• Nem Talált Eredményt

In this paper we establish upper bounds of n X i=1 f xi+xi+1 2 +f |xi−xi+1| 2 , xn+1=x1 when the functionfis superquadratic and the set(x

N/A
N/A
Protected

Academic year: 2022

Ossza meg "In this paper we establish upper bounds of n X i=1 f xi+xi+1 2 +f |xi−xi+1| 2 , xn+1=x1 when the functionfis superquadratic and the set(x"

Copied!
5
0
0

Teljes szövegt

(1)

SUPERQUADRACITY OF FUNCTIONS AND REARRANGEMENTS OF SETS

SHOSHANA ABRAMOVICH DEPARTMENT OFMATHEMATICS

UNIVERSITY OFHAIFA

HAIFA, 31905, ISRAEL

abramos@math.haifa.ac.il

Received 26 December, 2006; accepted 29 May, 2007 Communicated by S.S. Dragomir

ABSTRACT. In this paper we establish upper bounds of

n

X

i=1

f

xi+xi+1

2

+f

|xixi+1| 2

, xn+1=x1

when the functionfis superquadratic and the set(x) = (x1, . . . , xn)is given except its arrange- ment.

Key words and phrases: Superquadratic functions, Convex functions, Jensen’s inequality.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

We start with the definitions and results of [1] and [5] which we use in this paper.

Definition 1.1. The sets (y) = y1, . . . , yn

and (y) = (y1, . . . ,yn)are symmetrically decreasing rearrangements of an ordered set (y) = (y1, . . . , yn)ofnreal numbers, if

(1.1) y1 ≤ yn ≤y2 ≤ · · · ≤ y [n+22 ] and

(1.2) yny1yn−1 ≤ · · · ≤ y[n+12 ].

A circular rearrangement of an ordered set (y) = (y1, . . . , yn)is a cyclic rearrangement of (y) or a cyclic rearrangement followed by inversion.

Definition 1.2. An ordered set (y) = (y1, . . . , yn) of n real numbers is arranged in circular symmetric order if one of its circular rearrangements is symmetrically decreasing.

Theorem A ([1]). LetF (u, v)be a symmetric function defined for α ≤ u, v ≤ β for which

2F(u,v)

∂u∂v ≥0.

001-07

(2)

Let the set (y) = (y1, . . . , yn), α ≤ yi ≤ β, i = 1, . . . , nbe given except its arrangement.

Then n

X

i=1

F (yi, yi+1), (yn+1 =y1)

is maximal if (y)is arranged in circular symmetrical order.

Definition 1.3 ([5]). A functionf, defined on an interval I = [0, L]or[0,∞)is superquadratic, if for eachxinI, there exists a real numberC(x)such that

f(y)−f(x)≥C(x) (y−x) +f(|y−x|) for ally∈I.

A function is subquadratic if−f is superquadratic.

Lemma A ([5]). Letf be a superquadratic function withC(x)as in Definition 1.3.

(i) Thenf(0) ≤0.

(ii) Iff(0) =f0(0) = 0,thenC(x) = f0(x)wheneverf is differentiable.

(iii) Iff ≥0, thenf is convex andf(0) =f0(0) = 0.

The following lemma presents a Jensen’s type inequality for superquadratic functions.

Lemma B ([6, Lemma 2.3]). Suppose thatf is superquadratic. Letxr ≥0,1≤r≤n and let x=Pn

r=1λrxr,whereλr ≥0,andPn

r=1λr = 1.Then

n

X

r=1

λrf(xr)≥f(x) +

n

X

r=1

λrf(|xr−x|).

If f(x)is subquadratic, the reverse inequality holds.

From Lemma B we get an immediate result which we state in the following lemma.

Lemma C. Letf(x)be superquadratic on [0, L]and let x, y ∈[0, L],0≤λ≤1, then λf(x) + (1−λ)f(y)

≥f(λx+ (1−λ)y) +λf((1−λ)|y−x|) + (1−λ)f(λ|y−x|)

≥f(λx+ (1−λ)y) +

t−1

X

k=0

f

2λ(1−λ)|1−2λ|k|x−y|

+λf (1−λ)|1−2λ|t|x−y|

+ (1−λ)f λ|1−2λ|t|x−y|

. Iff is positive superquadratic we get that:

λf(x) + (1−λ)f(y)≥f(λx+ (1−λ)y) +

t−1

X

k=0

f

2λ(1−λ)|1−2λ|k|x−y|

More results related to superquadracity were discussed in [2] to [6].

In this paper we refine the results in [7] by showing that for positive superquadratic functions we get better bounds than in [7].

Theorem B ([7, Thm. 1.2]). Iff is a convex function andx1, x2, . . . , xnlie in its domain, then

n

X

i=1

f(xi)−f

x1+· · ·+xn n

≥ n−1 n

f

x1 +x2

2

+· · ·+f

xn−1+xn

2

+f

xn+x1

2

.

(3)

Theorem C ([7, Thm. 1.4]). Iff is a convex function anda1, . . . , anlie in its domain, then (n−1) [f(b1) +· · ·+f(bn)]≤n[f(a1) +· · ·+f(an)−f(a)],

wherea= a1+···+an n andbi = na−an−1i, i= 1, . . . , n.

2. THEMAIN RESULTS

Theorem 2.1. Let f(x) be a superquadratic function on [0, L]. Then for xi ∈ [0, L], i = 1, . . . , n,wherexn+1 =x1,

(2.1) n−1 n

n

X

i=1

f

n

X

i=1

xi+xi+1 2

! +f

n

X

i=1

|xi−xi+1| 2

!!

n

X

i=1

f(xi)

!

−f

n

X

i=1

xi n

!

− 1 n

n

X

i=1

f

xi

n

X

j=1

xj n

!

holds. If f000(x)≥0too, then

n−1 n

n

X

i=1

f

n

X

i=1

xi+xi+1 2

! +f

n

X

i=1

|xi−xi+1| 2

!!

(2.2)

≤ n−1 n

n

X

i=1

f

xbi+bxi+1 2

+f

|xbi−xbi+1| 2

n

X

i=1

f(xi)

!

−f

n

X

i=1

xi

n

!

− 1 n

n

X

i=1

f

xi

n

X

j=1

xj

n

! ,

where(x) = (b xb1, . . . ,bxn)is a circular symmetrical rearrangement of (x) = (x1, . . . , xn). Example 2.1. The functions

f(x) =xn, n ≥2, x≥0,

and the function

f(x) =

x2logx, x >0,

0, x= 0

are superquadratic with an increasing second derivative and therefore (2.2) holds for these functions.

Proof. Letf be a superquadratic function on[0, L]. Then by Lemma B we get for 0 ≤ α ≤ 1, 1≤k ≤nandxi ∈[0, L], xn+1 =x1,

n

X

i=1

f(xi) = n−k n

n

X

i=1

f(xi) + k n

n

X

i=1

f(xi) (2.3)

= n−k n

n

X

i=1

(αf(xi) + (1−α)f(xi+1)) + k n

n

X

i=1

f(xi)

(4)

≥ n−k n

n

X

i=1

f(αxi+ (1−α)xi+1)

+n−k n

n

X

i=1

(αf((1−α)|xi+1−xi|) + (1−α)f(α|xi+1−xi|))

+k f Pn

i=1xi n

+

n

X

i=1

1 nf

xi− Pn

i=1xi n

! .

Fork = 1andα= 12 we get that (2.1) holds.

Iff000(x)≥0, then 2∂u∂vF(u,v) ≥0,where

F (u, v) = f(u+v) +f(|u−v|), u, v ∈[0, L]. Therefore according to Theorem A, the sum

n

X

i=1

f

xi+xi+1

2

+f

|xi+xi+1| 2

, xn+1 =x1,

is maximal for (x) = (b bx1, . . . ,xbn), which is the circular symmetric rearrangement of (x).

Therefore in this case (2.2) holds as well.

Remark 2.2. For a positive superquadratic functionf, which according to Lemma A is also a convex function, (2.1) is a refinement of Theorem B.

Iff000(x)≥0,(2.2) is a refinement of Theorem B as well.

Remark 2.3. Theorem B is refined by

n

X

i=1

f(xi)−f Pn

i=1xi n

≥ n−1 n

n

X

i=1

f

bxi+xbi+1 2

!

≥ n−1 n

n

X

i=1

f

xi +xi+1

2

,

because a convex functionf satisfies the conditions of Theorem A forF (u, v) = f(u+v). The following inequality is a refinement of Theorem C for a positive superquadratic function f, which is therefore also convex. The inequality results easily from Lemma B and the identity

n

X

i=1

f(ai) =

n

X

i=1

1 n−1

n

X

j=1

f(aj) (1−δij)

!

(whereδij = 1fori=j andδij = 0fori6=j), therefore the proof is omitted.

Theorem 2.4. Let f be a superquadratic function on [0, L],and letxi ∈ [0, L], i = 1, . . . , n.

Then n n−1

n X

i=1

f(xi)

!

−f(x)

!

n

X

i=1

f(yi)

≥ 1 n−1

n

X

i=1 n

X

j=1

f(|yi−xj|) (1−δij)

!

+ 1

n−1

n

X

i=1

f(|x−xi|), wherex=Pn

i=1 xi

n, yi = nx−xn−1i

, i= 1, . . . , n.

(5)

REFERENCES

[1] S. ABRAMOVICH, The increase of sumsand products dependent on(y1, . . . , yn)by rearrangement of this set, Israel J. Math., 5(3) (1967).

[2] S. ABRAMOVICH, S. BANI ´CAND M. MATI ´C, Superquadratic functions in several variables, J.

Math. Anal. Appl., 327 (2007), 1444–1460.

[3] S. ABRAMOVICH, S. BANI ´C AND M. KLARICI ´C BACULA, A variant of Jensen-Steffensen’s inequality for convex and superquadratic functions, J. Ineq. Pure & Appl. Math., 7(2) (2006), Art.

70. [ONLINE:http://jipam.vu.edu.au/article.php?sid=687].

[4] S. ABRAMOVICH, S. BANI ´C, M. MATI ´C ANDJ. PE ˇCARI ´C, Jensen-Steffensen’s and related in- equalities for superquadratic functions, to appear in Math. Ineq. Appl.

[5] S. ABRAMOVICH, G. JAMESON AND G. SINNAMON, Refining Jensen’s inequality, Bull. Sci.

Math. Roum., 47 (2004), 3–14.

[6] S. ABRAMOVICH, G. JAMESONANDG. SINNAMON, Inequalities for averages of convex and superquadratic functions, J. Ineq. Pure & Appl. Math., 5(4) (2004), Art. 91. [ONLINE: http:

//jipam.vu.edu.au/article.php?sid=444].

[7] L. BOUGOFFA, New inequalities about convex functions, J. Ineq. Pure & Appl. Math., 7(4) (2006), Art. 148. [ONLINE:http://jipam.vu.edu.au/article.php?sid=766].

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Az előadó saját provokatív kérdésére (ami innen nézve már-már költői volt) megadta az igenlő választ, s nyomatékkal hívta fel arra a figyelmet, hogy meg kell változnia

Here we show that this theorem does not admit a topological extension when the size of the Z i is linear in n, but does admit one when the sizes are of order (log n) 1/d.. Now

Theorem 1 Let A be a collection of n pairwise intersecting closed Jordan curves in general position in the plane. Let T denote the set of touching points and let X denote the set

is jointly supported by the Faculty of Science, Silpakorn University and the National Research Council of Thailand, Grant

A szerkesztő Faggyas S{ndor tizenhat m{sik jeles szerzőt{rs{val együtt arra törekedett, hogy (a www.preshaz.eu port{lon fellehető nyilatkozata szerint) a

3. egyetért azzal, hogy az  1.  pont szerinti többlettámogatás a  Magyarország 2020. évi központi költségvetéséről szóló 2019. törvény 1.  melléklet

In this case the value of acoustic parame- ter N A N A 1 ( ) 1 2 ( ) 2 very clearly reflects the identification of the process of the samples destruction considering the

If the 95% confidence interval is calculated for the expected value from 100 different sample, than approximately 95 interval contains the true expected value out of the 100.