• Nem Talált Eredményt

SUPERQUADRACITY OF FUNCTIONS AND REARRANGEMENTS OF SETS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "SUPERQUADRACITY OF FUNCTIONS AND REARRANGEMENTS OF SETS"

Copied!
11
0
0

Teljes szövegt

(1)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page

Contents

JJ II

J I

Page1of 11 Go Back Full Screen

Close

SUPERQUADRACITY OF FUNCTIONS AND REARRANGEMENTS OF SETS

SHOSHANA ABRAMOVICH

Department of Mathematics University of Haifa Haifa, 31905, Israel

EMail:abramos@math.haifa.ac.il

Received: 26 December, 2006

Accepted: 29 May, 2007

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 26D15.

Key words: Superquadratic functions, Convex functions, Jensen’s inequality.

Abstract: In this paper we establish upper bounds of

n

X

i=1

fxi+xi+1

2

+f

|xixi+1| 2

, xn+1=x1

when the functionfis superquadratic and the set(x) = (x1, . . . , xn)is given except its arrangement.

(2)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page Contents

JJ II

J I

Page2of 11 Go Back Full Screen

Close

Contents

1 Introduction 3

2 The Main Results 7

(3)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page Contents

JJ II

J I

Page3of 11 Go Back Full Screen

Close

1. Introduction

We start with the definitions and results of [1] and [5] which we use in this paper.

Definition 1.1. The sets (y) = y1, . . . , yn

and (y) = (y1, . . . ,yn) are symmetrically decreasing rearrangements of an ordered set (y) = (y1, . . . , yn)ofn real numbers, if

(1.1) y1 ≤ yn ≤y2 ≤ · · · ≤ y [n+22 ]

and

(1.2) yny1yn−1 ≤ · · · ≤ y[n+12 ].

A circular rearrangement of an ordered set (y) = (y1, . . . , yn)is a cyclic rearrange- ment of (y)or a cyclic rearrangement followed by inversion.

Definition 1.2. An ordered set (y) = (y1, . . . , yn) of n real numbers is arranged in circular symmetric order if one of its circular rearrangements is symmetrically decreasing.

Theorem A ([1]). Let F (u, v)be a symmetric function defined for α ≤ u, v ≤ β for which 2∂u∂vF(u,v) ≥0.

Let the set (y) = (y1, . . . , yn), α ≤ yi ≤ β, i = 1, . . . , n be given except its arrangement. Then

n

X

i=1

F (yi, yi+1), (yn+1 =y1) is maximal if (y)is arranged in circular symmetrical order.

(4)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page Contents

JJ II

J I

Page4of 11 Go Back Full Screen

Close

Definition 1.3 ([5]). A function f, defined on an interval I = [0, L] or[0,∞) is superquadratic, if for eachxinI, there exists a real numberC(x)such that

f(y)−f(x)≥C(x) (y−x) +f(|y−x|) for ally∈I.

A function is subquadratic if−f is superquadratic.

Lemma A ([5]). Letf be a superquadratic function withC(x)as in Definition1.3.

(i) Thenf(0)≤0.

(ii) Iff(0) =f0(0) = 0,thenC(x) = f0(x)wheneverf is differentiable.

(iii) Iff ≥0, thenf is convex andf(0) =f0(0) = 0.

The following lemma presents a Jensen’s type inequality for superquadratic func- tions.

Lemma B ([6, Lemma 2.3]). Suppose thatf is superquadratic. Let xr ≥ 0,1 ≤ r≤n and letx=Pn

r=1λrxr,whereλr ≥0,andPn

r=1λr= 1.Then

n

X

r=1

λrf(xr)≥f(x) +

n

X

r=1

λrf(|xr−x|).

If f(x)is subquadratic, the reverse inequality holds.

From Lemma B we get an immediate result which we state in the following lemma.

(5)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page Contents

JJ II

J I

Page5of 11 Go Back Full Screen

Close

Lemma C. Letf(x)be superquadratic on [0, L]and let x, y ∈ [0, L],0≤ λ≤1, then

λf(x) + (1−λ)f(y)

≥f(λx+ (1−λ)y) +λf((1−λ)|y−x|) + (1−λ)f(λ|y−x|)

≥f(λx+ (1−λ)y) +

t−1

X

k=0

f

2λ(1−λ)|1−2λ|k|x−y|

+λf (1−λ)|1−2λ|t|x−y|

+ (1−λ)f λ|1−2λ|t|x−y|

. Iff is positive superquadratic we get that:

λf(x)+(1−λ)f(y)≥f(λx+ (1−λ)y)+

t−1

X

k=0

f

2λ(1−λ)|1−2λ|k|x−y|

More results related to superquadracity were discussed in [2] to [6].

In this paper we refine the results in [7] by showing that for positive superquadratic functions we get better bounds than in [7].

Theorem B ([7, Thm. 1.2]). If f is a convex function andx1, x2, . . . , xn lie in its domain, then

n

X

i=1

f(xi)−f

x1+· · ·+xn n

≥ n−1 n

f

x1+x2 2

+· · ·+f

xn−1+xn 2

+f

xn+x1 2

.

(6)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page Contents

JJ II

J I

Page6of 11 Go Back Full Screen

Close

Theorem C ([7, Thm. 1.4]). If f is a convex function and a1, . . . , an lie in its domain, then

(n−1) [f(b1) +· · ·+f(bn)]≤n[f(a1) +· · ·+f(an)−f(a)], wherea = a1+···+an n andbi = na−an−1i, i= 1, . . . , n.

(7)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page Contents

JJ II

J I

Page7of 11 Go Back Full Screen

Close

2. The Main Results

Theorem 2.1. Let f(x) be a superquadratic function on [0, L]. Then for xi ∈ [0, L], i= 1, . . . , n,wherexn+1 =x1,

(2.1) n−1 n

n

X

i=1

f

n

X

i=1

xi+xi+1 2

! +f

n

X

i=1

|xi−xi+1| 2

!!

n

X

i=1

f(xi)

!

−f

n

X

i=1

xi n

!

− 1 n

n

X

i=1

f

xi

n

X

j=1

xj n

!

holds. If f000(x)≥0too, then n−1

n

n

X

i=1

f

n

X

i=1

xi+xi+1

2

! +f

n

X

i=1

|xi−xi+1| 2

!!

(2.2)

≤ n−1 n

n

X

i=1

f

xbi+bxi+1 2

+f

|xbi−xbi+1| 2

n

X

i=1

f(xi)

!

−f

n

X

i=1

xi n

!

− 1 n

n

X

i=1

f

xi

n

X

j=1

xj n

! ,

where(x) = (b xb1, . . . ,bxn)is a circular symmetrical rearrangement of (x) = (x1, . . . , xn). Example 2.1. The functions

f(x) =xn, n≥2, x≥0, and the function

f(x) =

x2logx, x >0,

0, x= 0

(8)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page Contents

JJ II

J I

Page8of 11 Go Back Full Screen

Close

are superquadratic with an increasing second derivative and therefore (2.2) holds for these functions.

Proof. Letf be a superquadratic function on[0, L].Then by Lemma Bwe get for 0≤α ≤1, 1≤k ≤nandxi ∈[0, L], xn+1 =x1,

n

X

i=1

f(xi) (2.3)

= n−k n

n

X

i=1

f(xi) + k n

n

X

i=1

f(xi)

= n−k n

n

X

i=1

(αf(xi) + (1−α)f(xi+1)) + k n

n

X

i=1

f(xi)

≥ n−k n

n

X

i=1

f(αxi + (1−α)xi+1)

+ n−k n

n

X

i=1

(αf((1−α)|xi+1−xi|) + (1−α)f(α|xi+1−xi|))

+k f Pn

i=1xi

n

+

n

X

i=1

1 nf

xi− Pn

i=1xi

n

! .

Fork = 1andα= 12 we get that (2.1) holds.

Iff000(x)≥0, then 2∂u∂vF(u,v) ≥0,where

F (u, v) = f(u+v) +f(|u−v|), u, v ∈[0, L].

(9)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page Contents

JJ II

J I

Page9of 11 Go Back Full Screen

Close

Therefore according to TheoremA, the sum

n

X

i=1

f

xi+xi+1 2

+f

|xi+xi+1| 2

, xn+1 =x1,

is maximal for(x) = (b bx1, . . . ,bxn),which is the circular symmetric rearrangement of(x).Therefore in this case (2.2) holds as well.

Remark 1. For a positive superquadratic functionf, which according to LemmaA is also a convex function, (2.1) is a refinement of TheoremB.

Iff000(x)≥0,(2.2) is a refinement of TheoremBas well.

Remark 2. TheoremBis refined by

n

X

i=1

f(xi)−f Pn

i=1xi

n

≥ n−1 n

n

X

i=1

f

bxi+xbi+1

2

!

≥ n−1 n

n

X

i=1

f

xi+xi+1

2

,

because a convex function f satisfies the conditions of TheoremA forF (u, v) = f(u+v).

The following inequality is a refinement of TheoremCfor a positive superquadratic functionf, which is therefore also convex. The inequality results easily from Lemma Band the identity

n

X

i=1

f(ai) =

n

X

i=1

1 n−1

n

X

j=1

f(aj) (1−δij)

!

(whereδij = 1fori=jandδij = 0fori6=j), therefore the proof is omitted.

(10)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page Contents

JJ II

J I

Page10of 11 Go Back Full Screen

Close

Theorem 2.2. Let f be a superquadratic function on [0, L], and let xi ∈ [0, L], i= 1, . . . , n. Then

n n−1

n X

i=1

f(xi)

!

−f(x)

!

n

X

i=1

f(yi)

≥ 1 n−1

n

X

i=1 n

X

j=1

f(|yi−xj|) (1−δij)

!

+ 1

n−1

n

X

i=1

f(|x−xi|),

wherex=Pn i=1

xi

n, yi = nx−xn−1i

, i = 1, . . . , n.

(11)

Superquadracity and Rearrangements Shoshana Abramovich vol. 8, iss. 2, art. 46, 2007

Title Page Contents

JJ II

J I

Page11of 11 Go Back Full Screen

Close

References

[1] S. ABRAMOVICH, The increase of sumsand products dependent on (y1, . . . , yn)by rearrangement of this set, Israel J. Math., 5(3) (1967).

[2] S. ABRAMOVICH, S. BANI ´C AND M. MATI ´C, Superquadratic functions in several variables, J. Math. Anal. Appl., 327 (2007), 1444–1460.

[3] S. ABRAMOVICH, S. BANI ´C AND M. KLARICI ´C BACULA, A variant of Jensen-Steffensen’s inequality for convex and superquadratic functions, J. Ineq.

Pure & Appl. Math., 7(2) (2006), Art. 70. [ONLINE: http://jipam.vu.

edu.au/article.php?sid=687].

[4] S. ABRAMOVICH, S. BANI ´C, M. MATI ´C AND J. PE ˇCARI ´C, Jensen- Steffensen’s and related inequalities for superquadratic functions, to appear in Math. Ineq. Appl.

[5] S. ABRAMOVICH, G. JAMESONANDG. SINNAMON, Refining Jensen’s in- equality, Bull. Sci. Math. Roum., 47 (2004), 3–14.

[6] S. ABRAMOVICH, G. JAMESONANDG. SINNAMON, Inequalities for aver- ages of convex and superquadratic functions, J. Ineq. Pure & Appl. Math., 5(4) (2004), Art. 91. [ONLINE:http://jipam.vu.edu.au/article.php?

sid=444].

[7] L. BOUGOFFA, New inequalities about convex functions, J. Ineq. Pure &

Appl. Math., 7(4) (2006), Art. 148. [ONLINE: http://jipam.vu.edu.

au/article.php?sid=766].

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In Theorem 1, the convex polytopes comprising ^ S N+1 have mea- sure zero. Assume now that the density of is positive everywhere. ; N to obtain a partition of k by assigning

We introduce a family of linear sets of PG(1, q 2n ) arising from max- imum scattered linear sets of pseudoregulus type of PG(3, q n ).. For n = 3, 4 and for certain values of

It is easy to show that the L 1 norm of sup n |D n | with respect to both systems is infinite.. to be valid?" He gave necessary and sufficient conditions for both rearrangements

Definition 1.1. , y n ) of n real numbers is arranged in circular symmetric order if one of its circular rearrangements is symmetrically decreasing.. Theorem

J. Pure and Appl. This definition gener- alizes the definition of Misiak of n-inner product [5], such that in special case if we consider only such pairs of sets {a 1 ,.

It is sufficient to show that if the inequality (1.2) is true for all ordered sets of k +1 nonnegative real numbers, then it is true for all ordered sets of k nonnegative real

It is sufficient to show that if the inequality (1.2) is true for all ordered sets of k + 1 nonnegative real numbers, then it is true for all ordered sets of k nonnegative

In particular, we consider n−tuples of complex numbers which are symmetric with respect to the real axis and obtain a complex variant of Newton’s inequalities and the AM-GM