• Nem Talált Eredményt

Underdamped harmonic oscillator

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Underdamped harmonic oscillator"

Copied!
32
0
0

Teljes szövegt

(1)

DE, StudentNumber: 92

Underdamped harmonic oscillator

Let

a= 0.6, b= 0.9, t0 = 0, t1 = 5.9, (1)

ic0 = 1.1, ic1=−0.7, (2)

y00(t) +ay0(t) +by(t) =f(t). (3)

The first order form of (3) is d dt

y v

=A y

v

+B(f(t)) =

0 1

−b −a y v

+

0 1

(f(t)), (4)

wherey0=v. The initial condition (2) is

~ y(0) =

y(0) v(0)

= ic0

ic1

. (5)

1, A

Exercise. Let f(t) = 0, (2) be true. How much isy(t1) ?

Answers. A: 0.132345 B: 0.163314 C: 0.20153 D: 0.248688 E: 0.306881 2, Aa

Exercise. Letf(t) = 0, (2) be true. LetUt1,t0(~z) =~y(t1), where~y(t) is the solution of (4) with the initial condition

~

y(t0) =~z. How much is the first component of

Ut1,t0( ic0

ic1

).

Answers. A: 0.163314 B: 0.20153 C: 0.248688 D: 0.306881 E: 0.378691 3, Ab

Exercise. Letf(t) = 0, (2) be true. LetUt1,t0(~z) =~y(t1), where~y(t) is the solution of (4) with the initial condition

~

y(t0) =~z. Compute Ut1,t0(~z), if~z=n1(0.2,0)T +n2(0,0.2)T, n1,2∈ {0,1,2,3,4,5}. Plot these points!

(2)

Answers.

4, Ac

Exercise. f(t) = 0, (2) is true. Solve the following algebro-differential equation!

y0=v, v0 =−spring−f riction, spring=by, f riction=av.

How much isspring(t1) ?

Answers. A: 0.119111 B: 0.146983 C: 0.181377 D: 0.223819 E: 0.276193 5, B

Exercise. f(t) = 0. The general solution of (3) is

y(t) =C1eλ1t+C2eλ2t, =(λ1)>0.

How much is=(C1), if (2) is satisfied?

Answers. A: 0.109392 B: 0.134989 C: 0.166577 D: 0.205556 E: 0.253656 6, Ba

Exercise. f(t) = 0. The general solution of (4) is

~

y(t) =C1eλ1t~v1+C2eλ2t~v2, =(λ1)>0, ~v1 = (1, s21)T, ~v2 = (1, s22)T How much is=(C1), if (10) is satisfied?

Answers. A: 0.109392 B: 0.134989 C: 0.166577 D: 0.205556 E: 0.253656 7, C

Exercise. f(t) = 0. The general solution of (3) is

y(t) =eαt(C1cosωt+C2sinωt).

(3)

8, D

Exercise. f(t) = 0, (2), (3) true. Plot y(t) !

Answers.

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

0.5 1.0

1 2 3 4 5 6

-0.5 0.5 1.0

9, E

Exercise. f(t) = 0, (2), (3) is true. Plot y(t), y0(t)-t on a single figure!

Answers.

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-1.0 -0.5 0.5 1.0

1 2 3 4 5 6

-0.5 0.5 1.0

10, F

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R2, γ(t) = (y(t), v(t))T parametric curve!

(4)

Answers.

-0.5 0.5 1.0

-1.0 -0.5 0.5

0.5 1.0

-0.6 -0.4 -0.2

-0.5 0.5 1.0

-0.8 -0.6 -0.4 -0.2 0.2

-0.5 0.5 1.0

-0.8 -0.6 -0.4 -0.2 0.2 0.4

11, G

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R3, γ(t) = (t, y(t), v(t))T parametric curve!

0

2

4

6 0.0

0.5 1.0---0.00.60.40.2

0

2

4

6 -0.5

0.0 0.5

1.0--1.00.5 0.0

0.5

0

2

4

6-0.5 0.0 0.5

1.0-0.5

0.0 0

2

4

6-0.5 0.0

0.51.0-0.5 0.0

(5)

12, H

Exercise. Plot the (y, v)T →A(y, v)T vector field!

Answers.

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

13, Ha

Exercise. f(t) = 0. Plot the (y, v)T →A(y, v)T vector field and a solution of (4)!

(6)

Answers.

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

14, I

Exercise. Compute U = exp(1.4A) ! How much isU11 ?

Answers. A: 0.217904 B: 0.268893 C: 0.331814 D: 0.409459 E: 0.505272 15, J

Exercise. Compute U(t) = exp(tA)-t and plot its first column’s functions!

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

(7)

16, K

Exercise. f(t) = 0, (2) true, y(0) = 1, y0(0) = 0. Plot (y(t), y0(t))T !

Answers.

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

17, L

Exercise. Compute U(t) = exp(tA)-t and plot its second column’s functions!

Answers.

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

1 2 3 4 5 6

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

18, M

Exercise. f(t) = 0, (2) true, y(0) = 0, y0(0) = 1. Plot (y(t), y0(t))T !

(8)

Answers.

1 2 3 4 5 6

-0.5 0.5 1.0

1 2 3 4 5 6

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

1 2 3 4 5 6

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

1 2 3 4 5 6

-0.5 0.5 1.0

Overdamped harmonic oscillator

Let

a= 0, b= 1.84, t0 = 0, t1 = 2.6, (6)

ic0= 0.7, ic1 = 1.4, (7)

y00(t) +ay0(t) +by(t) =f(t). (8)

The first order form of (8) is d dt

y v

=A y

v

+B(f(t)) =

0 1

−b −a y v

+

0 1

(f(t)), (9)

wherey0=v. The initial condition (7) is

~ y(0) =

y(0) v(0)

= ic0

ic1

. (10)

19, A

Exercise. Let f(t) = 0, (2) be true. How much isy(t1) ?

Answers. A: 0.162461 B: 0.200477 C: 0.247389 D: 0.305278 E: 0.376713 20, Aa

Exercise. Letf(t) = 0, (2) be true. LetUt1,t0(~z) =~y(t1), where~y(t) is the solution of (4) with the initial condition

~

y(t0) =~z. How much is the first component of

Ut1,t0( ic0

ic1

).

Answers. A: 0.106689 B: 0.131654 C: 0.162461 D: 0.200477 E: 0.247389

(9)

21, Ab

Exercise. Let f(t) = 0, (2) be true. Let Ut1/6,t0(~z) = ~y(t1/6), where ~y(t) is the solution of (4) with the initial condition~y(t0) =~z. ComputeUt1/6,t0(~z), if~z=n1(0.2,0)T+n2(0,0.2)T, n1,2∈ {0,1,2,3,4,5}. Plot these points!

Answers.

22, Ac

Exercise. f(t) = 0, (2) is true. Solve the following algebro-differential equation!

y0=v, v0 =−spring−f riction, spring=by, f riction=av.

How much isspring(t1) ?

Answers. A: 0.298929 B: 0.368878 C: 0.455196 D: 0.561711 E: 0.693152 23, B

Exercise. f(t) = 0. The general solution of (3) is

y(t) =C1eλ1t+C2eλ2t, λ1 > λ2. How much isC1, if (2) is satisfied?

Answers. A: 0. B: 0. C: 0. D: 0. E: 0.

24, Ba

Exercise. f(t) = 0. The general solution of (4) is

~

y(t) =C1eλ1t~v1+C2eλ2t~v2, λ1> λ2, ~v1 = (1, s21)T, ~v2 = (1, s22)T How much is=(C1), if (10) is satisfied?

Answers. A: 1.31779 B: 1.62615 C: 2.00667 D: 2.47623 E: 3.05566

(10)

25, D

Exercise. f(t) = 0, (2), (3) true. Plot y(t) !

Answers.

0.5 1.0 1.5 2.0 2.5

0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0 2.5

0.2 0.4 0.6 0.8

0.5 1.0 1.5 2.0 2.5 0.6

0.7 0.8 0.9 1.0 1.1

0.5 1.0 1.5 2.0 2.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9

26, E

Exercise. f(t) = 0, (2), (3) is true. Plot y(t), y0(t)-t on a single figure!

Answers.

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0 1.5

0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0 1.5

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0 1.5

27, F

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R2, γ(t) = (y(t), v(t))T parametric curve!

(11)

Answers.

0.60.70.80.91.01.1 0.0

0.5 1.0 1.5

0.2 0.4 0.6 0.8

-0.6 -0.4 -0.2 0.2 0.4

0.4 0.5 0.6 0.7 0.8 0.9

-0.4 -0.2 0.2 0.4

0.2 0.4 0.6 0.8 1.0

-0.5 0.5 1.0 1.5

28, G

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R3, γ(t) = (t, y(t), v(t))T parametric curve!

(12)

Answers.

0

1

2

0.4 0.60.8--0.40.2

0.0 0.2 0.4

0

1 0.0 2

0.5 1.0

-0.5 0.0

0.5 1.0

0

1

2 0.60.81.0

0.0 0.5

1.0 0

1

2 0.00.20.40.60.8-0.5 0.0

29, H

Exercise. Plot the (y, v)T →A(y, v)T vector field!

(13)

Answers.

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

30, Ha

Exercise. f(t) = 0. Plot the (y, v)T →A(y, v)T vector field and a solution of (4)!

(14)

Answers.

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

31, I

Exercise. Compute U = exp(1.4A) ! How much isU11 ?

Answers. A: 0.206568 B: 0.254905 C: 0.314552 D: 0.388157 E: 0.478986 32, J

Exercise. Compute U(t) = exp(tA)-t and plot its first column’s functions!

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0

0.5 1.0 1.5 2.0 2.5

-0.2 0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0

(15)

33, K

Exercise. f(t) = 0, (2) true, y(0) = 1, y0(0) = 0. Plot (y(t), y0(t))T !

Answers.

0.5 1.0 1.5 2.0 2.5

-0.2 0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0

34, L

Exercise. Compute U(t) = exp(tA)-t and plot its second column’s functions!

Answers.

0.5 1.0 1.5 2.0 2.5

-0.2 0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0 2.5

0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0 2.5

-0.1 0.1 0.2 0.3 0.4 0.5

0.5 1.0 1.5 2.0 2.5

0.2 0.4 0.6 0.8 1.0

35, M

Exercise. f(t) = 0, (2) true, y(0) = 0, y0(0) = 1. Plot (y(t), y0(t))T !

(16)

Answers.

0.5 1.0 1.5 2.0 2.5

0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0 2.5

0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0 2.5

-0.1 0.1 0.2 0.3 0.4 0.5

0.5 1.0 1.5 2.0 2.5

-0.2 0.2 0.4 0.6 0.8 1.0

Critical damping of a harmonic oscillator

Let

a= 2., b= 0.64, t0 = 2., t1= 2., (11)

ic0= 1., ic1 = 0.7, (12)

y00(t) +ay0(t) +by(t) =f(t). (13)

The first order form of (13) is d dt

y v

=A y

v

+B(f(t)) =

0 1

−b −a y v

+

0 1

(f(t)), (14)

wherey0=v. The initial condition (12) is

~ y(0) =

y(0) v(0)

= ic0

ic1

. (15)

36, A

Exercise. Let f(t) = 0, (2) be true. How much isy(t1) ?

Answers. A: 0.34828 B: 0.429777 C: 0.530345 D: 0.654446 E: 0.807586 37, Aa

Exercise. Letf(t) = 0, (2) be true. LetUt1,t0(~z) =~y(t1), where~y(t) is the solution of (4) with the initial condition

~

y(t0) =~z. How much is the first component of

Ut1,t0( ic0

ic1

).

Answers. A: 0.654446 B: 0.807586 C: 0.996561 D: 1.22976 E: 1.51752

(17)

38, Ab

Exercise. Let f(t) = 0, (2) be true. Let Ut1/6,t0(~z) = ~y(t1/6), where ~y(t) is the solution of (4) with the initial condition~y(t0) =~z. ComputeUt1/6,t0(~z), if~z=n1(0.2,0)T+n2(0,0.2)T, n1,2∈ {0,1,2,3,4,5}. Plot these points!

Answers.

39, Ac

Exercise. f(t) = 0, (2) is true. Solve the following algebro-differential equation!

y0=v, v0 =−spring−f riction, spring=by, f riction=av.

How much isspring(t1) ?

Answers. A: 0.275057 B: 0.339421 C: 0.418845 D: 0.516855 E: 0.637799 40, B

Exercise. f(t) = 0. The general solution of (3) is

y(t) =C1eλt+C2teλt. How much isC1, if (2) is satisfied?

Answers. A: -0.0656704 B: -0.0810373 C: -0.1 D: -0.1234 E: -0.152276 41, Ba

Exercise. f(t) = 0. The general solution of (4) is

~

y(t) =C1eλ1t~v1+C2eλ2t~v2, How much isC1(~v2)1, if (10) is satisfied?

Answers. A: -0.0656704 B: -0.0810373 C: -0.1 D: -0.1234 E: -0.152276

(18)

42, D

Exercise. f(t) = 0, (2), (3) true. Plot y(t) !

Answers.

0.5 1.0 1.5 2.0

1.05 1.10 1.15 1.20 1.25

0.5 1.0 1.5 2.0

0.9 1.0 1.1

0.5 1.0 1.5 2.0

0.7 0.8 0.9 1.0 1.1

0.5 1.0 1.5 2.0

0.95 1.00 1.05 1.10 1.15 1.20

43, E

Exercise. f(t) = 0, (2), (3) is true. Plot y(t), y0(t)-t on a single figure!

Answers.

0.5 1.0 1.5 2.0

0.5 1.0

0.5 1.0 1.5 2.0

0.5 1.0

0.5 1.0 1.5 2.0

0.5 1.0

0.5 1.0 1.5 2.0

0.5 1.0

44, F

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R2, γ(t) = (y(t), v(t))T parametric curve!

(19)

Answers.

0.80.91.01.1

-0.4 -0.2 0.2 0.4 0.6

0.91.01.1

-0.4 -0.2 0.2 0.4 0.6

1.001.051.101.151.20 -0.2

0.2 0.4 0.6

1.101.151.201.25 -0.2

0.2 0.4 0.6

45, G

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R3, γ(t) = (t, y(t), v(t))T parametric curve!

(20)

Answers.

0.0 0.5

1.0

1.5

2.0

1.01.11.2 0.0

0.5

0.0 0.5

1.0

1.5

2.0

0.8 1.0

0.0 0.5

0.0 0.5

1.0

1.5

2.0

0.80.91.01.1 0.0

0.5 0.0

0.5

1.0

1.5

2.0

1.01.11.2 0.0

0.5

46, H

Exercise. Plot the (y, v)T →A(y, v)T vector field!

(21)

Answers.

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

47, Ha

Exercise. f(t) = 0. Plot the (y, v)T →A(y, v)T vector field and a solution of (4)!

(22)

Answers.

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0

-0.5 0.0 0.5 1.0

48, I

Exercise. Compute U = exp(1.4A) ! How much isU11 ?

Answers. A: 0.454251 B: 0.560546 C: 0.691713 D: 0.853574 E: 1.05331 49, J

Exercise. Compute U(t) = exp(tA)-t and plot its first column’s functions!

0.5 1.0 1.5 2.0

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

-0.2 0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

-0.2 0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

-0.2 0.2 0.4 0.6 0.8 1.0

(23)

50, K

Exercise. f(t) = 0, (2) true, y(0) = 1, y0(0) = 0. Plot (y(t), y0(t))T !

Answers.

0.5 1.0 1.5 2.0

-0.2 0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

-0.2 0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

-0.2 0.2 0.4 0.6 0.8 1.0

51, L

Exercise. Compute U(t) = exp(tA)-t and plot its second column’s functions!

Answers.

0.5 1.0 1.5 2.0

0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

0.2 0.4 0.6 0.8 1.0

52, M

Exercise. f(t) = 0, (2) true, y(0) = 0, y0(0) = 1. Plot (y(t), y0(t))T !

(24)

Answers.

0.5 1.0 1.5 2.0

0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

0.2 0.4 0.6 0.8 1.0

0.5 1.0 1.5 2.0

0.2 0.4 0.6 0.8 1.0

Distributions (δ, δ

0

)

LetχA(t) = 1, ift∈A, otherwise χA(t) is zero.

n= 1.15, a= 6, φ(t) =eat, αn(t) =nχ[−1/(2n),1/(2n)](t), βn(t) = 1

√2πσne−t2/(2σn2), σn= 1/(4n),

˜

αn(t) =n2[−1/n,0](t)−χ[0,1/n](t)), β˜n(t) =βn0(t), hf, φi=

Z

−∞

f(t)φ(t)dt 53, A

Exercise. Plot αn(t) and βn(t) !

Answers.

-1.0 -0.5 0.5 1.0

2 4 6 8 10

-1.0 -0.5 0.5 1.0

2 4 6 8

-1.0 -0.5 0.5 1.0

2 4 6 8 10 12

-1.0 -0.5 0.5 1.0

2 4 6 8 10 12 14

54, Aa

(25)

Answers.

-0.3 -0.2 -0.1 0.1 0.2 0.3 2

4 6 8 10 12 14

-0.3 -0.2 -0.1 0.1 0.2 0.3 5

10 15 20

-0.3 -0.2 -0.1 0.1 0.2 0.3 5

10 15

-0.3 -0.2 -0.1 0.1 0.2 0.3 5

10 15 20

55, B

Exercise. Plot αen(t) and βen(t)!

Answers.

-1.0 -0.5 0.5 1.0

-200 -100 100 200

-1.0 -0.5 0.5 1.0

-150 -100 -50 50 100 150

-1.0 -0.5 0.5 1.0

-300 -200 -100 100 200 300

-1.0 -0.5 0.5 1.0

-100 -50 50 100

56, C

Exercise. Compute φ(0)− hα, φi ?

Answers. A: -0.00100566 B: -0.00124098 C: -0.00153137 D: -0.00188972 E: -0.00233191 57, D

Exercise. Compute (−φ0(0))− hα,φie ?

Answers. A: 0.00231479 B: 0.00285645 C: 0.00352486 D: 0.00434967 E: 0.0053675 58, E

Exercise. Compute φ(0)− hβ, φi !

Answers. A: -0.000754331 B: -0.000930845 C: -0.00114866 D: -0.00141745 E: -0.00174913

(26)

59, F

Exercise. Compute (−φ(0))− hβ, φie !

Answers. A: 0.000702983 B: 0.000867481 C: 0.00107047 D: 0.00132096 E: 0.00163007 60, G

Exercise. Let

n= 2i, i= 0, . . . ,4, errn=|φ(0)− hαn, φi|.

Plot the points [ln(n),ln(errn)] and find the best fitting line by linear regression (i.e. by the method of least squares)!

Answers.

0.5 1.0 1.5 2.0 2.5

-8 -6 -4 -2

0.5 1.0 1.5 2.0 2.5

-8 -6 -4 -2

0.5 1.0 1.5 2.0 2.5

-8 -6 -4 -2

0.5 1.0 1.5 2.0 2.5

-8 -6 -4 -2

61, H Exercise. Let

n= 2i, i= 0, . . . ,4, errn=|φ(0)− hαn, φi|.

Take the points [ln(n),ln(errn)] and find the best fitting line by linear regression (i.e. by the method of least squares)! What is the slope of that line?

Answers. A: -0.86481 B: -1.06718 C: -1.31689 D: -1.62505 E: -2.00531 62, Hb

Exercise. Let

n= 2i, i= 0, . . . ,4, errn=|φ(0)− hγn, φi|, where

γn(t) =χ[0,1/n](t)

Take the points [ln(n),ln(errn)] and find the best fitting line by linear regression (i.e. by the method of least squares)! What is the slope of that line?

Answers. A: -0.921199 B: -1.13676 C: -1.40276 D: -1.73101 E: -2.13606 63, I

Exercise. Let

n= 2i, i= 0, . . . ,4, rr =|(−φ0(0))− hα , φi|.

(27)

Answers.

0.5 1.0 1.5 2.0 2.5

-8 -6 -4 -2

0.5 1.0 1.5 2.0 2.5

-8 -6 -4 -2

0.5 1.0 1.5 2.0 2.5

-8 -6 -4 -2

0.5 1.0 1.5 2.0 2.5

-8 -6 -4 -2

64, J

Exercise. Let

n= 2i, i= 2, . . . ,13, errn=|φ(0)− hαn, φi|.

Take the points [ln(n),ln(errn)] and find the best fitting line by linear regression (i.e. by the method of least squares)! What is the slope of that line?

Answers. A: -2.01418 B: -2.4855 C: -3.06711 D: -3.78481 E: -4.67045 65, K

Exercise. y0(t) =δ(t), y(−1) = 0, y0n(t) =αn(t), yn(−1) = 0.Plot y, yn-t!

Answers.

-0.4 -0.2 0.2 0.4 0.2

0.4 0.6 0.8 1.0

-0.4 -0.2 0.2 0.4 0.2

0.4 0.6 0.8 1.0

-0.4 -0.2 0.2 0.4 0.2

0.4 0.6 0.8 1.0

-0.4 -0.2 0.2 0.4 0.2

0.4 0.6 0.8 1.0

66, L

Exercise. y0(t) =δ(t), y(−1) = 0, y0n(t) =βn(t), yn(−1) = 0.Plot y, yn-t!

(28)

Answers.

-0.4 -0.2 0.2 0.4 0.2

0.4 0.6 0.8 1.0

-0.4 -0.2 0.2 0.4 0.2

0.4 0.6 0.8 1.0

-0.4 -0.2 0.2 0.4 0.2

0.4 0.6 0.8 1.0

-0.4 -0.2 0.2 0.4 0.2

0.4 0.6 0.8 1.0

67, M

Exercise. y00(t) =δ(t), y(−1) = 0, y0(−1) = 0, y00n(t) =αn(t), yn(−1) = 0, y0(−1) = 0.Plot y, yn-t!

Answers.

-0.2 -0.1 0.1 0.2

0.05 0.10 0.15 0.20

-0.2 -0.1 0.1 0.2

0.05 0.10 0.15 0.20

-0.2 -0.1 0.1 0.2

0.05 0.10 0.15 0.20

-0.2 -0.1 0.1 0.2

0.05 0.10 0.15 0.20

68, N

Exercise. y00(t) =δ(t), y(−1) = 0, y0(−1) = 0, y00n(t) =βn(t), yn(−1) = 0, y0(−1) = 0.Plot y, yn-t!

(29)

Answers.

-0.2 -0.1 0.1 0.2

0.05 0.10 0.15 0.20

-0.2 -0.1 0.1 0.2

0.05 0.10 0.15 0.20

-0.2 -0.1 0.1 0.2

0.05 0.10 0.15 0.20

-0.2 -0.1 0.1 0.2

0.05 0.10 0.15 0.20

69, O

Exercise. y00(t) =δ0(t), y(−1) = 0, y0(−1) = 0, y00n(t) =βen(t), yn(−1) = 0, y0(−1) = 0.Plot y, yn-t!

Answers.

-0.2 -0.1 0.1 0.2

0.2 0.4 0.6 0.8 1.0

-0.2 -0.1 0.1 0.2

0.2 0.4 0.6 0.8 1.0

-0.2 -0.1 0.1 0.2

0.2 0.4 0.6 0.8 1.0

-0.2 -0.1 0.1 0.2

0.2 0.4 0.6 0.8 1.0

70, P

Exercise. y00(t) = 0.4δ(t) + 1.6δ0(t), y(−1) = 0, y0(−1) = 0, yn00(t) = 0.4β(t) + 1.6βen(t), yn(−1) = 0, y0(−1) = 0.

Ploty, yn-t!

(30)

Answers.

-0.3 -0.2 -0.1 0.1 0.2 0.3 0.5

1.0 1.5

-0.3 -0.2 -0.1 0.1 0.2 0.3 0.5

1.0 1.5

-0.3 -0.2 -0.1 0.1 0.2 0.3 0.5

1.0 1.5

-0.3 -0.2 -0.1 0.1 0.2 0.3 0.5

1.0 1.5

71, Q

Exercise. y00(t) = −3y(t)−y0(t) +δ(t), y(−1) = 0, y0(−1) = 0, yn00(t) = −3yn(t)−yn0(t) +βn(t), yn(−1) = 0, y0n(−1) = 0.Plot y, yn-t!

Answers.

-0.15-0.10-0.05 0.05 0.10 0.15 0.02

0.04 0.06 0.08 0.10 0.12 0.14

-0.15-0.10-0.05 0.05 0.10 0.15 0.02

0.04 0.06 0.08 0.10 0.12 0.14

-0.15-0.10-0.05 0.05 0.10 0.15 0.02

0.04 0.06 0.08 0.10 0.12 0.14

-0.15-0.10-0.05 0.05 0.10 0.15 0.02

0.04 0.06 0.08 0.10 0.12 0.14

72, R

Exercise. y0(t) =−3y(t) +δ(t), y(−1) = 0, yn0(t) =−3yn(t) +βn(t), yn(−1) = 0.Plot y, yn-t!

(31)

Answers.

-0.2 -0.1 0.1 0.2 0.2

0.4 0.6 0.8 1.0

-0.2 -0.1 0.1 0.2 0.2

0.4 0.6 0.8 1.0

-0.2 -0.1 0.1 0.2 0.2

0.4 0.6 0.8 1.0

-0.2 -0.1 0.1 0.2 0.2

0.4 0.6 0.8 1.0

73, S

Exercise. y0(t) =−3y(t) +δ(t), y(−1) = 0, yn0(t) =−3yn(t) +βn(t), yn(−1) = 0.Plot y, yn-t!

Answers.

-0.2 -0.1 0.1 0.2 0.2

0.4 0.6 0.8 1.0

-0.2 -0.1 0.1 0.2 0.2

0.4 0.6 0.8 1.0

-0.2 -0.1 0.1 0.2 0.2

0.4 0.6 0.8 1.0

-0.2 -0.1 0.1 0.2 0.2

0.4 0.6 0.8 1.0

(32)

StudentNumber: 92

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B A D B D D E B B C C A C D B A D B C E

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

D C D C D C C A B C E B D D A E B C D C

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

C B B B C C A C C D C C A C B C C C D B

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

E B C A A C C D C C D C D

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The combination of these methods leads to a sparse LS–SVM solution, which means that a smaller network – based on a subset of the training samples – is accomplished with the speed

3 The Q-slope method for rock slope engineering The purpose of Q-slope is to allow engineering geologists and geotechnical engineers to assess the stability of excavated rock slopes

The identification of the transfer function of the underlying linear system is based on a nonlinear weighted least squares method.. It is an errors-in- variables

After a warm welcome the president of the IVSA in Istanbul showed me around the campus, I tried some Turkish tea and met some other students who were also members of their

(If the two furnaces were in contact the conduction of heat might be enough to decompose the sample before desired.) The stopcock on the generator is closed* and the combustion

(Since the alkali enters from the bottom, it merely forces the acid layer upward and there is not as much danger of mixing as there is with the Pregl type of apparatus.) The

' Research was supported by the Hungarian National Foundation (Grant No. 1641) for Scientific Research and the National Scienfitic and... In the folio wings we prove some

In addition to the eigenvector method, optimization based methods, such as the logarithmic least squares method and the weighted least squares method, were also