• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
12
0
0

Teljes szövegt

(1)

volume 3, issue 4, article 58, 2002.

Received 02 April, 2002;

accepted 20 June, 2002.

Communicated by:G. Anastassiou

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON MULTIVARIATE OSTROWSKI TYPE INEQUALITIES

B.G. PACHPATTE

57, Shri Niketen Colony Aurangabad - 431 001, (Maharashtra) India.

EMail:bgpachpatte@hotmail.com

2000c Victoria University ISSN (electronic): 1443-5756 069-02

(2)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

Abstract

In the present paper we establish new multivariate Ostrowski type inequalities by using fairly elementary analysis.

2000 Mathematics Subject Classification:26D15, 26D20.

Key words: Multivariate, Ostrowski type inequalities, Many independent variables, n−fold integral.

Contents

1 Introduction. . . 3

2 Statement of Results. . . 4

3 Proof of Theorem 2.1 . . . 7

4 Proof of Theorem 2.2 . . . 9 References

(3)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

1. Introduction

The following inequality is well known in the literature as Ostrowski’s integral inequality (see [5, p. 469]).

Letf : [a, b]→Rbe continuous on[a, b]and differentiable on(a, b)whose derivative f0 : (a, b) → Ris bounded on(a, b),i.e., kf0k = sup

t∈(a,b)

|f0(t)| <

∞.Then

f(x)− 1 b−a

Z b

a

f(t)dt

"

1

4+ x− a+b2 2

(b−a)2

#

(b−a)kf0k,

for allx∈[a, b].

Many generalisations, extensions and variants of this inequality have ap- peared in the literature, see [1] – [7] and the references given therein.

The main aim of this paper is to establish new inequalities similar to that of Ostrowski’s inequality involving functions of many independent variables and their first order partial derivatives. The analysis used in the proof is elementary and our results provide new estimates on these types of inequalities.

(4)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

2. Statement of Results

In what follows, R denotes the set of real nummbers, Rn the n−dimensional Euclidean space. LetD={(x1, . . . , xn) :ai < xi < bi (i= 1, . . . , n)}andD¯ be the closure of D.For a functionu(x) : Rn → R, we denote the first order partial derivatives by ∂u(x)∂x

i (i= 1, . . . , n)and R

Du(x)dx the n−fold integral Rb1

a1 · · ·Rbn

an u(x1, . . . , xn)dx1. . . dxn.

Our main results are established in the following theorems.

Theorem 2.1. Let f, g : Rn → Rbe continuous functions onand differen- tiable onDwhose derivatives ∂x∂f

i, ∂x∂g

i are bounded, i.e.,

∂f

∂xi

= sup

x∈D

∂f(x)

∂xi

<∞,

∂g

∂xi

= sup

x∈D

∂g(x)

∂xi

<∞.

Let the functionw(x)be defined, nonnegative, integrable for everyx∈ Dand R

Dw(y)dy >0.Then for everyx∈D,¯ (2.1)

f(x)g(x)− 1 2Mg(x)

Z

D

f(y)dy− 1 2Mf(x)

Z

D

g(y)dy

≤ 1 2M

n

X

i=1

|g(x)|

∂f

∂xi

+|f(x)|

∂g

∂xi

Ei(x),

(5)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

(2.2)

f(x)g(x)−

g(x)R

Dw(y)f(y)dy+f(x)R

Dw(y)g(y)dy 2R

Dw(y)dy

≤ R

Dw(y)Pn i=1

h|g(x)|

∂f

∂xi

+|f(x)|

∂g

∂xi

i|xi−yi|dy 2R

Dw(y)dy ,

where

M = mesD=

n

Y

i=1

(bi−ai), dy=dy1. . . dyn and Ei(x) = Z

D

|xi−yi|dy.

Remark 2.1. If we take g(x) = 1 and hence ∂x∂g

i = 0 in Theorem 2.1, then the inequalities (2.1) and (2.2) reduces to the inequalities established by Milo- vanovi´c in [3, Theorems 2 and 3] which in turn are the further generalisations of the well known Ostrowski’s inequality.

Theorem 2.2. Letf, g, ∂x∂f

i, ∂x∂g

i be as in Theorem2.1. Then for everyx∈D,¯ (2.3)

f(x)g(x)−f(x) 1

M Z

D

g(y)dy

− g(x) 1

M Z

D

f(y)dy

+ 1 M

Z

D

f(y)g(y)dy

≤ 1 M

Z

D

" n X

i=1

∂f

∂xi

|xi−yi|

! n X

i=1

∂g

∂xi

|xi−yi|

!#

dy,

(6)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

(2.4)

f(x)g(x)−f(x) 1

M Z

D

g(y)dy

− g(x) 1

M Z

D

f(y)dy

+ 1 M2

Z

D

f(y)dy Z

D

g(y)dy

≤ 1 M2

n

X

i=1

∂f

∂xi

Ei(x)

! n X

i=1

∂g

∂xi

Ei(x)

! ,

whereM, dy andEi(x)are as defined in Theorem2.1.

Remark 2.2. We note that in [1] Anastassiou has used a slightly different tech- nique to establish multivariate Ostrowski type inequalities. However, the in- equalities established in (2.3) and (2.4) are different from those given in [1] and our proofs are extremely simple. For an n−dimensional version of Ostrowski’s inequality for mappings of Hölder type, see [2].

(7)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

3. Proof of Theorem 2.1

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) x∈D, y¯ ∈D

. From the n−

dimensional version of the mean value theorem, we have (see [8, p. 174] or [4, p. 121])

f(x)−f(y) =

n

X

i=1

∂f(c)

∂xi (xi −yi), (3.1)

g(x)−g(y) =

n

X

i=1

∂g(c)

∂xi (xi−yi), (3.2)

wherec= (y1+α(x1−y1), . . . , yn+α(xn−yn)) (0< α <1).

Multiplying both sides of (3.1) and (3.2) byg(x)andf(x)respectively and adding, we get

(3.3) 2f(x)g(x)−g(x)f(y)−f(x)g(y)

=g(x)

n

X

i=1

∂f(c)

∂xi (xi−yi) +f(x)

n

X

i=1

∂g(c)

∂xi (xi−yi). Integrating both sides of (3.3) with respect to y over D, using the fact that mesD >0and rewriting, we have

(3.4) f(x)g(x)− 1 2Mg(x)

Z

D

f(y)dy− 1 2Mf(x)

Z

D

g(y)dy

(8)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

= 1

2M

"

g(x) Z

D n

X

i=1

∂f(c)

∂xi

(xi−yi)dy

+f(x) Z

D n

X

i=1

∂g(c)

∂xi

(xi−yi)dy

# .

From (3.4) and using the properties of modulus we have

f(x)g(x)− 1 2Mg(x)

Z

D

f(y)dy− 1 2Mf(x)

Z

D

g(y)dy

≤ 1 2M

"

|g(x)|

Z

D n

X

i=1

∂f(c)

∂xi

|xi−yi|dy

+|f(x)|

Z

D n

X

i=1

∂g(c)

∂xi

|xi−yi|dy

#

≤ 1 2M

n

X

i=1

|g(x)|

∂f

∂xi

+|f(x)|

∂g

∂xi

Ei(x).

The proof of the inequality (2.1) is complete.

Multiplying both sides of (3.3) byw(y)and integrating the resulting identity with respect toy onD and following the proof of inequality (2.1), we get the desired inequality in (2.2).

(9)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

4. Proof of Theorem 2.2

From the hypotheses, as in the proof of Theorem 2.1, the identities (3.1) and (3.2) hold. Multiplying the left and right sides of (3.1) and (3.2) we get

(4.1) f(x)g(x)−f(x)g(y)−g(x)f(y) +f(y)g(y)

=

" n X

i=1

∂f(c)

∂xi (xi−yi)

# " n X

i=1

∂g(c)

∂xi (xi−yi)

# .

Integrating both sides of (4.1) with respect toyonDand rewriting, we have (4.2) f(x)g(x)−f(x)

1 M

Z

D

g(y)dy

−g(x) 1

M Z

D

f(y)dy

+ 1 M

Z

D

f(y)g(y)dy

= 1 M

Z

D

" n X

i=1

∂f(c)

∂xi (xi−yi)

# " n X

i=1

∂g(c)

∂xi (xi−yi)

# dy.

From (4.2) and using the properties of the modulus, we have

f(x)g(x)−f(x) 1

M Z

D

g(y)dy

−g(x) 1

M Z

D

f(y)dy

+ 1 M

Z

D

f(y)g(y)dy

(10)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

http://jipam.vu.edu.au

≤ 1 M

Z

D

" n X

i=1

∂f(c)

∂xi

|xi−yi|

# " n X

i=1

∂g(c)

∂xi

|xi−yi|

# dy

≤ 1 M

Z

D

" n X

i=1

∂f

∂xi

|xi−yi|

# " n X

i=1

∂g

∂xi

|xi−yi|

# dy, which is the required inequality in (2.3).

Integrating both sides of (3.1) and (3.2) with respect toyoverDand rewrit- ing, we get

(4.3) f(x)− 1 M

Z

D

f(y)dy= 1 M

Z

D n

X

i=1

∂f(c)

∂xi (xi−yi)dy, and

(4.4) g(x)− 1 M

Z

D

g(y)dy= 1 M

Z

D n

X

i=1

∂g(c)

∂xi (xi−yi)dy, respectively. Multiplying the left and right sides of (4.3) and (4.4) we get (4.5) f(x)g(x)−f(x)

1 M

Z

D

g(y)dy

−g(x) 1

M Z

D

f(y)dy

+ 1 M2

Z

D

f(y)dy Z

D

g(y)dy

= 1 M2

Z

D n

X

i=1

∂f(c)

∂xi (xi−yi)dy

! Z

D n

X

i=1

∂g(c)

∂xi (xi−yi)dy

! .

(11)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

From (4.5) and using the properties of the modulus we have

f(x)g(x)−f(x) 1

M Z

D

g(y)dy

− g(x) 1

M Z

D

f(y)dy

+ 1 M2

Z

D

f(y)dy Z

D

g(y)dy

≤ 1 M2

Z

D n

X

i=1

∂f(c)

∂xi

|xi−yi|dy

!Z

D

∂g(c)

∂xi

|xi−yi|dy

≤ 1 M2

n

X

i=1

∂f

∂xi

Ei(x)

! n X

i=1

∂g

∂xi

Ei(x)

! .

This is the desired inequality in (2.4) and the proof is complete.

(12)

On Multivariate Ostrowski Type Inequalities

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of12

J. Ineq. Pure and Appl. Math. 3(4) Art. 58, 2002

http://jipam.vu.edu.au

References

[1] G.A. ANASTASSIOU, Multivariate Ostrowski type inequalities, Acta Math. Hungar., 76 (1997), 267–278.

[2] N.S. BARNETT AND S.S DRAGOMIR, An Ostrowski type in- equality for double integrals and applications for cubature for- mulae, RGMIA Res. Rep. Coll., 1(1) (1998), 13–22. [ONLINE]

http://rgmia.vu.edu.au/v1n1.html

[3] S.S DRAGOMIR, N.S. BARNETT ANDP. CERONE, Ann−dimensional version of Ostrowski’s inequality for mappings of the Hölder type, RGMIA Res. Rep. Coll., 2(2) (1999), 169–180. [ONLINE]

http://rgmia.vu.edu.au/v2n2.html

[4] G.V. MILOVANOVI ´C, On some integral inequalities, Univ. Beograd Publ.

Elek. Fak. Ser. Mat. Fiz., No. 496 – No. 541 (1975), 119-124.

[5] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Inequalities for func- tions and their integrals and derivatives, Kluwer Academic Publishers, Dordrecht, 1994.

[6] B.G. PACHPATTE, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249 (2000), 583–591.

[7] B.G. PACHPATTE, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32 (2001), 45–49.

[8] W. RUDIN, Principles of Mathematical Analysis, McGraw-Hill Book Com- pany Inc., 1953.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Riemann-Stieltjes integral, Functions of bounded variation, Lipschitzian func- tions, Integral inequalities, ˇ Cebyšev, Grüss, Ostrowski and Lupa¸s type inequali-

Key words and phrases: Riemann-Stieltjes integral, Functions of bounded variation, Lipschitzian functions, Integral inequal- ities, ˇ Cebyšev, Grüss, Ostrowski and Lupa¸s

In this note we establish new ˇ Cebyšev type integral inequalities involving functions whose derivatives belong to L p spaces via certain integral identities.. Key words and phrases:

The study of integral inequalities involving functions of one or more independent variables is an important tool in the study of existence, uniqueness, bounds, stability,

Key words and phrases: Multiplicative integral inequalities, Weights, Carlson’s inequality.. 2000 Mathematics

Key words: Ostrowski-Grüss- ˇ Cebyšev type inequalities, Modulus of derivatives, Convex, Log-convex, Integral

Key words: Retarded integral inequality, explicit bound, two independent variables, Volterra-Fredholm integral equation, uniqueness of solutions, continuous dependence of

Key words: Explicit bounds, retarded integral inequalities, two independent vari- ables, non-self-adjoint, Hyperbolic partial differential equations, partial