• Nem Talált Eredményt

In this paper we consider the Ln W A ! A, Lnf .´/D.1 /Dnf .´/CInf .´/linear operator, whereDnis the Sˇalˇagean differential operator andInis the Sˇalˇagean integral operator

N/A
N/A
Protected

Academic year: 2022

Ossza meg "In this paper we consider the Ln W A ! A, Lnf .´/D.1 /Dnf .´/CInf .´/linear operator, whereDnis the Sˇalˇagean differential operator andInis the Sˇalˇagean integral operator"

Copied!
12
0
0

Teljes szövegt

(1)

Vol. 19 (2018), No. 2, pp. 1095–1106 DOI: 10.18514/MMN.2018.2457

ON A CLASS OF UNIVALENT FUNCTIONS DEFINED BY S ˇAL ˇAGEAN INTEGRO-DIFFERENTIAL OPERATOR

A. O. P ´´ ALL-SZAB ´O Received 22 November, 2017

Abstract. In this paper we consider the Ln W A ! A,

Lnf .´/D.1 /Dnf .´/CInf .´/linear operator, whereDnis the Sˇalˇagean differential operator andInis the Sˇalˇagean integral operator. We study several differential subordinations generated byLn. We introduce a class of holomorphic functionsLmn.ˇ/, and obtain some subordination results.

2010Mathematics Subject Classification: 30C45; 30A20; 34A40

Keywords: analytic functions, convex function, Sˇalˇagean integro-differential operator, differen- tial operator, differential subordination, dominant, best dominant

1. PRELIMINARIES

LetU be the unit disk in the complex plane:

U D f´2CW j´j< 1g:

LetH.U /be the space of holomorphic functions inU and let Am

f 2H.U /W f .´/D´CamC1´mC1C ; ´2U withA1DA. Fora2Candm2N,N0DN[ f0g;ND f1; 2; : : :glet

HŒa; mD˚

f 2H.U /W f .´/DaCam´mCamC1´mC1C ; ´2U : Denote by

KD

f 2AW <´f00.´/

f0.´/ C1 > 0; ´2U

the class of normalized convex functions inU.

Definition 1([5], def. 3.5.1). Letf andgbe analytic functions inU. We say that the functionf is subordinate to the functiong, if there exists a functionw, which is analytic inU andw.0/D0I jw.´/j< 1I´2U, such thatf .´/Dg.w.´//I 8´2U:

We denote bythe subordination relation. Ifgis univalent, thenf gif and only iff .0/Dg.0/andf .U /g .U /.

c 2018 Miskolc University Press

(2)

1096 A. O. P ´ALL-SZAB ´O

Let WC3U !Cbe a function and lethbe univalent inU. Ifpis analytic in U and satisfies the (second-order) differential subordination

.i / p .´/ ; ´p0.´/ ; ´2p00.´/I´

h .´/ ; .´2U /

thenpis called a solution of the differential subordination. The univalent functionq is called a dominant of the solution of the differential subordination, or more simply a dominant, ifp q for allp satisfying.i /. A dominanteq, which satisfieseqq for all dominantsq of.i /is said to be the best dominant of.i /. The best dominant is unique up to a rotation of U. In order to prove the original results we use the following lemmas.

Lemma 1 (Hallenbeck and Ruscheweyh, [2]). Leth be a convex function with h.0/Da, and let2Cbe a complex number with<0. Ifp2HŒa; nand

p.´/C1

´p0.´/h.´/; ´2U then

p.´/q.´/h.´/; ´2U where

q.´/D n´=n

Z ´ 0

h.t /t=n 1dt; ´2U:

Lemma 2(Miller and Mocanu, [3]). Letqbe a convex function inU and let h.´/Dq.´/Cn˛´q0.´/; ´2U

where˛ > 0andnis a positive integer. If

p.´/Dq.0/Cpn´nCpnC1´nC1C ; ´2U is holomorphic inU and

p.´/Cn˛´p0.´/h.´/; ´2U then

p.´/q.´/

and this result is sharp.

Definition 2([8]). For f 2A; n2N0, the Sˇalˇagean differential operator Dn is defined byDnWA!A,

D0f .´/Df .´/;

: : :

DnC1f .´/D´ Dnf .´/0

; ´2U

(3)

Remark1. Iff 2Aandf .´/D´C

1

X

kD2

ak´k, then

Dnf .´/D´C

1

X

kD2

knak´k; ´2U:

Definition 3([8]). Forf 2A; n2N0DN[ f0g;ND f1; 2; : : :g, the operatorIn is defined by

I0f .´/Df .´/;

: : :

Inf .´/DI In 1f .´/

; ´2U Remark2. Iff 2Aandf .´/D´C

1

X

kD2

ak´k, then

Inf .´/D´C

1

X

kD2

ak kn´k;

´2U,.n2N0/and´ .Inf .´//0DIn 1f .´/.

Definition 4. Let0; n2N. Denote byLnthe operator given by LnWA!A,

Lnf .´/D.1 /Dnf .´/CInf .´/ ; ´2U:

Remark3. Iff 2Aandf .´/D´C

1

X

kD2

ak´k, then

Lnf .´/D´C

1

X

kD2

kn.1 /C 1 kn

ak´k; ´2U: (1.1) 2. MAIN RESULTS

Theorem 1. Letqbe a convex function,q.0/D1and lethbe the function h.´/Dq.´/C´q0.´/; ´2U:

Iff 2A,0,n2Nand satisfies the differential subordination Lnf .´/0

h.´/; ´2U (2.1)

then Lnf .´/

´ q.´/; ´2U and this result is sharp.

(4)

1098 A. O. P ´ALL-SZAB ´O

Proof. Let

p.´/DLnf .´/

´ D

´C

1

X

kD2

kn.1 /C 1 kn

ak´k

´ D1Cpn´nCpnC1´nC1C (2.2)

´2U. From (2.2) we havep2HŒ1; 1. Let

Lnf .´/D´p.´/; ´2U: (2.3) Differentiating (2.3), we obtain

Lnf .´/0

Dp.´/C´p0.´/; ´2U: (2.4) Then (2.1) becomes

p.´/C´p0.´/h.´/; ´2U: (2.5) By using Lemma2, we have

p.´/q.´/; ´2U;

i.e. Lnf .´/

´ q.´/; ´2U:

Remark4. IfD0we get Theorem 4 from Oros [6] and forD1we get Theorem 4 from Bˇalˇaet¸i [1].

Example1. ForD0,nD1,f 2Awe deduce that f0.´/C´f00.´/ 1

.1 ´/2; ´2U implies

f0.´/ 1

1 ´; ´2U:

Example2. ForD1,nD1,f 2Awe deduce that f .´/

´ 1

.1 ´/2; ´2U implies

R´

0 f .t / t 1dt

´ 1

1 ´; ´2U:

(5)

Theorem 2. Letqbe a convex function,q.0/D1and lethbe the function h.´/Dq.´/C´q0.´/; ´2U:

Iff 2A,0,n2Nand satisfies the differential subordination ´LnC1f .´/

Lnf .´/

0

h.´/; ´2U (2.6)

then LnC1f .´/

Lnf .´/ q.´/; ´2U and this result is sharp.

Proof. Let

p.´/D LnC1f .´/

Lnf .´/ D

´C

1

X

kD2

knC1.1 /C 1 knC1

ak´k

´C

1

X

kD2

kn.1 /C 1 kn

ak´k

:

We havep0.´/D LnC1f .´/0

Lnf .´/ p.´/ Lnf .´/0

Lnf .´/ and p.´/C´p0.´/D

´LnC1f .´/

Lnf .´/

0

. Relation (2.6) becomes

p.´/C´p0.´/h.´/Dq.´/C´q0.´/; ´2U:

By using Lemma2we have

p.´/q.´/ i:e: LnC1f .´/

Lnf .´/ q.´/; ´2U:

Theorem 3. Letqbe a convex function,q.0/D1and lethbe the function

h.´/Dq.´/C´q0.´/; ´2U:

Iff 2A,0,n2Nand satisfies the differential subordination LnC1f .´/0

Ch

In 1f .´/0

InC1f .´/0i

h.´/; ´2U (2.7) then

Lnf .´/0

q.´/; ´2U and this result is sharp.

(6)

1100 A. O. P ´ALL-SZAB ´O

Proof. By using the properties of operatorLn, we obtain

LnC1f .´/D.1 /DnC1f .´/CInC1f .´/ ; ´2U: (2.8) Then (2.7) becomes

.1 /DnC1f .´/CInC1f .´/0

Ch

In 1f .´/0

InC1f .´/0i

h.´/; ´2U:

(2.9) After computation we get

.1 /

DnC1f .´/0

C

In 1f .´/0

h.´/

or equivalently

.1 /h

´ Dnf .´/0i0 Ch

´ Inf .´/0i0

h.´/:

The above relation is equivalent to .1 /h

Dnf .´/0

C´ Dnf .´/00i Ch

Inf .´/0

C´ Inf .´/00i h.´/

or

Lnf .´/0

Lnf .´/00

h.´/; ´2U: (2.10) Let

p.´/D.1 /

Dnf .´/0 C

Inf .´/0 D

Lnf .´/0

; ´2U (2.11) D.1 /

"

´C

1

X

kD2

knak´k

#0 C

"

´C

1

X

kD2

1 knak´k

#0 D

D.1 /

"

1C

1

X

kD2

knC1ak´k 1

# C

"

1C

1

X

kD2

1

kn 1ak´k 1

# D

D1C

1

X

kD2

knC1.1 /C 1 kn 1

ak´k 1D1Cp1´Cp2´2C In view of (2.11), we deduce thatp2HŒ1; 1. Using the notation in (2.11), the (2.10) differential subordination becomes

p.´/C´p0.´/h.´/Dq.´/C´q0.´/; ´2U:

By using Lemma2we have

p.´/q.´/ i:e:

Lnf .´/0

q.´/; ´2U:

Remark5. IfD0we get Theorem 2 from Oros [6] and forD1we get Theorem 2 from Bˇalˇaet¸i [1].

(7)

Example3. ForD0,nD1,f 2Awe deduce that

f0.´/C3´f00.´/C´2f000.´/1C2´; ´2U implies

f0.´/C´f00.´/1C´; ´2U:

Theorem 4. Leth2H.U /such thath.0/D1and

<

1C´h00.´/

h0.´/

> 1

2; ´2U:

Iff 2Asatisfies the differential subordination LnC1f .´/0

Ch

In 1f .´/0

InC1f .´/0i

h.´/; ´2U (2.12) then

Lnf .´/0

q.´/; ´2U where q is given byq.´/D 1

´ Z ´

0

h.t /dt. The function q is convex and is the best dominant.

Proof. If we use the differential subordination technique we can see that the func- tiongis convex.[3], p. 66 By using (2.11) we obtain

LnC1f .´/0

Ch

In 1f .´/0

InC1f .´/0i

Dp.´/C´p0.´/; ´2U Then (2.12) becomes

p.´/C´p0.´/h.´/; ´2U:

Sincep2HŒ1; 1, we deduce thatp.´/q.´/, i.e.

Lnf .´/0

q.´/D 1

´ Z ´

0

h.t /dt; ´2U

andqis the best dominant.

Remark6. IfD0we get Theorem 3 from Oros [6].

Example4. ForD0,nD0,h.´/D1C´

1 ´ we deduce that f0.´/C´f00.´/ 1C´

1 ´; ´2U;

implies

f0.´/1 2

´ln .1 ´/ ; ´2U:

(8)

1102 A. O. P ´ALL-SZAB ´O

Theorem 5. Leth2H.U /such thath.0/D1and

<

1C´h00.´/

h0.´/

> 1

2; ´2U:

Iff 2Asatisfies the differential subordination Lnf .´/0

h.´/; ´2U (2.13)

then Lnf .´/

´ q.´/; ´2U where q is given byq.´/D 1

´ Z ´

0

h.t /dt. The function q is convex and is the best dominant.

Proof. If we use the differential subordination technique we can see that the func- tiongis convex. [3], p. 66. Differentiating both sides in (2.2) we obtain

Lnf .´/0

Dp.´/C´p0.´/; ´2U Then (2.13) becomes

p.´/C´p0.´/h.´/; ´2U:

Sincep2HŒ1; 1, we deduce thatp.´/q.´/, i.e.

Lnf .´/

´ q.´/D1

´ Z ´

0

h.t /dt; ´2U

andqis the best dominant.

Remark7. IfD0we get Theorem 5 from Oros [6] and forD1we get Theorem 5 from Bˇalˇaet¸i [1].

Example5. ForD0,nD1,h.´/D 1

.1C´/2 we deduce that f0.´/ 1

.1C´/2; ´2U;

implies

f .´/

´ 1

1C´; ´2U:

We get the same result as [4].

Definition 5([7], [9], [1], [6]). If0ˇ < 1andn2N, we letLmn.ˇ/stand for the class of functionsf 2Am, which satisfy the inequality

<

Lnf .´/0

> ˇ; .´2U / : Remark8. FornD0we obtain<f0.´/ > ˇ.

(9)

Theorem 6. The setLmn.ˇ/is convex.

Proof. Let the function

fi.´/D´C

1

X

kD2

aki´k; iD1; 2 ´2U be in the classLmn .ˇ/. It is sufficient to show that the function

h.´/D1f1.´/C2f2.´/

with1; 20and1C2D1is inLn.ˇ/. Since h.´/D´C

1

X

kD2

1ak1C2ak2

´k; ´2U then

Lnh .´/D´C

1

X

kD2

kn.1 /C 1 kn

1ak1C2ak2

´k; ´2U: (2.14) Differentiating (2.14), we get

Lnh .´/0

D1C

1

X

kD2

knC1.1 /C 1 kn 1

1ak1C2ak2

´k 1: Hence

<

Lnh .´/0

D1C <

( 1

1

X

kD2

knC1.1 /C 1 kn 1

ak1´k 1 )

C

C <

( 2

1

X

kD2

knC1.1 /C 1 kn 1

ak2´k 1 )

: (2.15)

Sincef1; f22Lmn.ˇ/, we obtain

<

( i

1

X

kD2

knC1.1 /C 1 kn 1

aki´k 1 )

> i.ˇ 1/ ; iD1; 2: (2.16) Using (2.16) we get from (2.15)

<

Lnh .´/0

> 1C1.ˇ 1/C2.ˇ 1/ ; and since1C2D1, we deduce

<

Lnh .´/0

> ˇ; .´2U /

i.e.Lmn.ˇ/is convex.

(10)

1104 A. O. P ´ALL-SZAB ´O

Theorem 7. If0ˇ < 1andm; n2Nthen we have Lmn .ˇ/LmnC1.ı/ ; whereı .ˇ; m/D2ˇ 1C2 .1 ˇ/ 1

m 1

m

and .x/D Z ´

0

tx 1

1Ctdt. The result is sharp.

Proof. Assume thatf 2Lmn.ˇ/. LetLnf .´/D´p.´/; ´2U. Differentiating, we obtain

Lnf .´/0

Dp.´/C´p0.´/; ´2U:

Sincef 2Lmn.ˇ/, from Definition5we have

< p.´/C´p0.´/

> ˇ; ´2U which is equivalent to

p.´/C´p0.´/ 1C.2ˇ 1/ ´

1C´ h.´/; ´2U By using Lemma1, we have:

p.´/q.´/h.´/; ´2U;

where

q.´/D 1 m´m1

Z ´ 0

1C.2ˇ 1/ t

1Ct tm1 1dtD D 1

m1 Z ´

0

2ˇ 1C2.1 ˇ/ 1 1Ct

tm1 1dtD

D 1 m´m1

Z ´ 0

.2ˇ 1/ tm1 1dtC2 .1 ˇ/

m1 Z ´

0

tm1 1 1Ct dtD D2ˇ 1C2 .1 ˇ/ 1

m 1

m 1

´m1

; ´2U:

The functionqis convex and is the best dominant. Fromp.´/q.´/follows that

<p.´/ ><q.1/Dı .ˇ; m/D2ˇ 1C2 .1 ˇ/ 1 m

1 m

;

from which we deduce thatLmn .ˇ/LmnC1.ı/.

Remark9. IfD0we get Theorem 1 from Oros [6] and forD1we get Theorem 1 from Bˇalˇaet¸i [1].

(11)

Theorem 8. Letqbe a convex function inU withq.0/D1and let h.´/Dq.´/C 1

cC2´q0.´/; ´2U;

wherecis a complex number, with<c > 2.

Iff 2Lmn.ˇ/andF DIc.f /, where F .´/DIc.f / .´/DcC2

´cC1 Z ´

0

tcf .t /dt; <c > 2; (2.17) then

Lnf .´/0

h.´/; ´2U; (2.18)

implies

LnF .´/0

q.´/; ´2U;

and this result is sharp.

Proof. From (2.17), we have

´cC1F .´/D.cC2/

Z ´ 0

tcf .t /dt; <c > 2; ´2U: (2.19) Differentiating, with respect to z, we obtain

.cC1/F .´/C´F0.´/D.cC2/f .´/; ´2U and

.cC1/LnF .´/C´

LnF .´/0

D.cC2/Lnf .´/; ´2U: (2.20) Differentiating (2.20), we obtain

LnF .´/0 C ´

cC2

LnF .´/00 D

Lnf .´/0

; ´2U: (2.21) Using (2.21), the differential subordination (2.18) becomes

LnF .´/0

C 1 cC2´

LnF .´/00

h.´/Dq.´/C 1

cC2´q0.´/; ´2U: (2.22) Let

p.´/D

LnF .´/0 D

(

´C

1

X

kD2

kn.1 /C 1 kn

ak´k

)0

D (2.23)

D1Cp1´Cp2´2C ; ´2U; p2HŒ1; 1 : Replacing (2.23) in (2.22) we obtain

p.´/C 1

cC2´p0.´/h.´/Dq.´/C 1

cC2´q0.´/; ´2U;

Using Lemma1, we obtainp.´/q.´/i.e.

LnF .´/0

q.´/; ´2U;

and q is the best dominant.

(12)

1106 A. O. P ´ALL-SZAB ´O

Remark10. IfD0we get Theorem 2.2 from Tˇaut et alii [9].

Example6. If we takecD1C2i andq.´/D1C´ 1 ´ then h.´/D 1 ´2

.3C2i /C2´

.3C2i / .1 ´/2 . From Theorem8we deduce

Lnf .´/0

1 ´2

.3C2i /C2´

.3C2i / .1 ´/2 ; ´2U;

implies

LnF .´/0

1C´

1 ´; ´2U;

whereF is given by (2.17).

REFERENCES

[1] C. M. Bˇalˇaet¸i, “A general class of holomorphic functions defined by integral operator,”General Mathematics., vol. 18, no. 2, pp. 59–69, 2010.

[2] D. Hallenbeck and S. Ruscheweyh, “Subordination by convex functions,”Proc. Amer. Math. Soc., vol. 52, pp. 191–195, 1975.

[3] S. S. Miller and P. T. Mocanu ,Differential Subordinations. Theory and Applications. Marcel Dekker Inc., New York, Basel, 2000.

[4] S. S. Miller, P. T. Mocanu , and M. O. Reade, “Subordination-preserving integral operators,”Trans.

Amer. Math. Soc., vol. 283, pp. 605–615, 1984.

[5] P. T. Mocanu, T. Bulboacˇa, and G. S. Sˇalˇagean,The geometric theory of univalent functions. Cluj- Napoca: Casa Cˇart¸ii de S¸tiint¸ˇa, 1999.

[6] G. Oros , “On a class of holomorphic functions defined by Sˇalˇagean differential operator,”Complex Variables., vol. 50, no. 4, pp. 257–264, 2005.

[7] G. Oros and G. I. Oros , “A Class of Holomorphic Function II,” Libertas Math., vol. 23, pp. 65–68, 2003.

[8] G. S. Sˇalˇagean, “Subclasses of univalent functions,”Lecture Notes in Math. (Springer Verlag), vol.

1013, pp. 362–372, 1983.

[9] A. O. Tˇaut, G. I. Oros, and R. S¸endrut¸iu, “On a class of univalent functions defined by Sˇalˇagean differential operator,” Banach J. Math. Anal., vol. 3, no. 1, pp. 61–67, 2009.

Author’s address

A. O. P´all-Szab´o´

Babes¸-Bolyai University, Cluj-Napoca, Romania E-mail address:pallszaboagnes@math.ubbcluj.ro

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

SRIVASTAVA, Some generalized convolution proper- ties associated with certain subclasses of analytic functions, J.. Some Properties for an

BULUT, Sufficient conditions for univalence of an integral operator defined by Al-Oboudi dif- ferential operator, J. MOCANU

SUBRA- MANIAN, On differential subordinations for a class of analytic functions de- fined by a linear operator, International Journal of Mathematics and Mathe- matical Sciences,

Finally, we examine the closure properties of the operator D n on these classes under the generalized Bernardi integral operator.... Subordination on Harmonic

HARDY TYPE INEQUALITIES FOR INTEGRAL TRANSFORMS ASSOCIATED WITH A SINGULAR SECOND ORDER DIFFERENTIAL OPERATOR.. DZIRI

Key words: Analytic functions, Univalent, Functions with positive real part, Convex functions, Convolution, Integral operator.. This research is supported by the Higher

In this paper, we derive several interesting subordination results for certain class of analytic functions defined by the linear operator L(a, c)f (z) which in- troduced and studied

In this paper, we derive several interesting subordination results for certain class of analytic functions defined by the linear operator L(a, c)f (z) which introduced and studied