• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
22
0
0

Teljes szövegt

(1)

volume 5, issue 1, article 19, 2004.

Received 16 September, 2003;

accepted 15 December, 2003.

Communicated by:D. Bainov

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON A CERTAIN RETARDED INTEGRAL INEQUALITY AND ITS APPLICATIONS

B.G. PACHPATTE

57 Shri Niketan Colony Near Abhinay Talkies Aurangabad 431 001 (Maharashtra) India.

EMail:bgpachpatte@hotmail.com

c

2000Victoria University ISSN (electronic): 1443-5756 120-03

(2)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

Abstract

In the present paper explicit bound on a new retarded integral inequality in two independent variables is established. Applications are given to illustrate the usefulness of the inequality.

2000 Mathematics Subject Classification:26D10, 26D15.

Key words: Retarded integral inequality, explicit bound, two independent variables, Volterra-Fredholm integral equation, uniqueness of solutions, continuous dependence of solution.

Contents

1 Introduction. . . 3 2 Main Result . . . 5 3 Applications. . . 10

References

(3)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

1. Introduction

In the study of differential, integral and finite difference equations, one has of- ten to deal with certain integral and finite difference inequalities, which provide explicit bounds on the unknown functions. A detailed account on such inequal- ities and some of their applications can be found in [2, 3, 6, 7, 9]. In [8] the present author has established the following useful integral inequality.

Lemma 1.1. Let u(t) ∈ C(I,R+), a(t, s), b(t, s) ∈ C(D,R+) anda(t, s), b(t, s)are nondecreasing intfor eachs ∈I,whereI = [α, β],R+ = [0,∞), D={(t, s)∈I2 :α≤s ≤t≤β}and suppose that

u(t)≤k+ Z t

α

a(t, s)u(s)ds+ Z β

α

b(t, s)u(s)ds,

fort∈I,wherek ≥0is a constant. If p(t) =

Z β

α

b(t, s) exp Z s

α

a(s, σ)dσ

ds <1, fort∈I, then

u(t)≤ k

1−p(t)exp Z t

α

a(t, s)ds

, fort∈I.

A version of the above inequality whena(t, s) = a(s), b(t, s) = b(s)is first given in [2, p. 11]. In a recent paper [10] a useful general retarded version of the above inequality is given. The aim of the present paper is to establish a

(4)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

general two independent variable retarded version of the above inequality which can be used as a tool to study the behavior of solutions of a general retarded Volterra-Fredholm integral equation in two independent variables. Applications are given to convey the importance of our result to the literature.

(5)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

2. Main Result

In what follows,Rdenotes the set of real numbers,R+ = [0,∞),I1 = [x0, M] andI2 = [y0, N]are the given subsets ofR. Let∆ = I1×I2 and

E =

(x, y, s, t)∈∆2 :x0 ≤s≤x≤M, y0 ≤t≤y ≤N . Our main result is established in the following theorem.

Theorem 2.1. Letu(x, y)∈C(∆,R+), a(x, y, s, t), b(x, y, s, t)∈C(E,R+) and a(x, y, s, t), b(x, y, s, t) be nondecreasing in x and y for each s ∈ I1, t ∈I2, α∈C1(I1, I1), β ∈C1(I2, I2)be nondecreasing withα(x)≤xonI1, β(y)≤yonI2and suppose that

(2.1) u(x, y)≤c+ Z α(x)

α(x0)

Z β(y)

β(y0)

a(x, y, s, t)u(s, t)dtds

+

Z α(M)

α(x0)

Z β(N)

β(y0)

b(x, y, s, t)u(s, t)dtds,

forx∈I1, y ∈I2, wherec≥0is a constant. If (2.2) p(x, y) =

Z α(M)

α(x0)

Z β(N)

β(y0)

b(x, y, s, t)

×exp

Z α(s)

α(x0)

Z β(t)

β(y0)

a(s, t, σ, τ)dτ dσ

!

dtds <1,

(6)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

forx∈I1, y ∈I2, then (2.3) u(x, y)≤ c

1−p(x, y)exp

Z α(x)

α(x0)

Z β(y)

β(y0)

a(x, y, s, t)dtds

! , forx∈I1, y ∈I2.

Proof. Fix any arbitrary(X, Y) ∈ ∆. Then forx0 ≤ x ≤ X, y0 ≤ y ≤ Y we have

(2.4) u(x, y)≤c+ Z α(x)

α(x0)

Z β(y)

β(y0)

a(X, Y, s, t)u(s, t)dtds

+

Z α(M)

α(x0)

Z β(N)

β(y0)

b(X, Y, s, t)u(s, t)dtds.

Let

(2.5) k =c+

Z α(M)

α(x0)

Z β(N)

β(y0)

b(X, Y, s, t)u(s, t)dtds, then (2.4) can be restated as

(2.6) u(x, y)≤k+ Z α(x)

α(x0)

Z β(y)

β(y0)

a(X, Y, s, t)u(s, t)dtds,

forx0 ≤x≤X, y0 ≤y ≤Y. Now a suitable application of the inequality(c1) given in Theorem 3 in [9, p. 51] to (2.6) yields

(2.7) u(x, y)≤kexp

Z α(x)

α(x0)

Z β(y)

β(y0)

a(X, Y, s, t)dtds

! ,

(7)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

for x0 ≤ x ≤ X, y0 ≤ y ≤ Y. Since(X, Y) ∈ ∆is arbitrary, from (2.7) and (2.5) withXandY replaced byxandywe have

(2.8) u(x, y)≤kexp

Z α(x)

α(x0)

Z β(y)

β(y0)

a(x, y, s, t)dtds

! , where

(2.9) k=c+

Z α(M)

α(x0)

Z β(N)

β(y0)

b(x, y, s, t)u(s, t)dtds,

for allx∈I1,y∈I2. Using (2.8) on the right side of (2.9) and in view of (2.2) we have

(2.10) k≤ c

1−p(x, y).

Using (2.10) in (2.8) we get the desired inequality in (2.3). The proof is com- plete.

By taking b(x, y, s, t) = 0 in Theorem 2.1, we get the following useful inequality.

Corollary 2.2. Let u(x, y), a(x, y, s, t), α(x), β(y)and cbe as in Theorem 2.1. If

(2.11) u(x, y)≤c+ Z α(x)

α(x0)

Z β(y)

β(y0)

a(x, y, s, t)u(s, t)dtds,

(8)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

forx∈I1, y ∈I2, then (2.12) u(x, y)≤cexp

Z α(x)

α(x0)

Z β(y)

β(y0)

a(x, y, s, t)dtds

! , forx∈I1, y ∈I2.

The following corollaries of Theorem2.1and Corollary 2.2are also useful in certain applications.

Corollary 2.3. Let u(x, y), a(x, y, s, t), b(x, y, s, t) and c be as in Theorem 2.1and suppose that

(2.13) u(x, y)≤c+ Z x

x0

Z y

y0

a(x, y, s, t)u(s, t)dtds

+ Z M

x0

Z N

y0

b(x, y, s, t)u(s, t)dtds, forx∈I1, y ∈I2. If

(2.14) q(x, y)

= Z M

x0

Z N

y0

b(x, y, s, t) exp Z s

x0

Z t

y0

a(s, t, σ, τ)dτ dσ

dtds <1, forx∈I1, y ∈I2, then

(2.15) u(x, y)≤ c

1−q(x, y)exp Z x

x0

Z y

y0

a(x, y, s, t)dtds

, forx∈I1, y ∈I2.

(9)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

Corollary 2.4. Letu(x, y), a(x, y, s, t)andcbe as in Corollary2.2. If (2.16) u(x, y)≤c+

Z x

x0

Z y

y0

a(x, y, s, t)u(s, t)dtds,

forx∈I1, y ∈I2, then

(2.17) u(x, y)≤cexp Z x

x0

Z y

y0

a(x, y, s, t)dtds

, forx∈I1, y ∈I2.

The proofs of Corollaries2.3and2.4follow by takingα(x) =x, β(y) =y in Theorem2.1and Corollary2.2.

(10)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

3. Applications

In this section, we present applications of Theorem 2.1 to study certain prop- erties of solutions of the retarded Volterra-Fredholm integral equation in two independent variables of the form

(3.1) z(x, y)

=f(x, y) + Z x

x0

Z y

y0

A(x, y, s, t, z(s−h1(s), t−h2(t)))dtds +

Z M

x0

Z N

y0

B(x, y, s, t, z(s−h1(s), t−h2(t)))dtds, wherez, f ∈C(∆,R), A, B ∈C(E×R,R)andh1 ∈C(I1,R+), h2 ∈C(I2,R+), are nonincreasing, x−h1(x) ≥ 0, y−h2(y) ≥ 0, x−h1(x) ∈ C1(I1, I1), y−h2(y)∈C1(I2, I2), h01(x)<1, h02(x)<1, h1(x0) = h2(y0) = 0.

The following theorem gives the bound on the solution of equation (3.1).

Theorem 3.1. Suppose that the functions f, A, B in equation (3.1) satisfy the conditions

(3.2) |f(x, y)| ≤c,

(3.3) |A(x, y, s, t, z)| ≤a(x, y, s, t)|z|,

(3.4) |B(x, y, s, t, z)| ≤b(x, y, s, t)|z|,

(11)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

wherec, a(x, y, s, t), b(x, y, s, t)are as in Theorem2.1. Let

(3.5) M1 = max

x∈I1

1

1−h01(x), M2 = max

y∈I2

1 1−h02(y), and

(3.6) p¯(x, y) =

Z φ(M)

φ(x0)

Z ψ(N)

ψ(y0)

¯b(x, y, s, t)

×exp

Z φ(s)

φ(x0)

Z ψ(t)

ψ(y0)

¯

a(s, t, σ, τ)dτ dσ

!

dtds <1, whereφ(x) = x−h1(x), x ∈I1, ψ(y) =y−h2(y), y∈I2and

¯

a(x, y, σ, τ) = M1M2a(x, y, σ+h1(s), τ +h2(t)),

¯b(x, y, σ, τ) = M1M2b(x, y, σ+h1(s), τ +h2(t)). Ifz(x, y)is a solution of equation (3.1) on∆, then

(3.7) |z(x, y)| ≤ c

1−p¯(x, y)exp

Z φ(x)

φ(x0)

Z ψ(y)

ψ(y0)

¯

a(x, y, σ, τ)dτ dσ

! , forx∈I1, y ∈I2.

Proof. Sincez(x, y)is a solution of equation (3.1), from (3.1) – (3.4) we have (3.8) |z(x, y)| ≤c+

Z x

x0

Z y

y0

a(x, y, s, t)|z(s−h1(s), t−h2(t))|dtds +

Z M

x0

Z N

y0

b(x, y, s, t)|z(s−h1(s), t−h2(t))|dtds.

(12)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

Now by making the change of variables on the right side of (3.8) and using (3.5) we have

(3.9) |z(x, y)| ≤c+ Z φ(x)

φ(x0)

Z ψ(y)

ψ(y0)

¯

a(x, y, σ, τ)|z(σ, τ)|dτ dσ

+

Z φ(M)

φ(x0)

Z ψ(N)

ψ(y0)

¯b(x, y, σ, τ)|z(σ, τ)|dτ dσ.

A suitable application of Theorem2.1to (3.9) yields (3.7).

The next result deals with the uniqueness of solutions of (3.1).

Theorem 3.2. Suppose that the functionsA, Bin equation (3.1) satisfy the con- ditions

(3.10) |A(x, y, s, t, z)−A(x, y, s, t,z)| ≤¯ a(x, y, s, t)|z−z|¯ ,

(3.11) |B(x, y, s, t, z)−B(x, y, s, t,z)| ≤¯ b(x, y, s, t)|z−z|¯ ,

wherea(x, y, s, t), b(x, y, s, t)are as in Theorem2.1. LetM1, M2, φ, ψ,¯a,¯b,p¯ be as in Theorem3.1. Then the equation (3.1) has at most one solution on∆.

Proof. Letz(x, y)andz¯(x, y)be two solutions of equation (3.1) on ∆. From

(13)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

(3.1), (3.10), (3.11) we have (3.12) |z(x, y)−z¯(x, y)|

≤ Z x

x0

Z y

y0

a(x, y, s, t)|z(s−h1(s), t−h2(t))

−¯z(s−h1(s), t−h2(t))|dtds +

Z x

x0

Z y

y0

b(x, y, s, t)|z(s−h1(s), t−h2(t))

−¯z(s−h1(s), t−h2(t))|dtds.

By making the change of variables on the right side of (3.12) and using (3.5) we have

(3.13) |z(x, y)−z¯(x, y)|

≤ Z φ(x)

φ(x0)

Z ψ(y)

ψ(y0)

¯

a(x, y, σ, τ)|z(σ, τ)−z¯(σ, τ)|dτ dσ

+

Z φ(M)

φ(x0)

Z ψ(N)

ψ(y0)

¯b(x, y, σ, τ)|z(σ, τ)−z¯(σ, τ)|dτ dσ.

Now a suitable application of Theorem2.1to (3.13) yields

|z(x, y)−z¯(x, y)| ≤0.

Thereforez(x, y) = ¯z(x, y), i.e. there is at most one solution to the equation (3.1).

(14)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

The following theorem deals with the continuous dependence of solution of equation (3.1) on the right side.

Consider the equation (3.1) and the following equation (3.14) w(x, y)

=g(x, y) + Z x

x0

Z y

y0

F (x, y, s, t, w(s−h1(s), t−h2(t)))dtds

+ Z M

x0

Z N

y0

G(x, y, s, t, w(s−h1(s), t−h2(t)))dtds, wherew, g ∈C(∆,R), F, G ∈C(E×R,R)andh1, h2are as in equation (3.1).

Theorem 3.3. Suppose that the functionsA, Bin equation (3.1) satisfy the con- ditions (3.10), (3.11) in Theorem3.2and further assume that

(3.15) |f(x, y)−g(x, y)| ≤ε,

(3.16) Z x

x0

Z y

y0

|A(x, y, s, t, w(s−h1(s), t−h2(t)))

−F (x, y, s, t, w(s−h1(s), t−h2(t)))|dtds≤ε,

(3.17) Z M

x0

Z N

y0

|B(x, y, s, t, w(s−h1(s), t−h2(t)))

−G(x, y, s, t, w(s−h1(s), t−h2(t)))|dtds≤ε,

(15)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

whereε >0is an arbitrary small constant, and letM1, M2, φ, ψ,¯a,¯b,p¯be as in Theorem 3.1. Then the solution of equation (3.1) depends continuously on the functions involved on the right side of equation (3.1).

Proof. Letz(x, y)andw(x, y)be the solutions of (3.1) and (3.14) respectively.

Then we have

z(x, y)−w(x, y) (3.18)

=f(x, y)−g(x, y) +

Z x

x0

Z y

y0

{A(x, y, s, t, z(s−h1(s), t−h2(t)))

−A(x, y, s, t, w(s−h1(s), t−h2(t)))}dtds +

Z x

x0

Z y

y0

{A(x, y, s, t, w(s−h1(s), t−h2(t)))

−F (x, y, s, t, w(s−h1(s), t−h2(t)))}dtds +

Z M

x0

Z N

y0

{B(x, y, s, t, z(s−h1(s), t−h2(t)))

−B(x, y, s, t, w(s−h1(s), t−h2(t)))}dtds +

Z M

x0

Z N

y0

{B(x, y, s, t, w(s−h1(s), t−h2(t)))

−G(x, y, s, t, w(s−h1(s), t−h2(t)))}dtds.

(16)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

Using (3.10), (3.11), (3.15) – (3.17) in (3.18) we get (3.19) |z(x, y)−w(x, y)|

≤3ε+ Z x

x0

Z y

y0

a(x, y, s, t)|z(s−h1(s), t−h2(t))

−w(s−h1(s), t−h2(t))|dtds +

Z M

x0

Z N

y0

b(x, y, s, t)|z(s−h1(s), t−h2(t))

−w(s−h1(s), t−h2(t))|dtds.

By making the change of variables on the right side of (3.19) and using (3.5) we get

(3.20) |z(x, y)−w(x, y)|

≤3ε+ Z φ(x)

φ(x0)

Z ψ(y)

ψ(y0)

¯

a(x, y, s, t)|z(σ, τ)−w(σ, τ)|dτ dσ

+

Z φ(M)

φ(x0)

Z ψ(N)

ψ(y0)

¯b(x, y, s, t)|z(σ, τ)−w(σ, τ)|dτ dσ.

Now a suitable application of Theorem2.1to (3.20) yields (3.21) |z(x, y)−w(x, y)|

≤3ε

"

1

1−p¯(x, y)exp

Z φ(x)

φ(x0)

Z ψ(y)

ψ(y0)

¯

a(x, y, σ, τ)dτ dσ

!#

,

(17)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

forx∈I1, y ∈I2. On the compact set, the quantity in square brackets in (3.21) is bounded by some positive constant M. Therefore |z(x, y)−w(x, y)| ≤ 3M ε on the set, so the solution to equation (3.1) depends continuously on the functions involved on the right side of equation (3.1). If ε → 0, then

|z(x, y)−w(x, y)| →0on the set.

We next consider the following retarded Volterra-Fredholm integral equa- tions

(3.22) z(x, y)

=f(x, y) + Z x

x0

Z y

y0

A(x, y, s, t, z(s−h1(s), t−h2(t)), µ)dtds +

Z M

x0

Z N

y0

B(x, y, s, t, z(s−h1(s), t−h2(t)), µ)dtds,

(3.23) z(x, y)

=f(x, y) + Z x

x0

Z y

y0

A(x, y, s, t, z(s−h1(s), t−h2(t)), µ0)dtds +

Z M

x0

Z N

y0

B(x, y, s, t, z(s−h1(s), t−h2(t)), µ0)dtds, wherez, f ∈C(∆,R), A, B ∈C(E×R×R,R)andµ,µ0 are real parameters.

The following theorem shows the dependency of solutions of equations (3.22) and (3.23) on parameters.

(18)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

Theorem 3.4. Suppose that

(3.24) |A(x, y, s, t, z, µ)−A(x, y, s, t,z, µ)| ≤¯ a(x, y, s, t)|z−z|¯ ,

(3.25) |A(x, y, s, t,z, µ)¯ −A(x, y, s, t,z, µ¯ 0)| ≤r(x, y, s, t)|µ−µ0|,

(3.26) |B(x, y, s, t, z, µ)−B(x, y, s, t,z, µ)| ≤¯ b(x, y, s, t)|z−z|¯ ,

(3.27) |B(x, y, s, t,z, µ)¯ −B(x, y, s, t,z, µ¯ 0)| ≤e(x, y, s, t)|µ−µ0|, wherea(x, y, s, t), b(x, y, s, t)are as in Theorem2.1andr, e ∈C(E,R+)are such that

(3.28)

Z x

x0

Z y

y0

r(x, y, s, t)dtds≤k1,

(3.29)

Z M

x0

Z N

y0

e(x, y, s, t)dtds≤k2,

where k1, k2 are positive constants. LetM1, M2, φ, ψ,¯a,¯b,p¯be as in Theorem 3.1. Letz1(x, y)andz2(x, y)be the solutions of (3.22) and (3.23) respectively.

(19)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

Then

(3.30) |z1(x, y)−z2(x, y)|

≤ (k1+k2)|µ−µ0| 1−p¯(x, y) exp

Z φ(x)

φ(x0)

Z ψ(y)

ψ(y0)

¯

a(x, y, s, t)dtds

! , forx∈I1, y ∈I2.

Proof. Letz(x, y) = z1(x, y)−z2(x, y),(x, y)∈∆. Then (3.31) z(x, y) =

Z x

x0

Z y

y0

{A(x, y, s, t, z1(s−h1(s), t−h2(t)), µ)

−A(x, y, s, t, z2(s−h1(s), t−h2(t)), µ)}dtds +

Z x

x0

Z y

y0

{A(x, y, s, t, z2(s−h1(s), t−h2(t)), µ)

−A(x, y, s, t, z2(s−h1(s), t−h2(t)), µ0)}dtds +

Z M

x0

Z N

y0

{B(x, y, s, t, z1(s−h1(s), t−h2(t)), µ)

−B(x, y, s, t, z2(s−h1(s), t−h2(t)), µ)}dtds +

Z M

x0

Z N

y0

{B(x, y, s, t, z2(s−h1(s), t−h2(t)), µ)

−B(x, y, s, t, z2(s−h1(s), t−h2(t)), µ0)}dtds.

(20)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

Using (3.24) – (3.29) in (3.31) we get

(3.32) |z(x, y)| ≤ |µ−µ0|k1+|µ−µ0|k2 +

Z x

x0

Z y

y0

a(x, y, s, t)|z(s−h1(s), t−h2(t))|dtds

+ Z M

x0

Z N

y0

b(x, y, s, t)|z(s−h1(s), t−h2(t))|dtds.

By using the change of variables on the right side of (3.32) and (3.5) we get (3.33) |z(x, y)| ≤(k1+k2)|µ−µ0|

+ Z φ(x)

φ(x0)

Z ψ(y)

ψ(y0)

¯

a(x, y, σ, τ)|z(σ, τ)|dτ dσ

+

Z φ(M)

φ(x0)

Z ψ(N)

ψ(y0)

¯b(x, y, σ, τ)|z(σ, τ)|dτ dσ.

Now a suitable application of Theorem2.1to (3.33) yields (3.30), which shows the dependency of solutions of (3.22) and (3.23) on parameters.

In conclusion, we note that the results given in this paper can be extended very easily to functions involving many independent variables. Since the for- mulations of such results are quite straightforward in view of the results given above (see also [6]) and hence we omit the details. For the study of behavior of solutions of Volterra-Fredholm integral equations involving functions of one independent variable, see [1,4,5].

(21)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

References

[1] S. ASIROV ANDJa.D. MAMEDOV, Investigation of solutions of nonlin- ear Volterra-Fredholm operator equations, Dokl. Akad. Nauk SSSR, 229 (1976), 982–986.

[2] D. BAINOVAND P. SIMEONOV, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1992.

[3] O. LIPOVAN, A retarded Gronwall-like inequality and its applications, J.

Math. Anal. Appl., 252 (2000), 389–401.

[4] R.K. MILLER, J.A. NOHELANDJ.S.W. WONG, A stability theorem for nonlinear mixed integral equations, J. Math. Anal. Appl., 25 (1969), 446–

449.

[5] B.G. PACHPATTE, On the existence and uniqueness of solutions of Volterra-Fredholm integral equations, Math. Seminar Notes, 10 (1982), 733–742.

[6] B.G. PACHPATTE, Inequalities for Differential and Integral Equations, Academic Press, New York, 1998.

[7] B.G. PACHPATTE, Inequalities for Finite Difference Equations, Marcel Dekker, Inc. New York, 2002.

[8] B.G. PACHPATTE, A note on certain integral inequality, Tamkang J.

Math., 33 (2002), 353–358.

[9] B.G. PACHPATTE, Explicit bounds on certain integral inequalities, J.

Math. Anal. Appl., 267 (2002), 48–61.

(22)

On A Certain Retarded Integral Inequality And Its Applications

B.G. Pachpatte

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of22

J. Ineq. Pure and Appl. Math. 5(1) Art. 19, 2004

http://jipam.vu.edu.au

[10] B.G. PACHPATTE, Explicit bound on a retarded integral inequality, Math.

Inequal. Appl., 7 (2004), 7–11.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Ostrowski inequality, Integral inequalities, Absolutely continuous functions.. Abstract: On utilising an identity from [5], some weighted Ostrowski type inequalities

In this paper, some new nonlinear integral inequalities involving functions of one and two independent variables which provide explicit bounds on unknown func- tions are

Key words and phrases: Multiplicative integral inequalities, Weights, Carlson’s inequality.. 2000 Mathematics

The authors establish the Hardy integral inequality for commutators generated by Hardy operators and Lipschitz functions.. Key words and phrases: Hardy’s integral

This paper gives a new multiple extension of Hilbert’s integral inequality with a best constant factor, by introducing a parameter λ and the Γ function.. Some particular results

In this paper, we obtain a generalization of advanced integral inequality and by means of examples we show the usefulness of our results.. Key words and phrases: Advanced

This paper deals with a relation between Hardy-Hilbert’s integral inequality and Mulholland’s integral inequality with a best constant factor, by using the Beta function and

Key words: Explicit bounds, retarded integral inequalities, two independent vari- ables, non-self-adjoint, Hyperbolic partial differential equations, partial