• Nem Talált Eredményt

SOME RESULTS ASSOCIATED WITH FRACTIONAL CALCULUS OPERATORS INVOLVING APPELL HYPERGEOMETRIC FUNCTION

N/A
N/A
Protected

Academic year: 2022

Ossza meg "SOME RESULTS ASSOCIATED WITH FRACTIONAL CALCULUS OPERATORS INVOLVING APPELL HYPERGEOMETRIC FUNCTION"

Copied!
16
0
0

Teljes szövegt

(1)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page

Contents

JJ II

J I

Page1of 16 Go Back Full Screen

Close

SOME RESULTS ASSOCIATED WITH FRACTIONAL CALCULUS OPERATORS INVOLVING APPELL

HYPERGEOMETRIC FUNCTION

R. K. RAINA

10/11 Ganpati Vihar, Opposite Sector 5 Udaipur 313002, Rajasthan, India EMail:rkraina_7@hotmail.com

Received: 14 August, 2008

Accepted: 11 January, 2009

Communicated by: H.M. Srivastava 2000 AMS Sub. Class.: 26A33, 30C45.

Key words: Analytic functions, Hardy space, Fractional derivatives and fractional integrals, Appell hypergeometric function, Inclusion relation.

Abstract: A class of fractional derivative operators (with the Appell hypergeometric func- tion in the kernel) is used here to define a new subclass of analytic functions and a coefficient bound inequality is established for this class of functions. Also, an inclusion theorem for a class of fractional integral operators involving the Hardy space of analytic functions is proved. The concluding remarks briefly mentions the relevances of the main results and possibilities of further work by using these new classes of fractional calculus operators.

(2)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page2of 16 Go Back Full Screen

Close

Contents

1 Introduction, Definitions and Preliminaries 3

2 A Set of Coefficient Bounds 7

3 Inclusion Relations 9

4 Concluding Remarks 14

(3)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page3of 16 Go Back Full Screen

Close

1. Introduction, Definitions and Preliminaries

LetA(n)denote the class of functionsf(z)normalized by

(1.1) f(z) =z+

X

k=n+1

akzk (n∈N),

which are analytic in the open unit disk

U={z : z ∈C and |z|<1}.

We denote by∆(α,αn 0,β,β0,γ)(σ) the subclass of functions inA(n)which also satisfy the inequality:

(1.2) Ren

χ1(α, α0, β, β0, γ)zα+α0+γ−1D0,z(α,α0,β,β0,γ)f(z)o

> σ (z ∈U), whereD(α,α0,z 0,β,β0,γ)is the generalized fractional derivative operator (defined below), and (for convenience)

(1.3) χm(α, α0, β, β0, γ)

= Γ(1 +m+β0)Γ(1+m−α−α0−γ)Γ(1+m−α0−β−γ)

Γ(1+m)Γ(1+m−α00)Γ(1 +m−α−α0 −β−γ) (m∈N), provided that

0≤σ <1; 0 ≤γ <1;

(1.4)

γ<min (−α−α0,−α0−β,−α−α0−β) +m+ 1;

β0>max(0, α0)−m−1.

(4)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page4of 16 Go Back Full Screen

Close

Following [8], a function f(z) is said to be in the class Vnk) if f(z) ∈ A(n) satisfies the condition that

arg(ak) = θk (k ≥n+ 1;n∈N) and if there exists a real numberρsuch that

(1.5) θk+ (k−1)ρ≡π(mod2π) (k ≥n+ 1;n ∈N),

then we say thatf(z)is in the classVnk;ρ).SupposeVn=∪Vnk;ρ)over all pos- sible sequencesθkwithρsatisfying (1.5), then we denote by∇(α,αn 0,β,β0,γ)(σ)the sub- class ofVnwhich consists of functionsf(z)belonging to the class∆(α,αn 0,β,β0,γ)(σ).

We present here the following family of fractional integral (and derivative) opera- tors which involve the familiar Appell hypergeometric functionF3(see also Kiryakova [4] and Saigo and Maeda [9]).

Definition 1.1. Letγ >0andα, α0, β, β0 ∈R. Then the fractional integral operator I0,z(α,α0,β,β0,γ)of a functionf(z)is defined by

(1.6) I0,z(α,α0,β,β0,γ)f(z)

= z−α Γ(γ)

Z z 0

(z−ζ)γ−1ζ−α0F3

α, α0, β, β0;γ; 1− ζ

z,1−z ζ

f(ζ)dζ (γ>0), where the functionf(z)is analytic in a simply-connected region of the complex z- plane containing the origin, and it is understood that(z−ζ)γ−1denotes the principal value for0 5 arg(z −t) <2π. The function F3 occurring in the kernel of (1.6) is the familiar Appell hypergeometric function of third type (also known as Horn’sF3

(5)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page5of 16 Go Back Full Screen

Close

- function; see, for example, [10]) defined by

(1.7) F3(α, α0, β, β0;γ;z, ξ)

=

X

m=0

X

n=0

(α)m0)n(β)m0)n (γ)m+n

zm m!

ξn

n! (|z|<1,|ξ|<1), which is related to the Gaussian hypergeometric function2F1(α, β;γ;z)by the fol- lowing relationship:

2F1(α, β;γ;z) =F3(α, α0, β, β0;γ;z,0)

=F3(α,0, β, β0;γ;z, ξ) = F3(α, α0, β,0;γ;z, ξ).

Definition 1.2. The fractional derivative operatorD(α,α0,z 0,β,β0,γ) of a functionf(z)is defined by

(1.8) D(α,α0,z 0,β,β0,γ)f(z) = dn

dznI0,z(α,α0,β−n,β0,n−γ)f(z) (n−1≤γ < n;n ∈N).

It may be observed that for

(1.9) α =λ+µ, α00 = 0, β =−η, γ =λ, we obtain the relationship

(1.10) I(λ+µ,0,−η,0,λ)

0,z =I0,zλ,µ,η

in terms of the Saigo type fractional integral operator I0,zλ,µ,η ([12]). On the other hand, if

(1.11) α=µ−λ, α00 = 0, β =−η, γ =λ,

(6)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page6of 16 Go Back Full Screen

Close

then we get

(1.12) D(µ−λ,0,−η,0,λ)

0,z =J0,zλ,µ,η,

whereJ0,z(λ,µ,η is the Saigo type fractional derivative operator ([6]; see also [7]). Fur- ther, when

(1.13) α =β0 = 0, α0 = 1−µ, γ =λ (or −λ), then the operators I(0,1−µ,0,0,λ)

0,z and D(0,1−µ,0,0,−λ)

0,z correspond to the differential- integral operatorsQλµdue to Dziok [2].

LetHp(0≤p <∞)be the class of analytic functions inUsuch that

(1.14) kfkp = lim

r→1−{Mp(r, f)}<∞, where

(1.15) kfkp =



 1

R 0

f(re)

p1p

(0< p <∞), sup

|z|≤r

|f(z)|.

In this paper we first define a new function class in terms of the fractional deriva- tive operators (with the Appell hypergeometric function in the kernel) and then es- tablish a coefficient bound inequality for this function class. Also, we prove an in- clusion theorem for a class of fractional integral operators involving the Hardy space of analytic functions. The relevance of the main results and possibilities of further work by using the new classes of fractional calculus operators are briefly pointed out in the concluding section of this paper.

(7)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page7of 16 Go Back Full Screen

Close

2. A Set of Coefficient Bounds

We begin by proving the following coefficient bounds inequality for a functionf(z) to be in the class∆(α,αn 0,β,β0,γ)(σ).

Theorem 2.1. Letf(z)defined by (1.1) be in the class(α,αn 0,β,β0,γ)(σ), then (2.1)

X

k=n+1

|ak|

χk(α, α0, β, β0, γ) ≤ 1−σ χ1(α, α0, β, β0, γ), whereχm(α, α0, β, β0, γ)is defined by (1.3). The result is sharp.

Proof. Assume that

Ren

χ1(α, α0, β, β0, γ)zα+α0−γ−1D0,z(α,α0,β,β0,γ)f(z)o

> σ (z∈U).

Using (1.1) and the formula (see, e.g. [9, p. 394]):

(2.2) D(α,α0,z 0,β,β0,γ)zq

= Γ(1 +q)Γ(1 +q−α00)Γ(1 +q−α−β−γ)

Γ(1 +q+β0)Γ(1 +q−α0−β−γ)Γ(1 +q−α−α0−γ)zq−α−α0−γ, (0≤γ <1;α, α0, β, β0 ∈R;q >max (0, α0 −β0, α+β+γ)−1) we obtain

(2.3) Re

( 1 +

X

k=n+1

χ1(α, α0, β, β0, γ)

χk(α, α0, β, β0, γ)akzk−1 )

> σ (z ∈U),

(8)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page8of 16 Go Back Full Screen

Close

and for f(z) ∈ Vnk;ρ) (z = re), the inequality thus obtainable from (2.3) on lettingr →1−therein, readily yields

(2.4) Re (

1 +

X

k=n+1

χ1(α, α0, β, β0, γ)

χk(α, α0, β, β0, γ)|ak|exp (i(θk+ (k−1)ρ)) )

> σ.

If we apply (1.5), then (2.4) gives

(2.5) 1−

X

k=n+1

χ1(α, α0, β, β0, γ)

χk(α, α0, β, β0, γ)|ak|> σ,

which leads to the desired inequality (2.1). We also observe that the equality sign in (2.1) is attained for the functionf(z)defined by

(2.6) f(z) = z+(1−σ)χk(α, α0, β, β0, γ)

χ1(α, α0, β, β0, γ) zkexp (iθk) (k ≥n+ 1;n∈N), and this completes the proof of Theorem2.1.

(9)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page9of 16 Go Back Full Screen

Close

3. Inclusion Relations

Under the hypotheses of Definition1.1, let

γ >0; min (γ−α−α0, γ−α0−β, β0, γ−α−α0−β, β0−α0)>−2;

(3.1)

α, α0, β, β0 ∈R, then the fractional integral operator

(α,αz 0,β,β0,γ) :A → A (A(1) =A) is defined by

(3.2) Ω(α,αz 0,β,β0,γ)f(z) = χ1(α, α0, β, β0,−γ)zα+α0I(0,z)(α,α0,β,β0,γ)f(z).

whereχ1(α, α0, β, β0,−γ)is given by (1.3).

By using the formula ([9, p. 394]; see also [4, p. 170, Lemma 9]) (3.3) I0,z(α,α0,β,β0,γ)zq

= Γ(1 +q)Γ(1 +q−α00)Γ(1 +q−α−α0 −β+γ)

Γ(1 +q+β0)Γ(1 +q−α0 −β+γ)Γ(1 +q−α−α0+γ)zq−α−α0, (γ >0;α, α0, β, β0 ∈R;q >max (0, α0 −β0, α+β−γ)−1) it follows from (1.1), (3.2) and (3.3) that

(3.4) Ω(α,αz 0,β,β0,γ)f(z) =z+χ1(α, α0, β, β0,−γ)

X

k=2

ak

χk(α, α0, β, β0,−γ)zk, where (as before)χk(α, α0, β, β0,−γ)is given by (1.3).

Before stating and proving our main inclusion theorem, we recall here the fol- lowing known results concerning the classR(ρ)inA which satisfies the inequality that<{f0(z)}> ρ(0≤ρ <1), whereR(1)is denoted byR.

(10)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page10of 16 Go Back Full Screen

Close

Lemma 3.1 ([3, p. 141]). Letf(z)∈ R, then

(3.5) f(z)∈ Hp : (0< p <∞).

Lemma 3.2 ([5, p. 533]). Letf(z)defined by (1.1) be in the classR(ρ) (0≤ρ <1), then

(3.6) |ak| ≤ 2

k (k = 2,3,4, ...).

Theorem 3.3. Letf(z)∈ R, then (under the constraints stated in (3.1)) (3.7) Ω(α,αz 0,β,β0,γ)f(z)∈ Hp (0< p <∞)

and

(3.8) Ω(α,αz 0,β,β0,γ)f(z)∈ H (γ >1).

Proof. In view of (1.6) and (3.2), we obtain

(3.9) Ω(α,αz 0,β,β0,γ)f(z) =χ1(α, α0, β, β0,−γ)

× Z 1

0

(1−t)γ−1t−α0F3

α, α0, β, β0;γ; 1−t,1− 1 t

f(zt)dt.

This implies that (3.10) Re

d

dzΩ(α,αz 0,β,β0,γ)f(z)

1(α, α0, β, β0,−γ)

× Z 1

0

(1−t)γ−1t1−α0F3

α, α0, β, β0;γ; 1−t,1− 1 t

< {f0(zt)}dt.

(11)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page11of 16 Go Back Full Screen

Close

Sincef(z)∈ R, therefore, we infer from (3.10) that (3.11) Ω(α,αz 0,β,β0,γ)f(z)∈ R,

and applying Lemma3.1, (3.11) gives the inclusion relation (3.7) under the condi- tions stated in (3.1).

To prove the result (3.8), we observe the following three-term recurrence relation:

(3.12) d

dzΩ(α,αz 0,β,β0,γ)f(z)

=z−1n

(γ−α0−β+ 1) Ω(α,αz 0,β,β0,γ−1)f(z)

−(γ−α0 −β) Ω(α,αz 0,β,β0,γ)f(z)o ,

which yields the inequality (3.13)

d

dzΩ(α,αz 0,β,β0,γ)f(z)

p

≤r−pn

(γ−α0−β+ 1)p

(α,αz 0,β,β0,γ−1)f(z)

p

−(γ −α0−β)p

(α,αz 0,β,β0,γ)f(z)

po

(|z|=r), provided that

(3.14) γ >1; min 1 +γ−α−α0,1 +γ−α0 −β,1 +β0, 1 +γ−α−α0 −β,1 +β0−α0

>−1; α, α0, β, β0 ∈R and0< p <∞.

(12)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page12of 16 Go Back Full Screen

Close

Making use of (1.14) and (1.15), the above inequality (3.13) (withp= 1) yields (3.15) M1

r, d

dzΩ(α,αz 0,β,β0,γ)f(z)

≤r−1n

(γ−α0−β+ 1)M1

r,Ω(α,αz 0,β,β0,γ−1)f(z)

−(γ−α0 −β)M1

r,Ω(α,αz 0,β,β0,γ)f(z)o and

(3.16)

d

dzΩ(α,αz 0,β,β0,γ)f(z) 1

≤(γ−α0 −β+ 1)

(α,αz 0,β,β0,γ−1)f(z) 1

−(γ−α0−β)

(α,αz 0,β,β0,γ)f(z) 1. Applying (3.7), we infer (under the constraints stated in (3.14)) that

(3.17) Ω(α,αz 0,β,β0,γ−1)f(z)∈ H1 and Ω(α,αz 0,β,β0,γ)f(z)∈ H1 (γ >1), and consequently (3.16) implies that

d

dzΩ(α,αz 0,β,β0,γ)f(z)∈ H1,

provided that the conditions stated in (3.14) are satisfied. By appealing to a known result [1, p. 42, Theorem 3.11], we infer from (3.17) thatΩ(α,αz 0,β,β0,γ)f(z)is contin- uous inU ={z :z ∈Cand |z| ≥1}.ButUbeing compact, we finally conclude thatΩ(α,αz 0,β,β0,γ)f(z)is a bounded analytic function inU, and the proof of the second assertion (3.8) of Theorem3.3is complete.

(13)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page13of 16 Go Back Full Screen

Close

The assertion (3.8) of Theorem 3.3 can also be proved by applying Lemma3.2 (see also [3, p. 145]). Indeed, it follows from (3.4) and (3.6) that

(α,αz 0,β,β0,γ)f(z)

≤ |z|+χ1(α, α0, β, β0,−γ)

X

k=2

|ak|

χk(α, α0, β, β0,−γ) zk

≤1 + 2 :χ1(α, α0, β, β0,−γ)

X

k=2

Γ(k)

Γ(k+ 1)χk(α, α0, β, β0,−γ)

= 1 + 2(2−α00)(2−α−α0−β+γ) (2 +β0)(2−α−α0+γ)(2−α0−β+γ)

×4F3

1,2,3−α00,3−α−α0 −β+γ;

3 +β0,3−α−α0+γ,3−α0−β+γ;

1

in terms of the generalized hypergeometric function.

Now, for fixed values of the parameters α, α0, β, β0, γ satisfying the conditions stated in (3.1), we observe that by using the asymptotic formula [10, p. 109],

Γ(k)

Γ(k+ 1)χk(α, α0, β, β0,−γ) =o k−γ−1

(k→ ∞), and sinceγ >1, this proves our assertion (3.8).

(14)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page14of 16 Go Back Full Screen

Close

4. Concluding Remarks

In view of the relationships (1.10) and (1.12), the main results (Theorems 2.1 and 3.3) of this paper would correspond to the results due to Raina and Srivastava [8, p. 75, Theorem 1; p. 79, Theorem 7]. Furthermore, in view of the relationship (1.13), we can easily apply Theorems2.1and3.3to obtain the corresponding results associated with Dziok’s differential-integral operators [2]. The family of fractional calculus operators (fractional integrals and fractional derivatives) defined by (1.6) and (1.8) can fruitfully be used in Geometric Function Theory. Several new analytic, multivalent (or meromorphic) function classes can be defined and the various prop- erties of coefficient estimates, distortion bounds, radii of starlikeness, convexity and close to convexity for such contemplated classes investigated.

(15)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page15of 16 Go Back Full Screen

Close

References

[1] P.L. DUREN, Theory ofHp Spaces, Vol. 38, A series of monographs and text- books in pure and applied mathematics, Academic Press, New York, 1970.

[2] J. DZIOK, Applications of the Jack lemma, Acta Math. Hungar., 105 (2004), 93–102.

[3] I. B. JUNG, Y. C. KIMANDH. M. SRIVASTAVA, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138–147.

[4] V. KIRYAKOVA, On two Saigo’s fractional integal operators in the class of univalent functions, Fracl. Cal. Appld. Math., 9 (2006), 159–176.

[5] T.H. MACGREGOR, Functions whose derivative has a positive real part, Trans.

Amer. Math. Soc., 104 (1962), 532–537.

[6] R.K. RAINA AND T.S. NAHAR, Characterization properties for starlikeness and convexity of some subclasses of analytic functions involving a class of fractional derivative operators, Acta Math. Univ. Comenianae, 69 (2000), 1–8.

[7] R.K. RAINA AND H.M. SRIVASTAVA, A certain subclass of analytic func- tions associated with operators of fractional calculus, Comput. Math. Appl., 32 (1996), 13–19.

[8] R.K. RAINAANDH.M. SRIVASTAVA, Some subclasses of analytic functions associated with fractional calculus operators, Comput. Math. Appl., 37 (1999), 73–84.

[9] M. SAIGO AND N. MAEDA, More generalization of fractional calculus, in:

Transform Methods and Special Functions, Varna’96 (Proc. Second Internat.

(16)

Fractional Calculus Operators R. K. Raina vol. 10, iss. 1, art. 14, 2009

Title Page Contents

JJ II

J I

Page16of 16 Go Back Full Screen

Close

Workshop), Science Culture Technology Publishing, Singapore (1998), 386- 400.

[10] H.M. SRIVASTAVAANDP.W. KARLSSON, Multiple Gaussian Hypergeomet- ric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1985.

[11] H.M. SRIVASTAVA AND S. OWA, Current Topics in Analytic Function The- ory, World Scientific Publishing Company, Singapore, New Jersey, London and Hongkong, 1992.

[12] H.M. SRIVASTAVA, M. SAIGOANDS. OWA, A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl., 131 (1988), 412–420.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

SRIVASTAVA, A certain subclass of analytic functions associated with operators of fractional calculus, Comput. RAINA, On certain class of analytic functions and applications

Also, an inclusion theorem for a class of fractional integral operators involving the Hardy space of analytic functions is proved.. The concluding remarks briefly mentions

SRIVASTAVA, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform Spec.. DZIOK

OWA, Some characterization and distortion theorems involving frac- tional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses

We have obtained Montgomery identities for fractional in- tegrals and a generalization for double fractional integrals.. We also produced Ostrowski and Grüss inequalities for

DRAGOMIR, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J.. ROUMELIOTIS, An inequlity of the Ostrowski type for double integrals

OWA, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric func- tions, Hadamard products, linear operators, and certain subclasses

SRIVASTAVA, Fractional integral and other linear operators associated with the Gaussian hypergeometric function, Complex Variables Theory Appl., 34 (1997), 293–312..