• Nem Talált Eredményt

(1)SOME PROPERTIES OF ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR B.A

N/A
N/A
Protected

Academic year: 2022

Ossza meg "(1)SOME PROPERTIES OF ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR B.A"

Copied!
10
0
0

Teljes szövegt

(1)

SOME PROPERTIES OF ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR

B.A. FRASIN

DEPARTMENT OFMATHEMATICS

AL AL-BAYTUNIVERSITY

P.O. BOX: 130095 MAFRAQ, JORDAN

bafrasin@yahoo.com

Received 29 August, 2006; accepted 03 April, 2007 Communicated by A. Sofo

ABSTRACT. The object of the present paper is to derive some properties of analytic functions defined by the Carlson - Shaffer linear operatorL(a, c)f(z).

Key words and phrases: Analytic functions, Hadamard product, Linear operator.

2000 Mathematics Subject Classification. 30C45.

1. INTRODUCTION ANDDEFINITIONS

LetAdenote the class of functions of the form:

(1.1) f(z) = z+

X

n=2

anzn,

which are analytic in the open unit disc U ={z :|z|<1}. For two functions f(z) and g(z) given by

(1.2) f(z) =z+

X

n=2

anzn and g(z) =z+

X

n=2

bnzn,

their Hadamard product (or convolution) is defined by

(1.3) (f∗g)(z) :=z+

X

n=2

anbnzn.

Define the functionφ(a, c;z)by

φ(a, c;z) :=

X

n=0

(a)n (c)n

zn+1, (1.4)

(a ∈R; c∈R\Z0; Z0 :={0,−1,−2, . . .}, z∈ U),

The author would like to thank the referee for his valuable suggestions.

228-06

(2)

where(λ)nis the Pochhammer symbol given in terms of Gamma functions, (λ)n:= Γ(λ+n)

Γ(λ)

=

1, n = 0,

λ(λ+ 1)(λ+ 2). . .(λ+n−1), n∈N:{1,2, . . .}.

Corresponding to the functionφ(a, c;z),Carlson and Shaffer [1] introduced a linear operator L(a, c) :A → Aby

(1.5) L(a, c)f(z) :=φ(a, c;z)∗f(z), or, equivalently, by

(1.6) L(a, c)f(z) :=z+

X

n=1

(a)n (c)n

an+1zn+1 (z ∈ U).

It follows from (1.6) that

(1.7) z(L(a, c)f(z))0 =aL(a+ 1, c)f(z)−(a−1)L(a, c)f(z), and

L(1,1)f(z) =f(z), L(2,1)f(z) = zf0(z), L(3,1)f(z) =zf0(z) + 1

2z2f00(z).

Many properties of analytic functions defined by the Carlson-Shaffer linear operator were studied by (among others) Owa and Srivastava [10], Ding [5], Kim and Lee [6], Ravichandran et al. ([8, 9]), Shanmugam et al. [7] and Frasin ([2, 3]).

In this paper we shall derive some properties of analytic functions defined by the linear oper- atorL(a, c)f(z).

In order to prove our main results, we recall the following lemma:

Lemma 1.1 ([4]). LetΦ(u, v)be a complex valued function,

Φ :D→C, (D ⊂C2;Cis the complex plane),

and letu=u1+iu2 andv =v1+iv2.Suppose that the functionΦ(u, v)satisfies:

(i) Φ(u, v)is continuous inD;

(ii) (1,0)∈DandRe(Φ(1,0))>0;

(iii) Re(Φ(iu2, v1))≤0for all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2.

Letp(z) = 1 +p1z+p2z2+· · · be regular inU such that(p(z), zp0(z))∈D for allz∈ U. IfRe(Φ(p(z), zp0(z)))>0 (z ∈ U), thenRe(p(z))>0 (z ∈ U).

2. MAINRESULTS

Theorem 2.1. Letα∈C, β ∈C,(Re(β)≥0),(α−β)∈R, and suppose that

(2.1) Re

L(a, c)f(z) L(a+ 1, c)f(z)

α−β(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

+aα

> γ for someγ(γ <(α−β)(a+ 1))and2(α−β) + Re(β)6= 0,then

(2.2) Re

L(a, c)f(z) L(a+ 1, c)f(z)

> 2γ−2a(α−β) + Re(β)

2(α−β) + Re(β) (z ∈ U).

(3)

Proof. Define the functionp(z)by

(2.3) L(a, c)f(z)

L(a+ 1, c)f(z) :=δ+ (1−δ)p(z), where

(2.4) δ= 2γ−2a(α−β) + Re(β)

2(α−β) + Re(β) <1.

Thenp(z) = 1 +b1z+b2z+· · · is regular inU. It follows from (2.3) that (2.5) z(L(a, c)f(z))0

L(a, c)f(z) − z(L(a+ 1, c)f(z))0

L(a+ 1, c)f(z) = (1−δ)zp0(z) δ+ (1−δ)p(z) by making use of the familiar identity (1.7) in (2.5), we get

(2.6) (a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z) = 1 + a

δ+ (1−δ)p(z) − (1−δ)zp0(z) δ+ (1−δ)p(z) or, equivalently,

(2.7) L(a, c)f(z) L(a+ 1, c)f(z)

α−β(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

+aα

= (δ+a)(α−β) + (1−δ)(α−β)p(z) +β(1−δ)zp0(z).

Therefore, we have (2.8) Re

L(a, c)f(z) L(a+ 1, c)f(z)

α−β(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

+aα−γ

= Re{(δ+a)(α−β)−γ+ (1−δ)(α−β)p(z) +β(1−δ)zp0(z)}>0.

If we define the functionΦ(u, v)by

(2.9) Φ(u, v) = (δ+a)(α−β)−γ+ (1−δ)(α−β)u+β(1−δ)v withu=u1+iu2andv =v1+iv2,then

(i)Φ(u, v)is continuous inD=C2;

(ii)(1,0)∈DandRe(Φ(1,0)) = (α−β)(a+ 1)−γ >0;

(iii) For all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2,

Re(Φ(iu2, v1)) = Re{(δ+a)(α−β)−γ+β(1−δ)v1}

≤(δ+a)(α−β)−γ− (1−δ)(1 +u22) Re(β) 2

=−(1−δ)u22Re(β)

2 ≤0.

Therefore, the functionΦ(u, v)satisfies the conditions in Lemma 1.1. Thus we haveRe(p(z))>

0 (z ∈ U),that is Re

L(a, c)f(z) L(a+ 1, c)f(z)

> 2γ−2a(α−β) + Re(β) 2(α−β) + Re(β) .

Lettingβ =−αin Theorem 2.1, we have

(4)

Corollary 2.2. Letα∈C,(Re(α)<0),and suppose that

(2.10) Re

L(a, c)f(z) L(a+ 1, c)f(z)

α+α(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

+aα

> γ for someγ(γ <2(a+ 1) Re(α)),then

(2.11) Re

L(a, c)f(z) L(a+ 1, c)f(z)

> 2γ−(4a+ 1) Re(α)

3 Re(α) (z ∈ U).

Lettinga=c= 1in Theorem 2.1, we have

Corollary 2.3. Letα, β∈C,(Re(β)≥0),(α−β)∈R, and suppose that

(2.12) Re

f(z) zf0(z)

α−2β

1 + zf00(z) 2f0(z)

> γ for someγ(γ <2(α−β))and2(α−β) + Re(β)6= 0,then

(2.13) Re

f(z) zf0(z)

> 2γ−2(α−β) + Re(β)

2(α−β) + Re(β) (z ∈ U).

Theorem 2.4. Letα∈C, β ∈C,(Re(β)≥0),(α−β)∈R, and suppose that

(2.14) Re

L(a, c)f(z) L(a+ 1, c)f(z)

α−β(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

+aα

< γ for someγ(γ >(α−β)(a+ 1))and2(α−β) + Re(β)6= 0,then

(2.15) Re

L(a, c)f(z) L(a+ 1, c)f(z)

< 2γ−2a(α−β) + Re(β)

2(α−β) + Re(β) (z ∈ U).

Proof. Define the functionp(z)by

(2.16) L(a, c)f(z)

L(a+ 1, c)f(z) :=δ+ (1−δ)p(z), where

(2.17) δ= 2γ−2a(α−β) + Re(β)

2(α−β) + Re(β) >1.

Thenp(z) = 1 +b1z+b2z+· · · is regular inU. It follows from (2.16) that (2.18) Re

γ− L(a, c)f(z) L(a+ 1, c)f(z)

α−β(a+ 1)L(a+ 2, c)f(z) L(a+ 1, c)f(z)

−aα

= Re{γ−(δ+a)(α−β)−(1−δ)(α−β)p(z)−β(1−δ)zp0(z)}>0.

If we define the functionΦ(u, v)by

(2.19) Φ(u, v) = γ−(δ+a)(α−β)−(1−δ)(α−β)u−β(1−δ)v withu=u1+iu2andv =v1+iv2,then

(i)Φ(u, v)is continuous inD=C2;

(ii)(1,0)∈DandRe(Φ(1,0)) =γ−(α−β)(a+ 1)>0;

(iii) For all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2,

Re(Φ(iu2, v1)) = Re{γ−(δ+a)(α−β)−β(1−δ)v1}

≤γ−(δ+a)(α−β) + (1−δ)(1 +u22) Re(β) 2

= (1−δ)u22Re(β)

2 ≤0,

(5)

applying Lemma 1.1, we haveRe(p(z))>0 (z ∈ U),that is Re

L(a, c)f(z) L(a+ 1, c)f(z)

< 2γ−2a(α−β) + Re(β) 2(α−β) + Re(β) .

Theorem 2.5. Let a > −1, µ > 0, α ∈ C, β ∈ C, (Re(β) ≥ 0),(α+β) ∈ R, and suppose that

(2.20) Re

(

L(a+ 1, c)f(z) z

µ

α+βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

)

> γ

for someγ(γ < α+β)and2µ(α+β)(a+ 1) + Re(β)6= 0,then

(2.21) Re

(

L(a+ 1, c)f(z) z

µ)

> 2µγ(a+ 1) + Re(β)

2µ(α+β)(a+ 1) + Re(β) (z ∈ U).

Proof. Define the functionp(z)by (2.22)

L(a+ 1, c)f(z) z

µ

:=δ+ (1−δ)p(z), where

δ = 2µγ(a+ 1) + Re(β)

2µ(α+β)(a+ 1) + Re(β) >1.

Thenp(z) = 1 +b1z+b2z+· · · is regular inU. Also, by a simple computation and by making use of the familiar identity (1.7) we find from (2.22) that

(2.23) βL(a+ 2, c)f(z)

L(a+ 1, c)f(z) = β(1−δ)zp0(z)

µ(a+ 1)(δ+ (1−δ)p(z))+β, and by using (2.22) and (2.23), we get

(2.24)

L(a+ 1, c)f(z) z

µ

βL(a+ 2, c)f(z) L(a+ 1, c)f(z) +α

= β(1−δ)zp0(z)

µ(a+ 1) + (α+β)(δ+ (1−δ)p(z)).

Therefore, we have (2.25) Re

(

L(a+ 1, c)f(z) z

µ

βL(a+ 2, c)f(z) L(a+ 1, c)f(z) +α

−γ )

= Re

(α+β)δ−γ+ (1−δ)(α+β)p(z) + β(1−δ) µ(a+ 1)zp0(z)

>0.

If we define the functionΦ(u, v)by

(2.26) Φ(u, v) = (α+β)δ−γ + (1−δ)(α+β)u+ β(1−δ) µ(a+ 1)v withu=u1+iu2andv =v1+iv2,then

(i)Φ(u, v)is continuous inD=C2;

(ii)(1,0)∈DandRe(Φ(1,0)) = (α+β)−γ >0;

(6)

(iii) For all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2, Re(Φ(iu2, v1)) = Re{(α+β)δ−γ+ β(1−δ)

µ(a+ 1)v1}

≤(α+β)δ−γ− (1−δ)(1 +u22) Re(β) 2µ(a+ 1)

=−(1−δ)u22Re(β) 2µ(a+ 1) ≤0.

Therefore, the functionΦ(u, v)satisfies the conditions in Lemma 1.1. Thus we haveRe(p(z))>

0 (z ∈ U),that is, Re

(

L(a+ 1, c)f(z) z

µ)

> 2µγ(a+ 1) + Re(β)

2µ(α+β)(a+ 1) + Re(β) (z ∈ U).

Lettingα=

β in Theorem 2.5, we have

Corollary 2.6. Leta >−1,µ >0, β ∈C,(Re(β)>0), and suppose that

(2.27) Re

L(a+ 1, c)f(z) z

µ

α+βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

> γ

for someγ(γ <2 Re(β)),then

(2.28) Re

(

L(a+ 1, c)f(z) z

µ)

> 2µγ(a+ 1) + Re(β)

(4µ(a+ 1) + 1) Re(β) (z ∈ U).

Lettinga=c= 1in Theorem 2.5, we have,

Corollary 2.7. Letµ >0, α∈C, β ∈C,(Re(β)≥0),(α+β)∈R, and suppose that

(2.29) Re

(f0(z))µ

α+β

1 + zf00(z) 2f0(z)

> γ for someγ(γ < α+β)and4µ(α+β) + Re(β)6= 0,then

(2.30) Ren

(f0(z))µo

> 4µγ+ Re(β)

4µ(α+β) + Re(β) (z ∈ U).

Employing the same manner as in the proofs of Theorems 2.4 and 2.5, we have:

Theorem 2.8. Let a > −1, µ > 0, α ∈ C, β ∈ C, (Re(β) ≥ 0),(α+β) ∈ R, and suppose that

(2.31) Re

(

L(a+ 1, c)f(z) z

µ

α+βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

)

< γ

for someγ(γ > α+β)and2µ(α+β)(a+ 1) + Re(β)6= 0,then

(2.32) Re

(

L(a+ 1, c)f(z) z

µ)

< 2µγ(a+ 1) + Re(β)

2µ(α+β)(a+ 1) + Re(β) (z ∈ U).

(7)

Theorem 2.9. Letλ >0, α∈C, β ∈C,(Re(β)≥0),(α+β)∈R, and suppose that (2.33) Re

(

L(a+ 1, c)f(z) L(a, c)f(z)

λ

×

λβ(a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z) −aλβL(a+ 1, c)f(z) L(a, c)f(z) +λα

> γ

for someγ(γ < λ(α+β))and2λ(α+β) + Re(β)6= 0, then

(2.34) Re

L(a+ 1, c)f(z) L(a, c)f(z)

λ

> 2γ+ Re(β)

2λ(α+β) + Re(β) (z ∈ U).

Proof. Define the functionp(z)by (2.35)

L(a+ 1, c)f(z) L(a, c)f(z)

λ

:=δ+ (1−δ)p(z), where

(2.36) δ= 2γ + Re(β)

2λ(α+β) + Re(β) <1.

Thenp(z) = 1 +b1z+b2z+· · · is regular inU . Also, by a simple computation and by making use of the familiar identity (1.7), we find from (2.35) that

(2.37)

L(a+ 1, c)f(z) L(a, c)f(z)

λ

λβ(a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z) −aλβL(a+ 1, c)f(z) L(a, c)f(z) +λα

=λ(α+β)(δ+ (1−δ)p(z)) +β(1−δ)zp0(z) Therefore, we have

(2.38) Re (

L(a+ 1, c)f(z) L(a, c)f(z)

λ

×

λβ(a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z) −aλβL(a+ 1, c)f(z) L(a, c)f(z) +λα

−γ

= Re{λ(α+β)(δ+ (1−δ)p(z)) +β(1−δ)zp0(z)−γ}>0.

If we define the functionΦ(u, v)by

(2.39) Φ(u, v) =λδ(α+β)−γ+λ(1−δ)(α+β)u+β(1−δ)v withu=u1+iu2andv =v1+iv2,then

(i)Φ(u, v)is continuous inD=C2;

(ii)(1,0)∈DandRe(Φ(1,0)) =λ(α+β)−γ >0;

(iii) For all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2,

Re(Φ(iu2, v1)) = Re{λδ(α+β)−γ+β(1−δ)v1}

≤λδ(α+β)−γ− (1−δ)(1 +u22)

2 Re(β)

=−(1−δ)u22Re(β)

2 ≤0.

(8)

Therefore, the functionΦ(u, v)satisfies the conditions in Lemma 1.1. Thus we have Re

L(a+ 1, c)f(z) L(a, c)f(z)

λ

> 2γ+ Re(β)

2λ(α+β) + Re(β) (z ∈ U).

Lettingα=

β in Theorem 2.9, we have:

Corollary 2.10. Letλ >0, α∈C, β ∈C,(Re(β)>0),(α+β)∈R, and suppose that (2.40) Re

(

L(a+ 1, c)f(z) L(a, c)f(z)

λ

×

λβ(a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z)−aλβL(a+ 1, c)f(z) L(a, c)f(z) +λ

β

> γ for someγ(γ < λ(α+β)),then

(2.41) Re

L(a+ 1, c)f(z) L(a, c)f(z)

λ

> 2γ+ Re(β)

(4λ+ 1) Re(β) (z ∈ U).

Lettinga=c=λ= 1in Theorem 2.9, we have:

Corollary 2.11. Letα∈C, β ∈C,(Re(β)≥0),(α+β)∈R, and suppose that:

(2.42) Re

zf0(z)

f(z) (2β+α) +βz

f00(z)

f0(z) − f0(z) f(z)

> γ

for someγ(γ < α+β)and 2(α +β) + Re(β) 6= 0, then f(z)is starlike of order δ, where δ= 2(α+β)+Re(β)2γ+Re(β) .

Employing the same manner as in the proofs of Theorems 2.4 and 2.9, we have:

Theorem 2.12. Letλ >0, α∈C, β ∈C,(Re(β)≥0),(α+β)∈R, and suppose that:

(2.43) Re (

L(a+ 1, c)f(z) L(a, c)f(z)

λ

×

λβ(a+ 1)L(a+ 2, c)f(z)

L(a+ 1, c)f(z) −aλβL(a+ 1, c)f(z) L(a, c)f(z) +λα

< γ for someγ(γ > λ(α+β))and2λ(α+β) + Re(β)6= 0, then

(2.44) Re

L(a+ 1, c)f(z) L(a, c)f(z)

λ

< 2γ+ Re(β)

2λ(α+β) + Re(β) (z ∈ U).

Theorem 2.13. Leta >−1, α∈C, β ∈C,(Re(β)≥0),(α−β)∈R, and suppose that

(2.45) Re

z

L(a+ 1, c)f(z)

(a+ 1)α−βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

> γ for someγ(γ <(α−β)(a+ 1)),then

(2.46) Re

z

L(a+ 1, c)f(z)

> 2γ+ Re(β)

2(a+ 1)(α−β) + Re(β) (z ∈ U).

(9)

Proof. Define the functionp(z)by

(2.47) z

L(a+ 1, c)f(z) :=δ+ (1−δ)p(z), where

(2.48) δ = 2γ + Re(β)

2(a+ 1)(α−β) + Re(β) >1.

Thenp(z) = 1 +b1z+b2z+· · · is regular inU. Also, by a simple computation and by making use of the familiar identity (1.7), we find from (2.47) that

(2.49) z

L(a+ 1, c)f(z)

(a+ 1)α−βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

= (a+ 1)(α−β)(δ+ (1−δ)p(z)) +β(1−δ)zp0(z).

Therefore, we have (2.50) Re

z

L(a+ 1, c)f(z)

(a+ 1)α−βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

−γ

= Re{(a+ 1)(α−β)(δ+ (1−δ)p(z)) +β(1−δ)zp0(z)−γ}>0.

If we define the functionΦ(u, v)by

(2.51) Φ(u, v) = δ(a+ 1)(α−β)−γ+ (a+ 1)(α−β)(1−δ)u+β(1−δ)v withu=u1+iu2andv =v1+iv2,then

(i)Φ(u, v)is continuous inD=C2;

(ii)(1,0)∈DandRe(Φ(1,0)) = (α−β)(a+ 1)−γ >0;

(iii) For all(iu2, v1)∈Dand such thatv1 ≤ −(1 +u22)/2,

Re(Φ(iu2, v1)) = Re{δ(a+ 1)(α−β)−γ+β(1−δ)v1}

≤δ(a+ 1)(α−β)−γ−(1−δ)(1 +u22)

2 Re(β)

=−(1−δ)u22Re(β)

2 ≤0.

Therefore, the functionΦ(u, v)satisfies the conditions in Lemma 1.1. Thus we have Re

z

L(a+ 1, c)f(z)

> 2γ+ Re(β)

2(a+ 1)(α−β) + Re(β) (z ∈ U).

Lettingβ =−αin Theorem 2.13, we have:

Corollary 2.14. Leta >−1, a6= 0, α∈C,(Re(α)<0),and suppose that

(2.52) Re

z

L(a+ 1, c)f(z)

(a+ 1)α+αL(a+ 2, c)f(z) L(a+ 1, c)f(z)

> γ for someγ(γ <2(a+ 1) Re(α)),then

(2.53) Re

z

L(a+ 1, c)f(z)

> 2γ−Re(α)

(4a+ 3) Re(α) (z ∈ U).

Lettinga=c= 1in Theorem 2.13, we have:

(10)

Corollary 2.15. Leta >−1, α∈C, β ∈C,(Re(β)≥0),(α−β)∈R, and suppose that

(2.54) Re

1 f0(z)

2α−β− zf00(z) 2f0(z)β

> γ for someγ(γ <2(α−β))and4(α−β) + Re(β)6= 0, then

(2.55) Re

1 f0(z)

> 2γ+ Re(β)

4(α−β) + Re(β) (z ∈ U).

Employing the same manner as in the proofs of Theorem 2.4 and 2.13, we have:

Theorem 2.16. Leta >−1, α∈C, β ∈C,(Re(β)≥0),(α−β)∈R, and suppose that

(2.56) Re

z

L(a+ 1, c)f(z)

(a+ 1)α−βL(a+ 2, c)f(z) L(a+ 1, c)f(z)

< γ for someγ(γ >(α−β)(a+ 1))and2(a+ 1)(α−β) + Re(β)6= 0, then

(2.57) Re

z

L(a+ 1, c)f(z)

< 2γ+ Re(β)

2(a+ 1)(α−β) + Re(β) (z ∈ U).

REFERENCES

[1] B.C. CARLSONANDD.B. SHAFFER, Starlike and prestarlike hypergeometric functions, SIAM J.

Math. Anal., 15(4) (1984), 737–745.

[2] B.A. FRASIN, Subordinations results for a class of analytic functions defined by linear operator, J. Inequal. Pure Appl. Math., 7(4) (2006), Art. 134 [ONLINE:http://jipam.vu.edu.au/

article.php?sid=754].

[3] B.A. FRASIN, Subclasses of analytic functions defined by Carlson-Shaffer linear operator, to ap- pear in Tamsui Oxford J. Math.

[4] S. S. MILLERANDP.T. MOCANU, Second order differential inequalities in the complex plane, J.

Math. Anal. Appl., 65 (1978), 289–305.

[5] S. DING, Some properties of a class of analytic functions, J. Math. Anal. Appl., 195 (1995), 71–81.

[6] Y.C. KIM AND K.S. LEE, Some applications of fractional integral operators and Ruscheweyh derivatives, J. Math. Anal. Appl., 197 (1996), 505–517.

[7] T.N. SHANMUGAM, V. RAVICHANDRANAND S. SIVASUBRAMANIAN, Differential sand- wich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3(1) (2006), 1–11.

[8] V. RAVICHANDRAN, H. SELVERMAN, S.S KUMARANDK.G. SUBRAMANIAN, On differ- ential subordinations for a class of analytic functions defined by a linear operator, International Journal of Mathematics and Mathematical Sciences, 42 (2004), 2219–2230.

[9] V. RAVICHANDRAN, N. SEENIVASAGANANDH.M. SRIVASTAVA, Some inequalities associ- ated with a linear operator defined for a class of multivalent functions, J. Inequal. Pure Appl. Math., 4(4) (2003), Art.70 [ONLINE:http://jipam.vu.edu.au/article.php?sid=311].

[10] S. OWA ANDH.M. SRIVASTAVA, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057–1077.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

SRIVASTAVA, Some generalized convolution proper- ties associated with certain subclasses of analytic functions, J.. Some Properties for an

OWA, On sandwich theorems for some subclasses of analytic functions involving a linear operator, to appear in Integral Transforms and

OWA, On sandwich theorems for some subclasses of analytic functions involving a linear operator, to appear in Integral Transforms and

SUBRA- MANIAN, On differential subordinations for a class of analytic functions de- fined by a linear operator, International Journal of Mathematics and Mathe- matical Sciences,

Key words and phrases: Analytic functions, Univalent, Functions with positive real part, Convex functions, Convolution, In- tegral operator.. 2000 Mathematics

In this paper, we derive several interesting subordination results for certain class of analytic functions defined by the linear operator L(a, c)f (z) which in- troduced and studied

In this paper, we derive several interesting subordination results for certain class of analytic functions defined by the linear operator L(a, c)f (z) which introduced and studied

Key words and phrases: Meromorphic functions, Functions with positive real part, Convolution, Integral operator, Functions with bounded boundary and bounded radius