• Nem Talált Eredményt

durable superhydrophobic coating material Preparation of sulfur hydrophobized plasmonic photocatalysttowards Journal of Materials Science & Technology

N/A
N/A
Protected

Academic year: 2022

Ossza meg "durable superhydrophobic coating material Preparation of sulfur hydrophobized plasmonic photocatalysttowards Journal of Materials Science & Technology"

Copied!
9
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Materials Science & Technology

jou rn a l h o m e p a g e :w w w . j ms t . o r g

Research Article

Preparation of sulfur hydrophobized plasmonic photocatalyst towards durable superhydrophobic coating material

Emese Lantos

a

, László Mérai

a

, Ágota Deák

a

, Juan Gómez- Pérez

b

, Dániel Seb ˝ok

a

, Imre Dékány

a

, Zoltán Kónya

b

, László Janovák

a,∗

aUniversityofSzeged,InterdisciplinaryExcellenceCentre,DepartmentofPhysicalChemistryandMaterialsScience,H-6720,RerrichBélatér1,Szeged, Hungary

bUniversityofSzeged,InterdisciplinaryExcellenceCentre,DepartmentofAppliedandEnvironmentalChemistry,H-6720,RerrichBélatér1,Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received6February2019

Receivedinrevisedform23March2019 Accepted15April2019

Availableonline16November2019

Keywords:

Nanocomposite Coatingmaterials Wetting

Lotus-typestructure Visiblelightphotocatalyst

a b s t r a c t

Thewidelyusedphotocatalyticself-cleaningcoatingmaterialsareoftenmadeofpolymersandpolymer basedcomposites,wherethephotocatalystimmobilizationoccurswithmacromolecules.However,these organicpolymersareoftenunstableunderexposuretoUVirradiationandeasilydegradedbyreactive radicalsproducedinthephotocatalyticreaction.Inordertosolvethisproblem,inthispaper,wepresent thefacilepreparationofamultifunctionalcoatingwithdualsuperhydrophobicandphotocatalyticprop- erties,wherethefixationandthehydrophobizationoftheplasmonicAg-TiO2photocatalystparticles withvisiblelightactivitywasperformedwithnon-watersolublesulfur,whichisacheapandeasily availablematerial.Theresultednovelnanocompositewithroughandnano-tructuredsurfaceroughness (1.25–2.45nmdeterminedbysmall-angleX-rayscattering)hassufficientlowsurfaceenergy(3.3mJ/m2) forsuperhydrophobic(=151.1)properties.Moreover,incontrastoftheorganicandexpensivefluo- ropolymerbasedcomposites,thisnon-wettingnaturewasdurable,becausethemeasuredwashigher than150duringthelong-termLED(␭max=405nm)lightirradiation.

©2019PublishedbyElsevierLtdonbehalfofTheeditorialofficeofJournalofMaterialsScience&

Technology.

1. Introduction

Photocatalyst-basedfunctionalsurfacesareoneofthestate-of- the-artmaterialsthatarecommerciallyappliedinseveralfields, including wastewater and air treatment or even food-packing.

After the discovery of the photo-induced superhydrophilicity of photocatalyst (e.g.,TiO2) layers [1], commercially applicable photofunctionalmaterialswithself-cleaningpropertiesweresyn- thesizedusingTiO2 particlesandcompositethinfilms.Sincethe bandgapof TiO2 fallswithintheUV A range, it ispossibleto extendtheabsorptionspectrumofthesemiconductorphotocata- lystsbymodifyingthecatalystparticleswith,forexample,different metallicornon-metallicelements[2–4].Thefunctionalizedcata- lystscanbeexcitedbytheUV Aorvisible(VIS)lightduetothe surfaceplasmonresonanceeffect:themetalnanoparticlesabsorb electromagneticradiationatlowerenergywavelengths[4,5].

The incorporation of semiconductor photocatalyst particles in an appropriate polymer-ased support or binder material is expected to create antimicrobial and self-cleaning properties,

Correspondingauthor.

E-mailaddress:janovakl@chem.u-szeged.hu(L.Janovák).

whichwouldextenditsfield ofapplication.Thestate-of-the-art materialsattheareaofphotocatalyst/polymercompositelayers arethefunctionalsurfaces,whicharegainingattentionfordifferent practicalfieldsofapplication,suchasfoodpackingmaterialswith antibacterialbehaviours [6]and self-cleaning superhydrophobic coating[7,8].

Sincetheirdiscovery,superhydrophobicsurfaces(≥150,low contactanglehysteresis)areinfocusowingtotheirlowsurfacefree energyandbeneficialself-cleaningnature.Besidestheoriginally hydrophobicnatureofthematerial,asurfacehastobetextured inboththemicro-,andnano-scaletopossesssuperhydrophobic characteristics[9].Therearenumerousreportedwaystoproduce morphologicallyproper surfaces,including lithographic,chemi- caletching,templatesandevenspray-coatingmethods,whichis cheap,scaleable,andeasilyimplementable.Inthiscase,particulate material(e.g.,aphotocatalyst)getssprayedonasubstrate,forming thedesiredsurficialstructureswithadequatesurfaceroughness.

Ifhydrophobizedphotocatalystsareusedasroughnessenhancer particulate materials,it resultsin theformation ofbifunctional compositesurfaceswithdualphotocatalyticandextremewetting properties[10–13].

Whenpolymerimmobilizedphotoreactivehybridsurfacesare prepared,thephotodegradationofthematrixalsohastobetaken

https://doi.org/10.1016/j.jmst.2019.04.046

1005-0302/©2019PublishedbyElsevierLtdonbehalfofTheeditorialofficeofJournalofMaterialsScience&Technology.

(2)

160 E.Lantosetal./JournalofMaterialsScience&Technology41(2020)159–167

intoconsideration,sothereportedlyappliedhydrophobicorganic polymers(e.g.perfluorynatedpolyacrylates,orPTFE)maybeinap- propriateforlongtermuses.Becauseofthis,thedemandishighfor durablematrixmaterials.Tosatisfytheneedsforincreaseddura- bility,sulfuralsocanbeappliedasaninert,non-photodegradable andinsolubleinorganichydrophobizingagent.Therearevarious applicationofelementalsulfurandsulfurnanoparticlesnowadays suchasagrochemicalindustries[14]fungicidesinagriculturefields [15],modificationofcarbonnano-tubes[16],antibacterialmate- rial[17], andsynthesisofnanocompositesforlithium batteries [18].However,accordingtoourbestofknowledge,thisisthefirst demonstrationofutilizingsulfurnanoparticlesasinerthydropho- bizingagentforcreationofsuperhydrophobicandphotoreactive functionalsurface.

Thus, in this paper, we present a simple and cheap spray- coatingmethodtopreparenon-photodegradableVISlight-active andmicro/nanostructuredsuperhydrophobicsurfacesoninorganic sulfurbasis:theVISlight-activityowestothe10wt%plasmonicAg- TiO2 photocataystcontent,whilethedurablesuperhydrophobic natureisattributed tosulfur-nanoparticles,prepared bya sim- pleprecipitationmethodinaqueousmedium.Thesebifunctional inorganiccompositelayerswithlong-termdurabilityshowedcon- siderable photocatalytic efficiency duringEtOH (g) degradation testsatsolid/gasinterface.

2. Materialsandmethods

2.1. PreparationofthesulfurhydropobizedAg-TiO2layers

The VIS light-active plasmonic Ag-TiO2 photocatalyst with 0.5wt% surfacesilver nanoparticle contentwassynthesized via thedirectfunctionalizationofTiO2particles.Thesyntheticmethod andtheopticalcharacterizationofthecatalystaredetailedinour previouspublication[4,5].

Toobtainsulfurnanoparticles,0.03gofsulfurpowder(Sigma Aldrich) wasdissolved in 4ml of 10M aqueousNaOH-solution (pH=14.15)atatemperatureof80C.Afterwards,theliquidwas stirredthendilutedwith1mlof10MNaOHsolution,then4.65ml of2.5MH2SO4solutionwasaddeddropwiseuntilthedispersion becameturbid(pH=13.95atprecipitation)duetotheformedsulfur nanoparticles(c≈0.09g/100ml).

Theresulting precipitatedsulfur wascentrifuged (8000rpm, 5min),thoroughlywashedwithdistilledwateranddriedovernight in a drying cabinetat 60C. Themixing of theobtained sulfur nanoparticlesandthepreviouslysynthetizedAg-TiO2 photocata- lystoccurredinaqueousdispersion(c=0.01g/100ml).Thesulfur/

photocatalystratio(0,40,60,80,85,90and100wt%S-content)was systematicallychangedduringthepreparation.

To prepare 5cm×5cm photoreactive inorganic layers con- sisting of 10wt% Ag-TiO2 photocatalyst and 90wt% sulfur nanoparticles,theaqueousdispersions wereevenly sprayedon glasssubstrates,usinganR180-typeairbrushspraygunatanoper- atingpressureof3bar.

2.2. Methodsofsamplecharacterization

Thesizedistributionandmorphologyofthepreparedsulfur,and theAg-TiO2/Scompositenanoparticleswerecharacterizedduring highresolution transmissionelectronmicroscopy(HRTEM).The appliedFEITecnaiG220X-TWINmicroscope,isequippedwitha tungstencathode(200kVaccelerationvoltage).

SurfacemorphologyoftheAg-TiO2/Slayerswasexaminedwith ascanningelectronmicroscope(SEM,HitachiS-4700,secondary electrondetector,accelerationvoltage:10or20kV),whilethesur- ficialcompositionwasstudiedusingaRöntecEDSdetector.

OpticalcharacterizationbydiffusereflectanceUV–VISspectra wererecordedviausingaCHEM2000UV–VIS(USB2000+UV-VIS, OceanOpticsInc.,Dunedin,FL)spectrophotometer,equippedwith anintegratedsphere.

Thesurfacefractaldimensions(DS)andsurfaceroughness(SR) ofthesampleswereinvestigatedbysmall-angleX-rayscattering (SAXS)technique.SAXScurveswererecordedwithaslitcollimated Kratkycompactsmall-anglesystem(KCEC/3Anton-PaarKG,Graz, Austria)equipped witha position-sensitive detector(PSD 50M fromM.BraunAG.Munich,Germany)containing1024channels, 54␮minwidth.CuK˛radiationwasgeneratedbyusingaPhilips PW1830X-raygeneratoroperatingat40kVand30mA.TheKratky camerawascalibratedusingsilverbehenatewithawell-defined lamellarstructure(d=5.848nm).

Surface charge values of the photocatalyst and the sulfur suspensionsweremeasuredbymeansofaparticlechargedetec- tor (PCD-04 Particle Charge Detector; Mütek Analytic GmbH, Germany)withmanualtitration.Underatitrationprocessthepos- itivesurfacechargeoftheAg-TiO2photocatalystsparticles(in0.01

%aqueousmedium,pH=5.0setbyHCl)willbecompensatedwith negativelychargedsulfurnanoparticles(in0.09%aqueousmedium, pH=5.0 setbyHCl)withconcomitantstreamingpotentialmea- surements.

Composition-dependent crystalline properties were studied usingaPhilipspowderX-raydiffractometer(PW1830generator, PW1820goniometer,CuK˛:␭=0.1542nm,40–50kV,30–40mA, 2:2–70,25.0±0.5C).

TheRamanspectrawererecordedwith1.5cm−1interferometric resolutionapplyingaSenterra(Bruker)Ramanmicroscopeunder 50xmagnificationwith2.50mWoutputpowerofthe␭=532nm He–Nelaserlightsourceand3000msintegrationtime.Thepre- sentedspectraarethecoadditionsof5singlespectrainallcases, recordedatdifferentspotsofthesample.

Theapparentstaticcontact anglesonAg-TiO2/Slayerswere measuredaccordingtothesessiledroptechniqueat25.0±0.5C under atmospheric pressure, applying an EasyDrop drop shape analysissystem(KrüssGmbH,Hamburg,Germany)equippedwith DSA100software,aPeltiertemperaturechamberandasteelsyringe needleof0.5mmdiameter,andusingdistilledwaterasatestliquid.

Beside thestatic contact anglesthedynamic wetting ofthe compositeswasalsomeasuredbecauseaccordingtothetheoryof DrelichandChibowski[13,19]themeasuredadvancing(adv)and receding(rec)contactanglesaresuitablefortheestimationofthe totalapparentsurfacefreeenergy(stot)ofthelayer,knowingthe surfacetensionoftheprobeliquid,(l=72.1mN/minthecaseof distilledwaterat25C)anditscontactanglehysteresis,whichis definedasthedifferencebetweentheadvandrec,asshownby Eq.(1):

stot= 1

1+cosadv

2

2+cosrec+cosadv

(1)

TostudythephotocatalyticpropertiesoftheAg-TiO2/Slayers, ethanol(EtOH)degradationtestswererununderblueLEDlight (GeneralElectric’s,Veresegyház,Hungary,␭=405nm)illumination atsolid/gasinterface,whilegaschromatographicmeasurements werecarriedout(ShimadzuGC-14B)toquantifytherateofEtOH degradation.Duringthemeasurements,5␮lofEtOH(abs.,Molac Chemicals,Hungary)wasinjectedintothereactionchambercon- taining25cm2(25.0±0.5C)hybridlayers(5mg/cm2),fixedata 5cmdistancefromthelightsource.Thec/c0valuescalculatedfrom peakareasweredeterminedasthefunctionofilluminationtime, wherecistheconcentrationofEtOHattime(t)andc0istheinitial concentration(c0=0.36mM).Theapparentreactionrateconstants (k,min1)werecalculatedforfirst-orderdecayasshownbythe equation:ln(c/c0)=−kt.

(3)

Fig.1.TEM-micrographsofprecipitatedsulfurnanoparticlesandwettingofspray-coatedS-nanoparticlelayerswithdeionizedwaterasatestliquid(a),aqueousdispersion ofpreparedsulfurnanoparticlesuponprecipitationand24hlater(b),size-distributionofprecipitatedsulfurnanoparticles(c).

During the stability tests, photoreactive composite layers of 5mg/cm2specificmasswereilluminatedfor14daysbythesame blueLED-light(=405nm)placedata5cmdistancefromthesam- ples, underambientatmosphere. Thechanges in water contact angleofthelayerswasmeasureddailyduringtheexperiment.Poly- merbasedcompositethinfilmswith60wt%incorporatedAg-TiO2

particleswereusedasreference.

Similartopreviouswork[4],theadhesivetapetestwasusedto investigatethemechanicalpropertiesofthepreparedcomposite films.Briefly,thedouble-sidedadhesivefoamtape(1.6mmthick) wasadheredtothefilmsfirstly,anda100gweightwasrolledover thetapetoensureconsistency.Thetapewasthenpeeledbackat anangleofapproximately45.

3. Resultsanddiscussion

3.1. Structuralcharacterizationofcompositenanoparticles

AccordingtotheWenzelandCassie-Baxtermodels[20],toreach thesuperhydrophobicextremewettingcharacter,theprovisionof hierarchicalroughnesstoanaturallyhydrophobicsurfaceiscrucial.

Toachievethisgoal,sulfurnanoparticleswithamaximumdiam- eterof40nmweresynthesizedbyapplyingasimpleprecipitation method.Hencetherearemanyreportedbottom-upwaystopre- paresulfurnanoparticles,includingthesulfurvapourdeposition oncoldwater[21]ortheWeimarn-[22],andRaffo-methods[23], onlythelastoneoffersparticleyieldshigherenough(∼600g/l)in aqueousmediatobeindustriallyprofitable[24].Ourversionofthe appliedRaffo-methodisbasedonthefollowingchemicalreactions [25]:

S+6NaOH =Na2S2O3+2Na2S+3H2O (2) Na2S2O3+H2SO4=H2S2O3+Na2SO4 (3) xH2S2O3=yH2O+zSO2+H2SmO6 (4) H2SmO6=H2Sm-nO6+Sn(n>5) (5) Upon the acidification of S2O32-containing solutions with sulfuric acid, SO2 and colloidal S forms. We obtainedS2O32- containing solution as a result of dissolving elemental S in pH=14.15NaOH-solution at 80C, then S-nanoparticles witha maximum meandiameterof 40nm formedupon thefollowing additionof 2.5MH2SO4 solution,which is thecorestepof the

(4)

162 E.Lantosetal./JournalofMaterialsScience&Technology41(2020)159–167

Fig.2. Measuredstreamingpotentialvaluesofthe0.01%Ag-TiO2photocatalystsuspensionduringtheadditionofthe0.09%suspensionofthesulfurnanoparticlesatapH of5.00(a)andtherecordedRamanspectraofAg-TiO2photocatalyst,sulfurnanoparticles,andAg-TiO2/Scompositesamplewithsuperhydrophobicwettingproperties(b).

classicalRaffo-method.AccordingtoEqs.(2–5),thedissolutionof sulfurin suchmediaisa disproportionationreaction,whilethe reverseprecipitationreactionissynproportionation.Asourprocess requiresbothelementalandprocessedS(H2SO4)andoffersgood yieldsitsindustrialapplicationcouldbebeneficialintheelimina- tionofresidualSasaby-productofthepetrolindustry.

Asshown in Fig. 1(a), the size distribution of theobtained sphericalsulfurnanoparticlesisrelativelypolydisperse.Themean diametersrange between1and 40nm,which is comparableto thesizeoftheappliedVISlight-activeplasmonicAg-TiO2photo- catalystparticles(dprim.∼25nm)[4,5].Becausethehydrophobic natureofthesulfurparticles,thestabilityoftheobtainedaqueous suspensionwasverylow.

Thesulfurnanoparticlesalsoshowsuperhydrophobiccharacter (=151.0)astheyareevenlydispersedonplainsurfaces(Fig.1(b)), because the formed sulfur layer consists of hydrophobic non- water-solublenanoparticleswithroughsurfaceinthenanometer scale.ThefixationoftheplasmonicAg-TiO2 photocatalystparti- clesonthesurfaceofthesulfurparticleswasexecutedthrough electrostaticinteractionbecausethepH-dependentsurfacecharge ofTiO2andAg-TiO2iswell-knownintheliteratureandithaspos- itivelychargedbelowpH=6(pointofzerocharge)[25],whilethe chargeofthesulfurnanoparticleswasslightlynegative(pointof zerochargeatpH=2[24]).Thus,thesurfacefixationwascarried outatpH=5becauseat thisvaluethecomponentshave oppo- sitecharge and theobtainedcharge titrationcurve achievedat thispHispresentedonFig.2(a).Itcanbeseenthatthepositive chargeoftheAg-TiO2 particleswascontinuouslydecreaseddur- ingtheadditionofthenegativelychargedsulfursuspension.The insertedphotosalsoshowthatatthechargecompensationpoint (streamingpotential=0)thestabilityoftheinitialAg-TiO2andsul- fursuspensionwasdrasticallydecreasedbecauseofthelost(i.e., compensated)chargeofthecomponentsandtheformationofthe heterocoagulatedS/Ag-TiO2system.

Fig.2(b)showstherecordedRamanspectraoforS,Ag-TiO2,and Ag-TiO2/Scompositenanoparticles.HencetheP25TiO2useddur- ingthesynthesisoftheplasmonicphotocatalystconsistof75wt%

anataseand25wt%rutile,onlythecharacteristicpeaksofanatase at144cm−1(Eg),397.5cm−1(B1g),517.5cm-1(B1g)and637.5cm-1

(Eg)could bedetectedupon ␭=532nm laser-lightillumination [26].

Thepresence ofsilver isundetectableatthese experimental conditions,duetoitslowconcentration(0.5wt%).Inthecaseof sulfur samples,peaks(withthecorrespondingmolecularvibra- tionalmodes)at82.5cm1(B2g),153cm1(Eg),187.5cm1(Eu), 219cm−1(A1g),244.5cm−1(A1g),435cm−1(B2g)and472.5cm−1 (A1g and Eg)are characteristics tothe vibrational bondsof S8- molecules[27,28], whilethepeak at51cm1 belongs totheag

lattice-vibrational mode. Fig. 2(b) also shows, that if we form superhydrophobiccompositefromtheinitialsulfur,andAg-TiO2 nanoparticles, the intensity of sulfur peaks increases, while at 90wt% S-content, thecharacteristic peaks of rutile almostdis- appear, indicating the decreased surface concentration of the photocatalyst. However,no chemical interactionwas identified betweenthesulpurandtheAg-TiO2particlesevidencedbyRaman measurements.

Fig.3showsthepowderX-raydiffractogramsoftheresulting composites:asthesulfur-contentincreases,thecharacteristicpeak oftheanatasestructureofTiO2at2=25.32decreaseinintensity, whileotherpeaksappear,attributedtotheorthorhombic␣-sulfur (withhigherintensities:23.10,25.88,26.76,27.76,28.96)[29], makingtheidentificationofthephotocatalystmoredifficultdueto convolution.

Moreover,somepeaksarecharacteristicstomonoclinic␤-sulfur (27.74,31.08,37.84)[30].Theobservationsindicatethecrys- talline nature of theprecipitated sulfur-nanoparticles,since no broadbandofamorphousphaseweredetected.Ascanbeseenin theinsertedpicturesofFig.3,thetwocomponentspowdersamples havehighdispersibility inaqueousmediaunder 90wt% sulfur- content,butthis waterdispersibilitydrasticallydropsathigher sulfurcontents.Thisindicatesanoptimallyhydrophobicnatureand lowsurfacefreeenergytobeappliedinsurfacehydrophobization.

Besidetheabovepresented X-raydiffractogramsresults,the compositeswerealsocharacterizedbysmall-angleX-rayscatter- ing (SAXS) methodbecause thefractal plotof thesescattering curvesgivesreliableinformationaboutthequalityofthesurface roughness(SR)withaquantitativeinformationbasedonthesur- facefractal dimensions.The doublelogarithmic (fractal)plotof

(5)

Fig.3. PowderX-raydiffractogramsandaqueousdispersionsofAg-TiO2,SandAg- TiO2/S.

thescatteringcurvesofAg-TiO2 andAg-TiO2/Spowdersamples with60wt%S-contentshowsthatthesampleshavearatherrough surface,indicatedbytheDS=2.8(Fig.4(a)).

Furthermore,theh3I(h)vs.h2plotofthecurvesshowsapositive deviationfromtheasymptoticbehaviour(seeFig.4(a)),mainlyin thecaseoftheinitialAg-TiO2samplewhichindicatesasignificant interfacialelectrondensityinhomogeneity,i.e.surfaceroughness.

ThecalculatedvaluesareSR=2.45and1.25nminthecaseofAg- TiO2and40%Ag-TiO2/60%Ssamples,respectively(seeEq.E(6)in SupplementaryInformation):thesurfaceroughnessofthesam- plesdidnotdecreasedsignificantlyduringtheadditionofsulfur.

Becausethesurfaceroughnessisacrucialfactorofthesuperhy-

Fig.5.ApparentstaticwatercontactanglesonAg-TiO2/Scompositesurfacesasa functionofS-content.Thephotographillustratesthewater-repellentbehaviourof 90wt%S-containingcompositepowderfilmwithwaterdropcolouredwithmethy- lenebluedye.

drophobiccoatings,amoredetaileddescriptionofthecomposites structurecanbefoundinSupplementaryInformation(Figs.S1–S3).

3.2. Wettingandmorphologicalpropertiesandsurfacefree energydetermination

Theabovepresentedresultsindicatedthatthepresenceofthe sulfurnanoparticleschangedthewetting andstructuralproper- ties oftheAg-TiO2,whichwasalsoevidenced bycontactangle measurements(Fig.5).

As thesulfur content increases, thecomposite-covered sur- faces (spray-coated, with 1±0.5mg/cm2 specific layer mass) changedtheirwettingcharacterfromsuperhydrophilic(≈0)to superhydrophobic(>150).Thissulfurinducedsuperhydrophobic characterofthecompositelayeralsocanbeseenontheinserted photographinFig.5.Thewaterdropscolouredwithmethyleneblue

Fig.4. I(h)vs.h(a)andh3I(h)vs.h2(b)plotsofthescatteringcurvesofAg-TiO2andAg-TiO2/Spowdersampleswith60wt%S-content.

(6)

164 E.Lantosetal./JournalofMaterialsScience&Technology41(2020)159–167

Fig.6.Evolutionofadvancingandrecedingcontactanglesonspray-coated90wt%

sulfur-hydrophobizedphotoreactiveAg-TiO2layers,aswellasthedeterminedtotal apparentsurfacefreeenergy(␥stot)valuesbeforeandafter180minblueLEDlight illumination(␭=405nm).

dyewererolleddownfromthesurfaceofthesuperhydrophobic compositefilm.

Advancingandrecedingcontactangleswerealsomeasuredon thesuperhydrophobicfilmwith90wt%S-content,accordingtothe protocolofDrelich[13].ThedatawasanalysedaccordingtoEq.(1) ofChibowsky[19]toobtainthecorrespondingtotalsurfacefree energyvalues.

Fig.6showsalargecontactanglehysteresis(adv=146.8±3.0

rec=30.1±0.6),indicatingtheWenzel-typeroughnesschar- acteristicsof the surface [19]. However, this superhydrophobic naturewithhighcontactangleandlowsurfaceenergywasdurable andresistanceforirradiation,becauseafterilluminatingthesam- plewithmax=405nmblueLED-lightfor180min,therecvalues showedamoderatedecrease(rec=19.4±2.0),whiletheadvval-

Fig.8.UV-VISdiffuse-reflectancespectraandphotographsofAg-TiO2,Snanopar- ticlesandAg-TiO2/ScompositeswiththecorrespondingS-content(giveninwt%).

uesremainedalmostthesame(148.2±2.5),andthecalculated total surfacefree-energyvalues of thesurfacesdecreased upon illuminationfrom3.3mJ/m2to2.3mJ/m2.

As evidenced by SEM-images and EDX-measurements, the surfaceofthespray-coated layersof90wt%sulfur-hydrophized Ag-TiO2photocatalysthascauliflower-likeaggregates(Fig.7)with relativelyhomogenousandevendistributionofthetwocompo- nents.The presence of both components onthe surface ofthe roughcompositefilmisadvantageousbecausethesulfurnanopar- ticlesareresponsibleforthesuperhydrophobicnature,whilethe presenceoffreephotocatalystparticlesensuresthephotocatalytic activity.Thismeansthatphotocatalyticreactionscouldtakeplace alloverthepreparedsurfaces.

3.3. Opticalandphotocatalyticproperties

Theopticalpropertiesofthehydrophobizedphotocatalystsam- pleswereslightlychangeduponsulfur-addition,whichcanbeseen intheUV-VISdiffuse-reflectancespectraonFig.8.Theabsorption

Fig.7.SEMmicrographsandEDX-mappingofAg-TiO2/Ssuperhydrophobicsurfaceswith90wt%S-content.

(7)

Fig.9.CharacterizationofEtOHdecomposition(c0=0.36mM)onpureAg-TiO2andsulphurlayers,andonAg-TiO2/Scompositefilm(90wt%S)underLEDlightillumination (=405nm)asthefunctionofilluminationtime.Thecompositelayerwasalsomeasuredunderdarkconditionforreference(a).EtOHconcentrationchangeonAg-TiO2/S filmafter0,24,48,72,96and168hcontinuousLEDlightirradiation(b).

wavelengthmaximagraduallyincreasefrom349to401nmasthe sulfurcontentisincreasedfrom0to100wt%,whiletheinitialpale browncolouroftheAg-TiO2graduallyturnedtoyellow.Theplas- monicabsorbancepeakataround450nmisduetothepresence ofAgNPsonTiO2photocatalystparticlesasdemonstratedinour previouspapers[4,5].Inthisplasmonicphotocatalyst,visiblelight isharvestedbecausethesurfaceplasmonresonance,attributedto theAgNPs,whilethemetal–semiconductorinterfacetakespartin theseparationofthegeneratedholesandelectrons[4].

ItwasalsopresentedearlierthattheusedblueLEDlightsource with405nmemissionmaximumissufficientforexcitationofthe Ag-TiO2catalyst[31,32].Inthisworkthephotocatalyticefficiency ofthesulfurhydrophobizedcompositephotocatalystlayerswere studiedusingthesameblueLEDlampandethanolasmodelvolatile organiccompound(Fig.9(a)).Asaresultof90minillumination,the pureAg-TiO2 photocatalystfilmdecomposedapproximatelythe wholeamount(c0=0.36mM)oftheEtOH,whilethephotocatalytic effectivenessofthesulfurcontainingsuperhydrophobiclayerwere lower,butitwasshownsignificantphotocatalyticactivitycom- paredtothereferencesample(photolysiswithoutphotocatalyst andS/Ag-TiO2 sampleindarkcondition).Thisdecreasedphoto- catalytic activityis becauseof thelower Ag-TiO2 photocatalyst content(only10%in90%non-photoreactivesulfur)butaccording tothewetting(Figs.5and6)andphotocatalyticresults(Fig.9), itcanbeclearly statedthatat acomposition of90%sulfur and 10wt%Ag-TiO2photocatalystthecompositelayerwasshownnot onlysuperhydrophobicbutalsophotocatalyticproperties.Inorder toprove thelong-term photoactivity of the composite sample, the EtOH concentration change was measured occasionally on S/Ag-TiO2 filmafter0,24,48,72, 96and 168hcontinuousLED lightirradiation.TheobtainedresultsinFig.9(b)representthat theinitial(c0=0.36mM)concentrationofEtOHwasdecreasedto 0.26±0.015mM after30minadsorption timeonthesurface of 25cm2compositefilmwith5mg/cm2specificsurfacemass.After thisadsorptionequilibriumtheEtOHconcentrationwascontinu- ouslydecreasedduringtheLEDlightirradiationandthecalculated k’values (0.0090–0.0132 1/min)indicatethealmostunchanged photocatalyticactivityofthecompositeduringthestudiedtime interval.

Fig.10.Effectoflong-termUV-A(blueLED)irradiationonthewettingproperties oftheorganicpolymer-basedandinorganicsulfur-containingsuperhydrophobic compositecoatings.

In ourprevious work it was reported that this dual super- hydrophobic and photocatalytic properties of the spray coated compositessurfacescouldbeveryusefulinvariousapplications, however,theundesiredself-photodegradationoftheearlierused organic(fluoro)polymerbindercouldhindertheapplicationofthis coating materials [4,33]. In this work,the hydrophobization of theAg-TiO2photocatalystparticleswasachievedbytheapplica- tionofinorganicsulfurinordertoavoiditsself-photodegradation.

Fig.10showsthatthemeasuredcontactanglevaluesofthesulfur hydrophobizedAgTiO2wasunchanged(∼150)duringthestudied timeinterval(14daysofcontinuousLEDlightirradiation).

Two polymer based composites were chosen as reference:

the Ag-TiO2/ polyacrylate hybrid layer contains poly(ethyl- acrylate-co-methyl methacrylate) copolymer [4], while the

(8)

166 E.Lantosetal./JournalofMaterialsScience&Technology41(2020)159–167

polymer component of the Ag-TiO2/fluoropolymer composite waspoly(perfluorodecylacrylate)fluoropolymer[31,32,34].Asa results,theinitialoftheAg-TiO2/polyacrylatehybridlayerwas 85.2±1.75 which wasdrasticallychanged to0 justafter two daysirradiation.The effectwasslowerinthecase of themore resistancefluoropolymerbasedbinderwithinitialsuperhydropho- bic(=151.1±5.4)properties.Thesedecreasingvaluesarethe resultsofthepreviouslyreportedpartialpolymerphotodegrada- tion:theilluminationchanges intheration ofcatalyst/polymer composition as the photocatalyst particles became uncoated [35]. This resulted in higher catalyst availability on the sur- face region. However, the sulfur hydrophobized photoreactive thin composite film shows durable hydrophobicity during the irradiation.

Finallythe mechanical properties ofthe preparedS/Ag-TiO2

film were also investigated and compared to the fluoropoly- mer based superhydrophobic thin film. The adhesive tape test was used to get information about theadhesion of the layers [4]. The tape was applied on the coating surface and subse- quently was removed by a quick pull. As indicate in Fig. S4, minoramountofsuperhydrophobic layercouldberemovedby the tape from both surfaces. However, this mechanical dam- agecaused thatboththefluoropolymerandsulfur basedlayers werelosttheirsuperhydrophobicity(seeinserted contactangle values) after the peeling. This vulnerability of superhydropho- bic surfaces is well known in the literature and it originated fromtheroughsurface andporousstructureof theselotus-like coatings[36,37]. However, in ourprevious paper we also pre- sentedthatthenatureinspiredself-healingabilityoftheartificial coatingscouldsolvethisproblem,ifwecanachievethatthedam- agedsurfaceprotrusionscanregenerateitself[32].Inthefuture, wetrytoimplementthisself-assembledmechanism(airhumid- itycatalysedsyneresisofthehydrophobicdodecyltrichlorosilane molecules) into the sulfur containing superhydrophobic layer in order to get thin film with quick superhydrophobic recov- ery.

4. Conclusions

To satisfy the needs for superhydrophobic coatings with increaseddurability,sulfuralsocanbeappliedasaninert,non- photodegradableand insolubleinorganichydrophobizingagent.

Inthispaperwe presentedasimple methodtoutilizesulfur in thearea of functional surfaces: bifunctional, superhydrophobic andphotocatalyticcoatingswerepreparedof90wt%(d≤40nm) sulfur-nanoparticles and 10wt% (d≈25nm) visible light-active Ag-TiO2 photocatalyst. The surface fixation of sulfur on Ag- TiO2 particles occurred through electrostatic interaction and althoughnochemical bondwasidentifiedbetweenthecompo- nents,theinitiallysuperhydrophylicphotocatalystnanoparticles (≈0.0)becamesuperhydrophobic(=150.3±1.0)uponform- ingcomposite particles.AsevidencedbyEDX-SEM,theextreme wettingpropertiesareattributedtothemultiscalesurfacerough- ness: the spray-coated layers have cauliflower-like aggregates with relatively homogenous distribution of the two compo- nents.

Thephotocatalyticactivity ofthesulfur containingsuperhy- drophobic layer waslower than that of the pureAg-TiO2 film (degraded 100% of c0=0.36M EtOH in 180min), still showing significant photoreactivity (photocatalytc effectiveness: 68.9%) comparedtothereferencesample(photolysiswithoutphotocat- alyst;effectiveness:26.4%).Thisdecreasedphotocatalyticactivity isbecausethelowerphotocatalystcontent(only10%)butaccord-

ingtothewettingandphotocatalyticresultsitcanbeclearlystated thatatoptimalcompositionthelayerwasshownnotonlysuper- hydrophobicbutalsophotocatalyticproperties.

As a main result, in contrast to the tested polymer-type hydrophobizingagents,sulfurnanoparticlesdidnotphotodegrade inthetimeintervalof14daysofcontinuousLED-lightillumina- tion(=405nm),sothehydrophobizedphotocatalystlayerskept theirwettingproperties(≈150).Inconclusion,astheexpensive fluoropolymerbinderscanbereplacedwithsulfurinself-cleaning superhydrophobicsurfaces.

Acknowledgements

ThisworkwasfinanciallysupportedbytheHungarianScien- tificResearchFund(OTKA)K116323,PD116224andtheprojectof GINOP-2.3.2-15-2016-00013,theUNKP-18-4NewNationalExcel- lence Programof theMinistryofHuman Capacitiesand bythe JánosBolyaiResearch ScholarshipoftheHungarianAcademyof Sciences and the Ministry of Human Capacities, Hungary (No.

20391-3/2018/FEKUSTRAT).

AppendixA. Supplementarydata

Supplementarymaterialrelatedtothisarticlecanbefound,in theonline version,at doi:https://doi.org/10.1016/j.jmst.2019.04.

046.

References

[1]A.Fujishima,T.N.Rao,D.A.Tryk,J.Photochem.Photobiol.CPhotochem.Rev.1 (2000)1–21.

[2]T.Boningari,S.N.R.Inturi,M.Suidan,P.G.Smirniotis,J.Mater.Sci.Technol.34 (2018)1494–1502.

[3]W.Liu,Y.Xu,W.Zhou,X.Zhang,X.Cheng,H.Zhao,S.Gao,L.Huo,J.Mater.Sci.

Technol.33(2017)39–46.

[4]Á.Veres,J.Ménesi,Á.Juhász,O.Berkesi,N.Ábrahám,G.Bohus,A.Oszkó,G.

Pótári,N.Buzás,L.Janovák,I.Dékány,ColloidPolym.Sci.292(2014)207–217.

[5]Á.Veres,T.Rica,L.Janovák,M.Dömök,N.Buzás,V.Zöllmer,T.Seemann,A.

Richardt,I.Dékány,Catal.Today181(2012)156–162.

[6]J.Xiong,M.Z.Ghori,B.Herkel,T.Strunskus,U.Schürmann,L.Kienle,F.Faupel, ActaMater.74(2014)1–8.

[7]Á.Deák,L.Janovák,E.Csapó,D.Ungor,I.Pálinkó,S.Puskás,T.Ördög,T.Ricza, I.Dékány,Appl.Surf.Sci.389(2016)294–302.

[8]F.Zhang,C.Zhang,L.Song,R.Zeng,S.Li,H.Cui,J.Mater.Sci.Technol.31 (2015)1139–1143.

[9]I.Dékány,L.G.Nagy,J.ColloidInterfaceSci.147(1991)119–128.

[10]M.Bleszynski,M.Kumosa,Compos.Sci.Technol.164(2018)74–81.

[11]K.Chen,W.Gou,XuLe,Y.Zhao,Compos.Sci.Technol.156(2018)177–185.

[12]Z.Caia,L.Shena,X.Wang,Q.Guo,Compos.Sci.Technol.164(2018)238–247.

[13]J.Drelich,Surf.Innov.1(2013)248–254.

[14]P.Devendar,G.F.Yang,Top.Curr.Chem.(Cham.)375(6)(2017)82–89.

[15]M.Ellis,D.Ferree,R.Funt,L.Madden,PlantDis.82(1998)428–439.

[16]J.Barkauskas,Res.Bull.42(2007)1732–1741.

[17]Sr.Choudhury,S.Roy,A.Goswami,S.Basu,J.Antimicrob,Chemother.67 (2012)1134–1137.

[18]W.Zheng,Y.W.Liu,X.G.Hu,C.F.Zhang,Electrochim.Acta51(2006) 1330–1340.

[19]E.Chibowski,Adv.ColloidInterfaceSci.103(2003)149–172.

[20]U.Eduok,O.Faye,J.Szpunar,Prog.Org.Coat.111(2017)124–163.

[21]A.Gutbier,Z.Anorg,AllergyChem.152(1926)163.

[22]P.P.vonWeimarn,Kolloidchem.Beihefte22(1926)38.

[23]M.Raffo,Kolloid-Z2(1908)358.

[24]R.Steudel,Top.Curr.Chem.230(2003)153–166.

[25]T.Preocanin,N.Kállay,Croat.Chem.Acta79(2006)95–106.

[26]U.Balachandran,N.G.Eror,J.SolidStateChem.42(1982)276–282.

[27]B.Meyer,Chem.Rev.76(1976)367–388.

[28]M.Ritz,L.Vaculíková,J.Kupková,E.Plevová,L.Bartonová,Vibrat.Spec.84 (2016)7–15.

[29]A.Caron,J.Donohue,J.Phys.Chem.64(1960)1767–1768.

[30]A.G.Pinkus,J.S.Kim,J.L.McAtee,C.B.Concilio,J.X-Ray,Am.Chem.Soc.81 (1959)2652–2654.

[31]L.Mérai,Á.Deák,D.Seb"ok,E.Csapó,T.S.Kolumbán,B.Hopp,I.Dékány,L.

Janovak,ExpressPolym.Lett.12(2018)1061–1071.

(9)

[32]L.Mérai,N.Varga,Á.Deák,D.Seb"ok,I.Szenti,Á.Kukovecz,Z.Kónya,I.

Dékány,L.Janovák,Catal.Today328(2019)85–90.

[33]L.Janovák,Á.Dernovics,L.Mérai,Á.Deák,D.Seb"ok,E.Csapó,A.Varga,I.

Dékány,C.Janáky,Chem.Commun.54(2018)650–653.

[34]Á.Deák,L.Janovák,E.Csapó,D.Ungor,I.Pálinkó,S.Puskás,T.Ördög,T.Ricza, I.Dékány,Appl.Surf.Sci.389(2016)294–302.

[35]L.Janovák,Á.Deák,Sz.P.Tallósy,D.Seb"ok,E.Csapó,K.Bohinc,A.Abram,I.

Pálinkó,I.Dékány,Surf.Coat.Technol.326(2017)316–326.

[36]H.Xu,C.R.Crick,R.J.Poole,J.Mater.Chem.A6(2018) 4458–4465.

[37]T.Verho,C.Bower,P.Andrew,S.Franssila,O.Ikkala,R.H.A.Ras,Adv.Mater.23 (2011)673–678.

Ábra

Fig. 1. TEM-micrographs of precipitated sulfur nanoparticles and wetting of spray-coated S-nanoparticle layers with deionized water as a test liquid (a), aqueous dispersion of prepared sulfur nanoparticles upon precipitation and 24 h later (b), size-distri
Fig. 2. Measured streaming potential values of the 0.01% Ag-TiO 2 photocatalyst suspension during the addition of the 0.09% suspension of the sulfur nanoparticles at a pH of 5.00 (a) and the recorded Raman spectra of Ag-TiO 2 photocatalyst, sulfur nanopart
Fig. 4. I(h) vs. h (a) and h 3 I( h) vs. h 2 (b) plots of the scattering curves of Ag-TiO 2 and Ag-TiO 2 /S powder samples with 60 wt% S-content.
Fig. 6. Evolution of advancing and receding contact angles on spray-coated 90 wt%
+2

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The addition of nanoparticle TiO 2 and membrane surface coating using PVA signifi- cantly decreased the water contact angle, but the addition of TiO 2 with

"Highly efficient TiO 2 /AgBr/PANI heterojunction with enhanced visible light photocatalytic activ- ity towards degradation of organic dyes", Journal of Materials

In our case, due to the low activity of this type of materials compared to others such as VO x /TiO 2 [17] these mesoporous catalysts were selected and tested with the aim

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

• Not only the particulates, but the other main pollutant of the London smog, the sulfur dioxide was also strongly dangerous; the sulfur dioxide levels during December of 1952 were

from the end of the long furnace adjacent to the short movable sample furnace (Fig. ) , previously weighed in a platinum boat or capillary (if the latter, protected with a

With a lower total sulfur content, the divisionless mutant yeast (despite its low P D S reductase activity) achieves relatively more exten- sive reduction of disulfide sulfur in