• Nem Talált Eredményt

SOME PROPERTIES OF ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR

N/A
N/A
Protected

Academic year: 2022

Ossza meg "SOME PROPERTIES OF ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR"

Copied!
21
0
0

Teljes szövegt

(1)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page

Contents

JJ II

J I

Page1of 21 Go Back Full Screen

Close

SOME PROPERTIES OF ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR

B.A. FRASIN

Department of Mathematics Al al-Bayt University

P.O. Box: 130095 Mafraq, Jordan EMail:bafrasin@yahoo.com

Received: 29 August, 2006

Accepted: 03 April, 2007

Communicated by: A. Sofo 2000 AMS Sub. Class.: 30C45.

Key words: Analytic functions, Hadamard product, Linear operator.

Abstract: The object of the present paper is to derive some properties of analytic functions defined by the Carlson - Shaffer linear operatorL(a, c)f(z).

Acknowledgements: The author would like to thank the referee for his valuable suggestions.

(2)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page2of 21 Go Back Full Screen

Close

Contents

1 Introduction and Definitions 3

2 Main Results 6

(3)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page3of 21 Go Back Full Screen

Close

1. Introduction and Definitions

LetAdenote the class of functions of the form:

(1.1) f(z) = z+

X

n=2

anzn,

which are analytic in the open unit disc U ={z :|z|<1}.For two functionsf(z) andg(z)given by

(1.2) f(z) = z+

X

n=2

anzn and g(z) =z+

X

n=2

bnzn,

their Hadamard product (or convolution) is defined by

(1.3) (f∗g)(z) :=z+

X

n=2

anbnzn.

Define the functionφ(a, c;z)by

φ(a, c;z) :=

X

n=0

(a)n (c)n

zn+1, (1.4)

(a∈R; c∈R\Z0; Z0 :={0,−1,−2, . . .}, z∈ U), where(λ)nis the Pochhammer symbol given in terms of Gamma functions,

(λ)n:= Γ(λ+n) Γ(λ)

=

1, n= 0,

λ(λ+ 1)(λ+ 2). . .(λ+n−1), n∈N:{1,2, . . .}.

(4)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page4of 21 Go Back Full Screen

Close

Corresponding to the function φ(a, c;z), Carlson and Shaffer [1] introduced a linear operatorL(a, c) :A → Aby

(1.5) L(a, c)f(z) :=φ(a, c;z)∗f(z), or, equivalently, by

(1.6) L(a, c)f(z) :=z+

X

n=1

(a)n

(c)nan+1zn+1 (z ∈ U).

It follows from (1.6) that

(1.7) z(L(a, c)f(z))0 =aL(a+ 1, c)f(z)−(a−1)L(a, c)f(z), and

L(1,1)f(z) =f(z), L(2,1)f(z) =zf0(z), L(3,1)f(z) =zf0(z) + 1

2z2f00(z).

Many properties of analytic functions defined by the Carlson-Shaffer linear op- erator were studied by (among others) Owa and Srivastava [10], Ding [5], Kim and Lee [6], Ravichandran et al. ([8,9]), Shanmugam et al. [7] and Frasin ([2,3]).

In this paper we shall derive some properties of analytic functions defined by the linear operatorL(a, c)f(z).

In order to prove our main results, we recall the following lemma:

Lemma 1.1 ([4]). LetΦ(u, v)be a complex valued function,

Φ :D→C, (D⊂C2;Cis the complex plane),

and letu=u1+iu2andv =v1+iv2.Suppose that the functionΦ(u, v)satisfies:

(5)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page5of 21 Go Back Full Screen

Close

(i) Φ(u, v)is continuous inD;

(ii) (1,0)∈DandRe(Φ(1,0))>0;

(iii) Re(Φ(iu2, v1))≤0for all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2.

Letp(z) = 1 +p1z+p2z2+· · · be regular inU such that(p(z), zp0(z))∈D for allz ∈ U.IfRe(Φ(p(z), zp0(z)))>0 (z ∈ U), thenRe(p(z))>0 (z ∈ U).

(6)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page6of 21 Go Back Full Screen

Close

2. Main Results

Theorem 2.1. Letα ∈C, β ∈C,(Re(β)≥0),(α−β)∈R, and suppose that

(2.1) Re

L(a, c)f(z) L(a+ 1, c)f(z)

α−β(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

+aα

> γ

for someγ(γ <(α−β)(a+ 1))and2(α−β) + Re(β)6= 0,then

(2.2) Re

L(a, c)f(z) L(a+ 1, c)f(z)

> 2γ−2a(α−β) + Re(β)

2(α−β) + Re(β) (z∈ U).

Proof. Define the functionp(z)by

(2.3) L(a, c)f(z)

L(a+ 1, c)f(z) :=δ+ (1−δ)p(z), where

(2.4) δ= 2γ−2a(α−β) + Re(β)

2(α−β) + Re(β) <1.

Thenp(z) = 1 +b1z+b2z+· · · is regular inU. It follows from (2.3) that (2.5) z(L(a, c)f(z))0

L(a, c)f(z) − z(L(a+ 1, c)f(z))0

L(a+ 1, c)f(z) = (1−δ)zp0(z) δ+ (1−δ)p(z) by making use of the familiar identity (1.7) in (2.5), we get

(2.6) (a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z) = 1 + a

δ+ (1−δ)p(z) − (1−δ)zp0(z) δ+ (1−δ)p(z) or, equivalently,

(7)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page7of 21 Go Back Full Screen

Close

(2.7) L(a, c)f(z) L(a+ 1, c)f(z)

α−β(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

+aα

= (δ+a)(α−β) + (1−δ)(α−β)p(z) +β(1−δ)zp0(z).

Therefore, we have (2.8) Re

L(a, c)f(z) L(a+ 1, c)f(z)

α−β(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

+aα−γ

= Re{(δ+a)(α−β)−γ+ (1−δ)(α−β)p(z) +β(1−δ)zp0(z)}>0.

If we define the functionΦ(u, v)by

(2.9) Φ(u, v) = (δ+a)(α−β)−γ+ (1−δ)(α−β)u+β(1−δ)v withu=u1+iu2 andv =v1+iv2,then

(i)Φ(u, v)is continuous inD=C2;

(ii)(1,0)∈DandRe(Φ(1,0)) = (α−β)(a+ 1)−γ >0;

(iii) For all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2, Re(Φ(iu2, v1)) = Re{(δ+a)(α−β)−γ+β(1−δ)v1}

≤(δ+a)(α−β)−γ− (1−δ)(1 +u22) Re(β) 2

=−(1−δ)u22Re(β)

2 ≤0.

Therefore, the functionΦ(u, v)satisfies the conditions in Lemma1.1. Thus we have Re(p(z))>0 (z ∈ U),that is

Re

L(a, c)f(z) L(a+ 1, c)f(z)

> 2γ−2a(α−β) + Re(β) 2(α−β) + Re(β) .

(8)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page8of 21 Go Back Full Screen

Close

Lettingβ=−αin Theorem2.1, we have

Corollary 2.2. Letα ∈C,(Re(α)<0),and suppose that (2.10) Re

L(a, c)f(z) L(a+ 1, c)f(z)

α+α(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

+aα

> γ

for someγ(γ <2(a+ 1) Re(α)),then

(2.11) Re

L(a, c)f(z) L(a+ 1, c)f(z)

> 2γ−(4a+ 1) Re(α)

3 Re(α) (z ∈ U).

Lettinga=c= 1in Theorem2.1, we have

Corollary 2.3. Letα, β ∈C,(Re(β)≥0),(α−β)∈R, and suppose that

(2.12) Re

f(z) zf0(z)

α−2β

1 + zf00(z) 2f0(z)

> γ

for someγ(γ <2(α−β))and2(α−β) + Re(β)6= 0,then

(2.13) Re

f(z) zf0(z)

> 2γ−2(α−β) + Re(β)

2(α−β) + Re(β) (z ∈ U).

Theorem 2.4. Letα ∈C, β ∈C,(Re(β)≥0),(α−β)∈R, and suppose that (2.14) Re

L(a, c)f(z) L(a+ 1, c)f(z)

α−β(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

+aα

< γ

for someγ(γ >(α−β)(a+ 1))and2(α−β) + Re(β)6= 0,then

(2.15) Re

L(a, c)f(z) L(a+ 1, c)f(z)

< 2γ−2a(α−β) + Re(β)

2(α−β) + Re(β) (z ∈ U).

(9)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page9of 21 Go Back Full Screen

Close

Proof. Define the functionp(z)by

(2.16) L(a, c)f(z)

L(a+ 1, c)f(z) :=δ+ (1−δ)p(z), where

(2.17) δ= 2γ−2a(α−β) + Re(β)

2(α−β) + Re(β) >1.

Thenp(z) = 1 +b1z+b2z+· · · is regular inU. It follows from (2.16) that (2.18) Re

γ− L(a, c)f(z) L(a+ 1, c)f(z)

α−β(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

−aα

= Re{γ−(δ+a)(α−β)−(1−δ)(α−β)p(z)−β(1−δ)zp0(z)}>0.

If we define the functionΦ(u, v)by

(2.19) Φ(u, v) =γ−(δ+a)(α−β)−(1−δ)(α−β)u−β(1−δ)v withu=u1+iu2 andv =v1+iv2,then

(i)Φ(u, v)is continuous inD=C2;

(ii)(1,0)∈DandRe(Φ(1,0)) =γ−(α−β)(a+ 1)>0;

(iii) For all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2, Re(Φ(iu2, v1)) = Re{γ−(δ+a)(α−β)−β(1−δ)v1}

≤γ−(δ+a)(α−β) + (1−δ)(1 +u22) Re(β) 2

= (1−δ)u22Re(β)

2 ≤0,

(10)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page10of 21 Go Back Full Screen

Close

applying Lemma1.1, we haveRe(p(z))>0 (z ∈ U),that is Re

L(a, c)f(z) L(a+ 1, c)f(z)

< 2γ−2a(α−β) + Re(β) 2(α−β) + Re(β) .

Theorem 2.5. Leta > −1,µ >0, α∈ C, β ∈C,(Re(β)≥0),(α+β)∈ R, and suppose that

(2.20) Re

(

L(a+ 1, c)f(z) z

µ

α+βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

)

> γ

for someγ(γ < α+β)and2µ(α+β)(a+ 1) + Re(β)6= 0,then (2.21) Re

(

L(a+ 1, c)f(z) z

µ)

> 2µγ(a+ 1) + Re(β)

2µ(α+β)(a+ 1) + Re(β) (z ∈ U).

Proof. Define the functionp(z)by (2.22)

L(a+ 1, c)f(z) z

µ

:=δ+ (1−δ)p(z), where

δ = 2µγ(a+ 1) + Re(β)

2µ(α+β)(a+ 1) + Re(β) >1.

Thenp(z) = 1 +b1z+b2z+· · · is regular inU. Also, by a simple computation and by making use of the familiar identity (1.7) we find from (2.22) that

(2.23) βL(a+ 2, c)f(z)

L(a+ 1, c)f(z) = β(1−δ)zp0(z)

µ(a+ 1)(δ+ (1−δ)p(z))+β,

(11)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page11of 21 Go Back Full Screen

Close

and by using (2.22) and (2.23), we get (2.24)

L(a+ 1, c)f(z) z

µ

βL(a+ 2, c)f(z) L(a+ 1, c)f(z) +α

= β(1−δ)zp0(z)

µ(a+ 1) + (α+β)(δ+ (1−δ)p(z)).

Therefore, we have (2.25) Re

(

L(a+ 1, c)f(z) z

µ

βL(a+ 2, c)f(z) L(a+ 1, c)f(z) +α

−γ )

= Re

(α+β)δ−γ+ (1−δ)(α+β)p(z) + β(1−δ) µ(a+ 1)zp0(z)

>0.

If we define the functionΦ(u, v)by

(2.26) Φ(u, v) = (α+β)δ−γ+ (1−δ)(α+β)u+β(1−δ) µ(a+ 1)v withu=u1+iu2 andv =v1+iv2,then

(i)Φ(u, v)is continuous inD=C2;

(ii)(1,0)∈DandRe(Φ(1,0)) = (α+β)−γ >0;

(iii) For all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2, Re(Φ(iu2, v1)) = Re{(α+β)δ−γ+ β(1−δ)

µ(a+ 1)v1}

≤(α+β)δ−γ− (1−δ)(1 +u22) Re(β) 2µ(a+ 1)

=−(1−δ)u22Re(β) 2µ(a+ 1) ≤0.

(12)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page12of 21 Go Back Full Screen

Close

Therefore, the functionΦ(u, v)satisfies the conditions in Lemma1.1. Thus we haveRe(p(z))>0 (z∈ U),that is,

Re (

L(a+ 1, c)f(z) z

µ)

> 2µγ(a+ 1) + Re(β)

2µ(α+β)(a+ 1) + Re(β) (z ∈ U).

Lettingα=

β in Theorem2.5, we have

Corollary 2.6. Leta >−1,µ >0, β ∈C,(Re(β)>0), and suppose that

(2.27) Re

L(a+ 1, c)f(z) z

µ

α+βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

> γ

for someγ(γ <2 Re(β)),then (2.28) Re

(

L(a+ 1, c)f(z) z

µ)

> 2µγ(a+ 1) + Re(β)

(4µ(a+ 1) + 1) Re(β) (z ∈ U).

Lettinga=c= 1in Theorem2.5, we have,

Corollary 2.7. Letµ >0, α∈C, β ∈C, (Re(β)≥0),(α+β)∈R, and suppose that

(2.29) Re

(f0(z))µ

α+β

1 + zf00(z) 2f0(z)

> γ

for someγ(γ < α+β)and4µ(α+β) + Re(β)6= 0,then

(2.30) Ren

(f0(z))µo

> 4µγ+ Re(β)

4µ(α+β) + Re(β) (z ∈ U).

(13)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page13of 21 Go Back Full Screen

Close

Employing the same manner as in the proofs of Theorems2.4and2.5, we have:

Theorem 2.8. Leta > −1,µ >0, α∈ C, β ∈C,(Re(β)≥0),(α+β)∈ R, and suppose that

(2.31) Re

(

L(a+ 1, c)f(z) z

µ

α+βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

)

< γ

for someγ(γ > α+β)and2µ(α+β)(a+ 1) + Re(β)6= 0,then (2.32) Re

(

L(a+ 1, c)f(z) z

µ)

< 2µγ(a+ 1) + Re(β)

2µ(α+β)(a+ 1) + Re(β) (z ∈ U).

Theorem 2.9. Letλ > 0, α∈ C, β ∈ C,(Re(β)≥ 0),(α+β) ∈ R, and suppose that

(2.33) Re (

L(a+ 1, c)f(z) L(a, c)f(z)

λ

×

λβ(a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z)−aλβL(a+ 1, c)f(z) L(a, c)f(z) +λα

> γ

for someγ(γ < λ(α+β))and2λ(α+β) + Re(β)6= 0, then

(2.34) Re

L(a+ 1, c)f(z) L(a, c)f(z)

λ

> 2γ+ Re(β)

2λ(α+β) + Re(β) (z ∈ U).

Proof. Define the functionp(z)by (2.35)

L(a+ 1, c)f(z) L(a, c)f(z)

λ

:=δ+ (1−δ)p(z),

(14)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page14of 21 Go Back Full Screen

Close

where

(2.36) δ= 2γ+ Re(β)

2λ(α+β) + Re(β) <1.

Thenp(z) = 1 +b1z +b2z+· · · is regular inU . Also, by a simple computation and by making use of the familiar identity (1.7), we find from (2.35) that

(2.37)

L(a+ 1, c)f(z) L(a, c)f(z)

λ

×

λβ(a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z) −aλβL(a+ 1, c)f(z) L(a, c)f(z) +λα

=λ(α+β)(δ+ (1−δ)p(z)) +β(1−δ)zp0(z) Therefore, we have

(2.38) Re (

L(a+ 1, c)f(z) L(a, c)f(z)

λ

×

λβ(a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z) −aλβL(a+ 1, c)f(z) L(a, c)f(z) +λα

−γ

= Re{λ(α+β)(δ+ (1−δ)p(z)) +β(1−δ)zp0(z)−γ}>0.

If we define the functionΦ(u, v)by

(2.39) Φ(u, v) =λδ(α+β)−γ+λ(1−δ)(α+β)u+β(1−δ)v withu=u1+iu2 andv =v1+iv2,then

(i)Φ(u, v)is continuous inD=C2;

(ii)(1,0)∈DandRe(Φ(1,0)) =λ(α+β)−γ >0;

(15)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page15of 21 Go Back Full Screen

Close

(iii) For all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2, Re(Φ(iu2, v1)) = Re{λδ(α+β)−γ+β(1−δ)v1}

≤λδ(α+β)−γ− (1−δ)(1 +u22)

2 Re(β)

=−(1−δ)u22Re(β)

2 ≤0.

Therefore, the functionΦ(u, v)satisfies the conditions in Lemma1.1. Thus we have Re

L(a+ 1, c)f(z) L(a, c)f(z)

λ

> 2γ+ Re(β)

2λ(α+β) + Re(β) (z ∈ U).

Lettingα=

β in Theorem2.9, we have:

Corollary 2.10. Letλ >0, α∈C, β ∈C,(Re(β)>0),(α+β)∈R, and suppose that

(2.40) Re (

L(a+ 1, c)f(z) L(a, c)f(z)

λ

×

λβ(a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z) −aλβL(a+ 1, c)f(z) L(a, c)f(z) +λ

β

> γ

for someγ(γ < λ(α+β)),then

(2.41) Re

L(a+ 1, c)f(z) L(a, c)f(z)

λ

> 2γ+ Re(β)

(4λ+ 1) Re(β) (z ∈ U).

(16)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page16of 21 Go Back Full Screen

Close

Lettinga=c=λ= 1in Theorem2.9, we have:

Corollary 2.11. Letα ∈C, β ∈C,(Re(β)≥0),(α+β)∈R, and suppose that:

(2.42) Re

zf0(z)

f(z) (2β+α) +βz

f00(z)

f0(z) − f0(z) f(z)

> γ

for someγ(γ < α+β)and2(α+β) + Re(β)6= 0, thenf(z)is starlike of orderδ, whereδ = 2(α+β)+Re(β)2γ+Re(β) .

Employing the same manner as in the proofs of Theorems2.4and2.9, we have:

Theorem 2.12. Letλ >0, α∈ C, β ∈C,(Re(β)≥ 0),(α+β)∈R, and suppose that:

(2.43) Re (

L(a+ 1, c)f(z) L(a, c)f(z)

λ

×

λβ(a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z)−aλβL(a+ 1, c)f(z) L(a, c)f(z) +λα

< γ

for someγ(γ > λ(α+β))and2λ(α+β) + Re(β)6= 0, then

(2.44) Re

L(a+ 1, c)f(z) L(a, c)f(z)

λ

< 2γ+ Re(β)

2λ(α+β) + Re(β) (z ∈ U).

Theorem 2.13. Leta >−1, α∈C, β∈C,(Re(β)≥0),(α−β)∈R, and suppose that

(2.45) Re

z

L(a+ 1, c)f(z)

(a+ 1)α−βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

> γ

(17)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page17of 21 Go Back Full Screen

Close

for someγ(γ <(α−β)(a+ 1)),then (2.46) Re

z

L(a+ 1, c)f(z)

> 2γ+ Re(β)

2(a+ 1)(α−β) + Re(β) (z ∈ U).

Proof. Define the functionp(z)by

(2.47) z

L(a+ 1, c)f(z) :=δ+ (1−δ)p(z), where

(2.48) δ = 2γ+ Re(β)

2(a+ 1)(α−β) + Re(β) >1.

Thenp(z) = 1 +b1z+b2z+· · · is regular inU. Also, by a simple computation and by making use of the familiar identity (1.7), we find from (2.47) that

(2.49) z

L(a+ 1, c)f(z)

(a+ 1)α−βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

= (a+ 1)(α−β)(δ+ (1−δ)p(z)) +β(1−δ)zp0(z).

Therefore, we have (2.50) Re

z

L(a+ 1, c)f(z)

(a+ 1)α−βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

−γ

= Re{(a+ 1)(α−β)(δ+ (1−δ)p(z)) +β(1−δ)zp0(z)−γ}>0.

If we define the functionΦ(u, v)by

(2.51) Φ(u, v) = δ(a+ 1)(α−β)−γ+ (a+ 1)(α−β)(1−δ)u+β(1−δ)v

(18)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page18of 21 Go Back Full Screen

Close

withu=u1+iu2 andv =v1+iv2,then (i)Φ(u, v)is continuous inD=C2;

(ii)(1,0)∈DandRe(Φ(1,0)) = (α−β)(a+ 1)−γ >0;

(iii) For all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2, Re(Φ(iu2, v1)) = Re{δ(a+ 1)(α−β)−γ+β(1−δ)v1}

≤δ(a+ 1)(α−β)−γ−(1−δ)(1 +u22)

2 Re(β)

=−(1−δ)u22Re(β)

2 ≤0.

Therefore, the functionΦ(u, v)satisfies the conditions in Lemma1.1. Thus we have Re

z

L(a+ 1, c)f(z)

> 2γ+ Re(β)

2(a+ 1)(α−β) + Re(β) (z ∈ U).

Lettingβ=−αin Theorem2.13, we have:

Corollary 2.14. Leta >−1, a6= 0, α∈C,(Re(α)<0),and suppose that

(2.52) Re

z

L(a+ 1, c)f(z)

(a+ 1)α+αL(a+ 2, c)f(z) L(a+ 1, c)f(z)

> γ

for someγ(γ <2(a+ 1) Re(α)),then

(2.53) Re

z

L(a+ 1, c)f(z)

> 2γ−Re(α)

(4a+ 3) Re(α) (z ∈ U).

Lettinga=c= 1in Theorem2.13, we have:

(19)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page19of 21 Go Back Full Screen

Close

Corollary 2.15. Let a > −1, α ∈ C, β ∈ C, (Re(β) ≥ 0), (α −β) ∈ R, and suppose that

(2.54) Re

1 f0(z)

2α−β−zf00(z) 2f0(z)β

> γ

for someγ(γ <2(α−β))and4(α−β) + Re(β)6= 0, then

(2.55) Re

1 f0(z)

> 2γ+ Re(β)

4(α−β) + Re(β) (z ∈ U).

Employing the same manner as in the proofs of Theorem2.4and2.13, we have:

Theorem 2.16. Leta >−1, α∈C, β∈C,(Re(β)≥0),(α−β)∈R, and suppose that

(2.56) Re

z

L(a+ 1, c)f(z)

(a+ 1)α−βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

< γ

for someγ(γ >(α−β)(a+ 1))and2(a+ 1)(α−β) + Re(β)6= 0, then (2.57) Re

z

L(a+ 1, c)f(z)

< 2γ+ Re(β)

2(a+ 1)(α−β) + Re(β) (z ∈ U).

(20)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page20of 21 Go Back Full Screen

Close

References

[1] B.C. CARLSONANDD.B. SHAFFER, Starlike and prestarlike hypergeomet- ric functions, SIAM J. Math. Anal., 15(4) (1984), 737–745.

[2] B.A. FRASIN, Subordinations results for a class of analytic functions defined by linear operator, J. Inequal. Pure Appl. Math., 7(4) (2006), Art. 134 [ON- LINE:http://jipam.vu.edu.au/article.php?sid=754].

[3] B.A. FRASIN, Subclasses of analytic functions defined by Carlson-Shaffer lin- ear operator, to appear in Tamsui Oxford J. Math.

[4] S. S. MILLER AND P.T. MOCANU, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305.

[5] S. DING, Some properties of a class of analytic functions, J. Math. Anal. Appl., 195 (1995), 71–81.

[6] Y.C. KIM AND K.S. LEE, Some applications of fractional integral operators and Ruscheweyh derivatives, J. Math. Anal. Appl., 197 (1996), 505–517.

[7] T.N. SHANMUGAM, V. RAVICHANDRANANDS. SIVASUBRAMANIAN, Differential sandwich theorems for some subclasses of analytic functions, Aust.

J. Math. Anal. Appl., 3(1) (2006), 1–11.

[8] V. RAVICHANDRAN, H. SELVERMAN, S.S KUMAR AND K.G. SUBRA- MANIAN, On differential subordinations for a class of analytic functions de- fined by a linear operator, International Journal of Mathematics and Mathe- matical Sciences, 42 (2004), 2219–2230.

[9] V. RAVICHANDRAN, N. SEENIVASAGANANDH.M. SRIVASTAVA, Some inequalities associated with a linear operator defined for a class of multivalent

(21)

Some Properties of Analytic Functions

B.A. Frasin vol. 8, iss. 2, art. 53, 2007

Title Page Contents

JJ II

J I

Page21of 21 Go Back Full Screen

Close

functions, J. Inequal. Pure Appl. Math., 4(4) (2003), Art.70 [ONLINE:http:

//jipam.vu.edu.au/article.php?sid=311].

[10] S. OWAAND H.M. SRIVASTAVA, Univalent and starlike generalized hyper- geometric functions, Canad. J. Math., 39 (1987), 1057–1077.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Analytic function; Multivalent function; Linear operator; Convex univalent func- tion; Hadamard product (or convolution); Subordination; Integral operator.... Analytic

Making use of a linear operator, which is defined here by means of the Hadamard product (or convolution), we introduce a class Q p (a, c; h) of analytic and multivalent functions in

SRIVASTAVA, Some generalized convolution proper- ties associated with certain subclasses of analytic functions, J.. Some Properties for an

OWA, On sandwich theorems for some subclasses of analytic functions involving a linear operator, to appear in Integral Transforms and

OWA, On sandwich theorems for some subclasses of analytic functions involving a linear operator, to appear in Integral Transforms and

SUBRAMANIAN, On differ- ential subordinations for a class of analytic functions defined by a linear operator, International Journal of Mathematics and Mathematical Sciences, 42

Key words and phrases: Analytic functions, Univalent, Functions with positive real part, Convex functions, Convolution, In- tegral operator.. 2000 Mathematics

In this paper, we derive several interesting subordination results for certain class of analytic functions defined by the linear operator L(a, c)f (z) which in- troduced and studied