i n g ) b e l s ő k o n v e r z i ó ( I n t e r n a l C o n v e r s i o n )

s z i n g u l e t t t r ip l e t t

v = 0 v = n

s u g á r z á s n é l k ü l i á t m e n e t s u g á r z á s o s á t m e n e t

(6)

6

Advantages of detection of fluorescence over detection of absorbtion

1. Sample may be non-transparent 2. Higher sensitivity

3. Triple selectivity

- excitation wavelength - emission wavelength - delay time

Disadvantage: only a few type compounds are fluorescent

(7)

7

Fluoreszcent dye probes

Function: provide information on local environment

J. R. LAKOWICZ, Principles of Fluorescence Spectroscopy, 2nd Edition, Kluwer Academic, London, 1999

(8)

Main points

8

 Instruments

stationary fluorescence spectrometer time-correlated single photon counting

 Molecular chemosensors: detection of ions, molecules

 Polarity sensors

Viscosity sensors

 Fluorescence of proteins / triptophan

 Distance measurement : FRET

(9)

9

Spectrofluorimeters

-stationary

- time-resolved (measures F, time-correlated single photon counting)

(10)

10

Stacionárius

(11)

11

Excitation and emission flurescence spectra

Excitation sp: similar to absorption sp, bands of S0 →S1, S0 →S2, ∙∙∙

transitions

Emission sp: only S1 →S0,

IF is relative, depends on instrument! a.u.!

nm

exc

em λ

λ

aI.uF.

(12)

12

Fluorescence quantum yield

 

absorbed photons

N

photons emitted

N

F

Determination of F

- integrating sphere - standard

2 2 R X X

R R

R X

X n

n A

A I

I

IX,IR integrated intensities of fluorescence bands AX, AR absorbances at excitation wavelength

nX, nR indeces of refraction

X: sample R: standard

(13)

13

Time-correlated single photon counting

(14)

14

Fluorescence decay curve

IRF

  



F F

A t t

I exp

(15)

15

Chemosensors: fluorescent detection of non- fluorescent ions, molecules

(16)

16

CoroNa Green Chemosensor for fluorescent detection of Na+ ions

(17)

17

Distribution of Na+ ions eloszlása neurons,

Microscopic image with application of CoroNa Green

W. J. Tyler et al. , PlosOne 3, e3511 (2008)

Chemosensor for fluorescent detection of Na+ ions

(18)

18

MQAE

Its operation is based on dynamic quenching

Selective: nitrate, phosphate – no quenching, Br-, I- quenching Chemosensor for fluorescent detection of Cl- ions

(19)

19

Distribution of Cl- ions in neurons

IF image FLIM: fluorescence lifetime imaging

Chemosensor for fluorescent detection of Cl- ions

(20)

20

M + h

M + h

M + 

M + Q M*

Dynamic quenching: Stern-Volmer equation

(21)

21

Deactivation rates and fluorescence quantum yields in the absence and presence of quencher

No quencher

 

 

 

k M k M

dt M d

nr f

With quencher

 

k

 

M k

   

M k M

 

Q

dt M d

q nr

f

     

f nr f nr

f 0 f

k k

k M

k M

k

M Φ k

 

M k

   

M

 

k M

 

Q k k k k

 

Q

k

M Φ k

q nr

f

f q

nr f

f

(22)

22

   

Q

k k

1 k k

k

Q k

k k

Φ Φ

nr f

q nr

f

q nr

0 f

 

 

 

 

Q

k k

1 k I

I

nr f

q F

F 0

 

Stern-Volmer equation

(23)

23

Polarity sensors

Nile red

water, - methanol - ethanol - acetonitrile - dimethylformamide, 6.

acetone - ethyl acetate - dichloromethane - n-hexane - methyl-tert- butylether - cyclohexane - toluene.

(24)

24

Solvatochromic dye: color depends on solvent

(25)

25

The accumulation of oil droplets (golden dots). Red represents chlorophyll autofluorescence.

Confocal image of the algae stained by Nile red

(26)

26

S0 S1

solvent polarity

„charge transfer (CT)” dyes

(27)

27

Effect of polarity on spectra:

Lippert equation

+

_

- - - -

+ + + +

2a

G v. E

(28)

28

Lippert equation

E G

2 VR

2 2 F 3

A

E

1 n

2

1 n

1 2

1 a

h 2

h      

 

 

 

+

_

- - - -

+ + + +

2a

G v. E

(29)

29

Stokes shifts of naphthalane derivatives

Lakowicz, p. 191

ethanol-water solvent mixtures

(30)

Viscosity sensors

30

(31)

31

Orientation relaxation of dye solutes (rotational diffusion)

M 0

or τ

kT fC ηV

τ  

Stokes-Einstein-Debye equation

f shape factor (spheres f = 1) C friction factor (0<C<1)

 local viscosity

VM molecular volume T temperaturet

k Boltzmann constant

(32)

32

Fluorescence of nile blue on ion exchange resin

Habuchi et al., (Sapporo), Anal. Chem. 73, 366-372 (2001)

Resin: styrene – divinylbenzene copolymer

Cross-linking frequency (): 8 % divinylbenzene Ionexchange group: Na-sulphonate

(33)

33

Determination of or :

via measuring fluorescence depolarization

(34)

34

Fluorescence of nile blue adsorbed on ion exchange resin

(35)

35

Dual fluorescence:

twisted intramoleculat charge transfer = TICT

Fluoresc. spectrum of DMANCN in ethyleneglycol, the ratio of the intensities of the two bands varies with viscosity

Lakowicz, p. 201

(36)

36

CH2 CH NH2

COOH

*

*

COOH NH2 CH2 CH

HO

*

COOH NH2 CH2 CH

NH

Fluorescent amino acids

phenyl alanine

tyrosine

triptophane

(37)

37

Absorption and fluorescence spectra of triptophane

(water, pH 7) Lakowicz, p. 446

(38)

38

Lakowicz p. 453

Fluorescence spectra of tryptophane in different local environments

1) Apoazurin Pfl 2) T1 ribonuclease 3) staphillococcus

nuclease 4) glucagon

(39)

39

Lakowicz, p. 461

(40)

40

Lakowicz, p. 461

(41)

41

Resonance energy transfer

(Förster resonance energy transfer = FRET)

Molecular ruler to measure distances!

Resolution of optical microscope: max. ~ 200 nm, depends on

FRET: detection of 2-10 nm distances

(42)

42

Donor dye – acceptor dye, fluorescence band of D overlaps with absorption band of A

(43)

43

If D and A are close, FRET,

exciting D, the energy is transferred to A, fluorescence of A is detectable

The FRET effect is proportional to 1/r6

(44)

44

Example for application of FRET: study of DNA – phospholipid interaction

C. Madeira, Biophys. J. 85, 3106 (2003)

(45)

45

Acceptor

Donor: EtBr

(ethidium bromide)

N

C2H5

NH2 H2N

+

Br-

(46)

46

EtBr absorption

BODIPY fluorescence

(47)

47

Conformational changes of proteins can be monitored

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

To determine how the molecular surface characteristics of otherwise identical polystyrene NPs could influence tissue penetration and accumulation, I applied optimized

The studies were focused on the altered behavior of silica (SiO 2 ) and polystyrene (PS) nanoparticles coated with distinct functional groups; ranging from

Medium-resolution spectroscopy of the binary system Pleione (28 Tau), obtained over the time period October 2004 (JD 2453300) to March 2018 (JD 2458185) by the ARAS Spectroscopy

Hydration, viscoelastic properties and dominant structure of thin polymer layers on the surface of waveguide material were evaluated using optical waveguide lightmode

hollow organosilica beads (HOBs) as reference beads to set EV size gates in flow cytometry

The basics of quantum mechanics The structure of the hydrogen atom Structure of many-electron atoms Optical spectroscopy.. Rotational spectroscopy

The basics of quantum mechanics The structure of the hydrogen atom Structure of many-electron atoms Optical spectroscopy.. Rotational spectroscopy

Ion scattering spectroscopy (LEIS) was used in conjunction with temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) for the study of the adsorption