• Nem Talált Eredményt

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information

N/A
N/A
Protected

Academic year: 2022

Ossza meg "In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information"

Copied!
12
0
0

Teljes szövegt

(1)

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/authorsrights

(2)

ContentslistsavailableatScienceDirect

Journal of Plant Physiology

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p l p h

Physiology

Isohydric and anisohydric strategies of wheat genotypes under osmotic stress:

Biosynthesis and function of ABA in stress responses

Ágnes Gallé

, Jolán Csiszár, Dániel Benyó, Gábor Laskay, Tünde Leviczky, László Erdei, Irma Tari

DepartmentofPlantBiology,UniversityofSzeged,H-6701Szeged,Középfasor52.,P.O.Box654,Hungary

a r t i c l e i n f o

Articlehistory:

Received3January2013

Receivedinrevisedform5April2013 Accepted25April2013

Available online 20 May 2013

Keywords:

Abscisicacid Anisohydricstrategy Isohydricstrategy Osmoticstress Triticumaestivum

a b s t r a c t

Changesinwaterpotential( w),stomatalconductance,abscisicacid(ABA)accumulation,expression ofthemajorgenesinvolvedinABAbiosynthesis,activitiesofabscisicaldehydeoxidase(AO,EC1.2.3.1) andantioxidantenzymeswerestudiedintwowheatcultivarswithcontrastingacclimationstrategies subjectedtomediumstrengthosmoticstress(−0.976MPa)inducedbypolyethyleneglycol(PEG6000).

BecausethebiosyntheticpathwayofABAinvolvesmultiplegeneproducts,theaimofthisstudywasto unravelhowthesegenesareregulatedinisohydricandanisohydricwheatgenotypes.Intheroottissues oftheisohydriccultivar,Triticumaestivumcv.Kobomugi,osmoticstressincreasedthetranscriptlevelsof 9-cis-epoxycarotenoiddioxygenase(NCED)gene,controllingtheratelimitingstepofABAbiosynthesis.

Moreover,thiscultivarexhibitedahigherbasalactivityandahigherinductionofaldehydeoxidaseisoen- zymes(AAO2-AAO3),responsibleforconvertingABAldehydetoABA.Itwasfoundthatthefastactivation oftheABAbiosynthesisintherootsgeneratedanenhancedABApoolintheshoot,whichbroughtabouta fasterclosureofthestomatauponincreasingosmoticstressand,asaresult,theplantscouldmaintain w

inthetissuesclosetothecontrollevel.Incontrast,theanisohydricgenotype,cv.GKÖthalom,exhibited amoderateinductionofABAbiosynthesisintheroots,leadingtothemaintenancebutnoincreaseinthe concentrationofABAonthebasisoftissuewatercontentintheleaves.Duetotheslowerresponseof theirstomatatowaterdeficit,thetissuesofcv.GKÖthalomhavetoacclimatetomuchmorenegative waterpotentialsduringincreasingosmoticstress.Adecreasedactivityofsuperoxidedismutase(SOD) wasfoundintheleavesandrootsofbothcultivarsexposedtoosmoticstress,butintherootselevated activitiesofcatalase(CAT),peroxidase(POX),glutathionereductase(GR)andglutathionetransferase (GST)weredetectedintheisohydriccultivar,suggestingthatthisgenotypewasmoresuccessfulinthe eliminationofreactiveoxygenspeciescausedbythestressconditions.

© 2013 Published by Elsevier GmbH.

Introduction

Theresponseofwheatgenotypestodroughtstresshasbeen investigatedextensivelybecausesoildroughtrepresentsamajor constraintforsuccessfulcropproduction.Plantscanreadilychange theirmetabolicand physiologicalprocesses,aswellasthemor- phologyoftheabove-groundpartsandtherootsysteminresponse towaterdeficit.

Cropplants cancopewithdrought stressbyavoiding tissue dehydration,thus, theseisohydricplants are abletokeep their

Abbreviations:ABA,abscisicacid;AO,aldehydeoxidase;CAT,catalase;GR,glu- tathionereductase;GST,glutathionetransferase;MDA,maldondialdehyde;NCED, 9-cis-epoxycarotenoiddioxygenase;PEG,polyethyleneglycol;POD,peroxidase;

SOD,superoxidedismutase;ZEP,zeaxanthinepoxidase.

Correspondingauthorat:Szeged6726,Középfasor52,Hungary.

Tel.:+3662544307;fax:+3662544307.

E-mailaddresses:galleagnes@gmail.com,gallea@bio.u-szeged.hu(Á.Gallé).

tissuewaterpotentialalmostunchangedbythefastclosureoftheir stomataaswellasbyalternativewatersavingmechanisms.Aniso- hydricplants,ontheotherhand,toleratesoildroughtandrespond tothedecreaseofwateravailabilityintheenvironmentbytissue dehydration(Drew,2006).

The firstreactionofplants belongingtotheformer groupis adecreaseintheirstomatalconductance,inwhichroot-to-shoot chemicalorhydraulicsignallingeventsareinvolved.Abscisicacid (ABA)isaplanthormoneinvolvedinmanyphasesofplantdevel- opmentand intheresponseofplantstovariousenvironmental stresses(Wilkinsonand Davies,2002;Blum,2011;Pantinetal., 2012).Becausemanyofthephysiologicalprocessesarecorrelated with endogenous ABA levels, theregulation of ABA biosynthe- sis has a pivotal role in the elucidation of these physiological characteristics.ABAbiosynthesisincreasesfirstintheroots,and thenthehormoneistranslocatedtotheshootviathexylemand functionsasalong-distancechemicalsignalfromtheroottothe shootduringwaterstress(ZhangandDavies,1987;Wilkinsonand Davies,2002,2010).Inadditiontothistypeofchemicalsignalling, 0176-1617/$seefrontmatter© 2013 Published by Elsevier GmbH.

http://dx.doi.org/10.1016/j.jplph.2013.04.010

(3)

ABAcanpromotestomatalclosurebyitsindirecthydrauliceffect throughdecreasingthewaterpermeabilityoftheleafvasculartis- sues(Pantinetal.,2013).Sincetherearelargedifferencesbetween theapparentsensitivityofleafconductancetotheconcentrationof ABAinthexylem(CorreiaandPereira,1995),chemicalsignalling canaccountformorethan40–70%decreaseinthestomatalcon- ductanceasopposedtohydraulicevents(ZhangandDavies,1990;

KhalilandGrace,1993).

Identification of genes encoding enzymes involved in the biosynthesis of ABA has revealed details of the main biosyn- thetic pathways (Seo and Koshiba, 2002). Expression of 9- cis-epoxycarotenoid dioxygenase (NCED) in Arabidopsis, which represents a rate limiting step in controlling drought stress- induced ABA biosynthesis, is up-regulated significantly during droughtstress (Xiong et al.,2002).Five members of the NCED familyinArabidopsisareimplicatedinABAbiosynthesis,among themtheproductofNCED3genemakesthemajorcontributionto increaseABAlevelsleadingtotheinductionoftolerancemecha- nismsinvegetativetissues(Uranoetal.,2009;Freyetal.,2012).

Inavocado,anotherisoform,PaNCED1ishighlyexpressedinthe leavesanditsexpressionisinducedbydehydration(Chernysand Zeevaart,2000).NCEDwasthoughttobethekeyregulatoryenzyme ofABAbiosynthesis,sincethetranscriptamountofthisenzymewas directlyproportionaltotheABAcontent,anditwasinducedearly afterwaterwithdrawal(ChernysandZeevaart,2000;Tayloretal., 2000;Thompsonetal.,2007a).TheinitialaccumulationofABAup- regulatestheexpressionofothergenesinvolvedinthebiosynthesis ofABA,suchaszeaxanthinepoxidase(ZEP),abscisicaldehydeoxi- dase(AAO)andmolybdatecofactorsulfurase(MCSU)inArabidopsis.

Increasedexpressionsofthesegenesleadtoafastaccumulationof ABAinanautocatalyticprocess(Xiongetal.,2002).

The tobacco mutants impared in ZEP expression and activ- ityprovedtobeABA-deficientsandexhibitedlowerxylemABA contents during drought stress (Borel et al., 2001). The mem- bersofthealdehydeoxidase(AOEC1.2.3.1)genefamilycatalyse theoxidationofvarious aldehydesto carboxylicacids andcer- tain isoenzymes efficiently transform abscisic aldehyde toABA (Seoetal.,2000a,2000b).Differentisoenzymesexhibiteddifferent expressionlevelsinplantorgans.PsAO1andPsAO2weremainly expressedintheleavesofpeaplants,whilePsAO3wasexpressed in ageing leaves and seeds (Zdunek-Zastocka, 2008). Aldehyde oxidaseisoforms,whichuseabscisicaldehydeasaphysiological substrate,wereidentifiedinArabidopsisrosetteleaves(Seoetal., 2000a),andtwo isoforms,AO2and AO3, werealsodetectedin barleyroots(Omarovetal.,2003).

Soil droughtdecreasedstomatalconductance(gs)and w of wheatgenotypessignificantly(Guóthetal.,2009).However,other authorsdidnotfindsuchafastresponseofgstodecreasedsoil water potentials or atmospheric vapour pressure deficit (VPD) (Inoue et al., 1989). This suggests that the responses of gs to soilwater stress or VPD wererelated tothecultivars (Condon etal.,1992)ortothedegreeofthedroughtstress(Rawsonetal., 1977).TherateofABAbiosynthesis determinesthedecreasein stomatalconductance,therebythediffusionrateofCO2 intothe chloroplaststroma andthecarboxylating efficiencyof ribulose- 1,5-bis-phosphate carboxylase/oxygenase. Thus, photosynthesis, which is the mostsignificant process influencingcrop produc- tion, may also be inhibited by drought stress (Guóth et al., 2009).

Seriouswater-stresscantriggeranincreasedformationofreac- tiveoxygenspecies(ROS),suchassuperoxideradicalandhydrogen peroxide,whichcandirectlyattackmembranelipidsanddamage proteins(Navari-Izzoet al.,1994;Bartoliet al.,1999).Detoxifi- cationofROSisaccomplishedbytheantioxidantdefencesystem comprisingnonenzymaticcomponents(ascorbate,glutathione,␣- tocopherol,carotenoids)andaseriesofenzymes(Alscheretal.,

1997; Foyer and Noctor, 2005; Nikolaeva et al., 2008).One of the mostimportant antioxidant enzymes is superoxide dismu- tase(SOD),whichconvertssuperoxideradicalstothelessharmful H2O2. Hydrogen peroxide can then be scavenged by catalase (CAT)andperoxidasesandalsoindirectlybyglutathione-related enzymes,suchasglutathionereductase(GR),whichisacompo- nentoftheascorbate-glutathionecycleandreducesglutathione disulfide(GSSG)toglutathione(GSH).GSHcontributestothemain- tenance of cellularredox potential and generatesreduced GSH for other enzymatic reactionssuch as for the detoxification of harmfulmetabolitesbyglutathionetransferases(GST)(Galléetal., 2009).These detoxification processes also play important roles inthesuccessfulacclimationofplantsand canbecontrolledby ABA.

Certainenvironmentalfactors,suchasdroughtstress,induce ABAbiosynthesisprincipallythroughthetranscriptionalregulation ofABAbiosyntheticgenes.However,itmayvarynotonlybetween differentspeciesbutalsobetweendevelopmentalstagesandplant parts.

Here we present a comparativestudy betweenan isohydric andanisohydricwheatcultivarcarried outinordertoelucidate theputativerole oftissuedehydrationintheregulationofABA biosynthesis.Thepatternsofacclimationofananisohydric(cv.GK Öthalom)andanisohydricwheatgenotype(cv.Kobomugi)toPEG 6000-inducedosmoticstresswerecomparedwithspecialempha- sisontheinductionofZEP,NCEDandAO,changesinAOactivities andaccumulationofABAbothinleafandroottissues.Theeffect ofosmoticstressonwaterpotential,stomatalconductance,enzy- maticantioxidant defenceof thetwo wheatcultivarswerealso comparedtorevealthedifferencesbetweenisohydricandaniso- hydricstrategiesduringosmoticstress.

Materialsandmethods

Inourexperiments,twowheatcultivars,TriticumaestivumL.GK Öthalom,amoderncultivarwithmediumdroughttolerance,and Kobomugi,adroughttolerantlandracefromCentralAsia,weresub- jectedtoosmoticstress.Theseedlingsweregrowninplasticdishes containing10lofHoaglandsolution(5mMCa(NO3)2,5mMKNO3, 1mM KH2PO4, 2mM MgSO4, 1␮M Fe-EDTA, 0.048␮M H2BO3, 14.48␮M MnCl2, 0.815␮M ZnCl2, 0.373␮M CuCl2, 0.001␮M Na2MoO4)in Convironcabinet chambers,at 24/19C day/night temperature,12h/12hlightperiodandat200␮molm−2s−1light intensity.Onehundredplantsweregrowninonedishandthecul- turesolutionwaschangedtwiceaweek.Therootswereaerated withaquariumpump.

Osmotic stress was induced by polyethylene glycol treat- ments (PEG 6000) (Money, 1989). Increasing amounts of PEG 6000 reachingthefinal value of 400mOsm(−0.976MPa) were appliedgraduallyintheculturemediaofone-week-oldplants.The seedlingswereexposedto100mOsmPEGonday7,thenthecon- centrationwasraisedstepwiseeverysecondday,onday9–200 andonday11–400mOsm(Csiszáretal.,2012).Onthe7th,9th, 11thdayssampleswerepreparedbeforeincreasingtheosmotic potentialoftheculturesolution.Theexperimentswereperformed inthreebiologicalreplicates.

Waterstatusoftheplants

Middayleafwaterpotentials( w)weremeasuredusingapres- surechamber(PMSInstrumentCo.,Corvallis,Oregon,USA)onthe secondfullyexpandedleaves.Stomatalconductance(gs)wasdeter- minedinthemiddleoftheapicalleafletsofthesecondexpanded leavesusingasteady-stateporometer(PMR-2,PPSystems,UKand USA).

(4)

Table1

Theprimersusedforgeneexpressionanalyses.

Sequence Primers

Forward Reverse

18SrRNA GTGACGGGTGACGGAGAATT GACACTAATGCGCCCGGTAT

EF1subunit AACTTCACCTCCCAGGTCAT GTCACCAGCTCAGCAAACTT

AO2TC447676 ACGAGGACTAGGCGACGAA TCAACGTAGGGATCTTGTACGT

NCEDTC404702 CCTCGAAGCCCAGCACTAAT GAGAGCGAGAGGTCCAATGG

ZEPAF384103.2 GGAGTTATGAGAAGGAGAGAAAGC AAAACGACAAAGGTCCCAGA

SearchingforsequencesparticipatinginABAbiosynthesisin wheat

Wheat NCED,AAO,and ZEPsequences wereidentified using an in silico approach. Screening for wheat sequences was ini- tially performed on the DFCI-Gene Index (http://compbio.dfci.

harvard.edu/tgi/)wheatdatabaseusingpublishedplantaldehyde oxidaseand9-cis-epoxycarotenoid dioxygenasesequences from DDBJ/EMBL/GenBanksequencedatabase.ForRealTimePCRmea- surementthreesequenceswereused.Thechosenaldehydeoxidase issimilartootheraldehydeoxidase2proteins:blastxsearching resultedin aldehydeoxidase2 proteinsfromOryza sativa(Acc.

No:Q852M1.1,Exp:3e-88)andBrachypodiumdistachylon(Acc.No:

XP003557918.1,Exp:1e-92).AccordingtoDFCIGeneIndexthe sequencewasannotatedtoshowsimilaritytoaldehydeoxidase 2fromZeamays.Thechosen9-cis-epoxycarotenoiddioxygenase (NCED)sequence(TC404702)ishomologoustoHordeumvulgare NCEDaccordingtotheannotationinDFCIGeneIndex,andishighly homologoustoHvNCED1(AK36199.1,Exp:0.0)and toHvNCED2 (AK358040.1,Exp:2e-144)genesdescribedbyMillaretal.(2006) andSeileretal.(2011),respectively.Furthermore,onewheatzeax- antinexpoxidase(AF384103.2)waschosenforthemeasurements, thehomologofthissequence(AK362500.1,Exp:0.0)wasidentified bySeileretal.(2011)asZEP2inH.vulgare(Table1).

RNApurificationandexpressionanalyseswithreal-timePCR

RNAwasextractedfromrootsamplesatdifferentdevelopmen- talstages (9,11,22 days)accordingtoChomczynskiandSacchi (1987)aspublishedearlier(Galléetal.,2009).DNasedigestions wereapplied(Fermentas).FirststrandcDNAwassynthesizedusing MMLVreversetranscriptase(Fermentas).Primersweredesigned usingPrimer 3software (Rozen and Skaletsky,2000)and were synthesized in the Nucleicacid synthesis laboratory, Biological Research Centre (Szeged, Hungary). Primer pairs are shown in Table1.The expressionrateof theABS biosynthesissequences wasmonitoredbyquantitativereal-timePCR(BioRad,MJResearch) usingSYBRGreenprobes(AppliedBiosystems;Karsaietal.,2002).

Eachreactionwasrepeatedatleastthreetimes.QRT-PCRwasini- tiatedbydenaturationat95Cfor10minfollowedby41cyclesof denaturationat95Cfor15sandannealing,extensionat60Cfor 1min.DataanalysiswasperformedusingOpticonmonitorsoft- ware.Todeterminethespecificityofthereaction,ameltingcurve analysisoftheproductwasperformedimmediatelyafterthefinal PCRcyclebyincreasingthetemperaturefrom55Cto90C(0.2C 0.2s1).18SribosomalRNAandElongationfactor1␣subunitwere usedforhighandlowcontrols(Nicotetal.,2005).Datawerenor- malizedusingtheinitialcontrolsamples(valuesofthe7-day-old seedlings).

Abscisicaldehydeoxidase(AAO,EC1.2.3.1.)activity

AAO tissue extraction and native-polyacrylamide gel elec- trophoresis (PAGE)were carriedout asdescribed by Sagi etal.

(1998). Root and shoot tissues (1g) were homogenized using

250mM Tris–HClbuffer(pH 8.5) containing1mM EDTA, 1mM 1,4-dithio-dl-threitol,5mMl-cysteine,80␮MNa2MoO4,10␮M antipain, 0.1mM phenazine methosulphate,10mM glutathione and0.03mMFAD.Thesampleswerecentrifugedat30,000×gfor 15minat4C.The resultingsupernatantswereused fornative PAGE.Afterthequantitationofthetotalproteincontentusingthe methodofBradford(1976),(1)5-mm-thickslabsof7.5%polyacryl- amidegelwereloadedwith100and300␮gofproteinsfromthe rootandshoottissueextracts,respectively.Enzymeactivitieswere determinedbyincubatingthegelsin0.2Mphosphatebuffer(pH 8)for10min,andtheninareactionmixturecontaining0.1mM phenazinemethosulphate,1mM3-(4,5-dimethylthiazolyl-2)-2,5- diphenyltetrazoliumbromidein0.1MTris–HClbuffer(pH8,5)at 25Cinthepresenceof,1mMindole-3-aldehyde(IAld)substrates.

Thebands wereanalysedusinga KodakEDAS-290GelAnalysis System.

DeterminationofabscisicacidbyELISA

The quantitative determination of ABA was carried out via an enzyme linked immuno-sorbent assay (ELISA) (Phytodetek- ABA, Sigma–Aldrich, St. Louis, MO). Plant tissues (1.0g) were extracted with15mlofa coldmixtureof100mMNaHCO3 and methanol(80:20,v/v)containing1mgofbutylatedhydroxytoluene in a volume of 100ml. The samples were extracted twice at 4Cfor24heach,and werethen evaporated.Theassayutilizes a monoclonal antibodyfor ABA, and the determination of (+)- cis-ABA(Sigma–Aldrich, St.Louis,MO) inthe plantextractwas based onthe competitivebindingof ABA and thetracer (alka- linephosphatase-labelledABA)totheantibody-coatedmicrowell.

Tracerandstandardsolutionswerepreparedfollowingtheman- ufacturer’s instructions.100␮lofstandardABAorplantextract andthen100␮lofdilutedtracerwereaddedtoeachwell.After incubationfor3hat4C,thewellswerewashedthreetimesby adding200␮lofwashsolution.Thealkalinephosphatasereaction wasstartedbytheadditionof200␮lofsubstratesolution.After 60minat37C,thereactionwasstoppedwith50␮lofstopreagent andtheabsorbancewasdeterminedat405nm,usingaMR4000 microplatereader(Dynatech)(Guóthetal.,2009).ABAconcentra- tionisexpressedasnmolABAin1goftissuewatercontentofthe wheatsamples.

Activityofantioxidantenzymes

Enzymeactivitiesweredeterminedbothin rootsand shoots ofthePEG-treatedandcontrolplants.0.75gofplanttissuewas homogenizedonicein3mlextractionbuffer(50mMphosphate buffer pH 7.0, containing 1mM EDTA, 1mM phenylmethylsul- fonylfluoride,PMSFand1%polyvinyl-polypyrrolidone(PVPP).The homogenatewasfilteredthroughtwolayersofcheese-clothand centrifugedfor25minat15,000×gat4C.Thesupernatantwas usedforenzymeactivityassays.Thehomogenizationwasrepeated twoorthreetimes,themean±SDwerecalculatedfromthedataof atleast3independentmeasurements.

(5)

Fig.1. WaterpotentialchangesinthesecondleavesofwheatcultivarsGKÖthalomandKobomugiinthefunctionoftimeafterexposureto100(onday7),200(onday9) and400mOsm(onday11)PEG6000treatment(mean±SD,n=10).Datalabelledwith*differedsignificantlyfromtheuntreatedcontrolsat*P0.05,**0.01or***0.001level (Student’st-test).

Superoxidedismutase (SOD,EC.1.15.1.1) activitywasdeter- mined by measuring the ability of the enzyme to inhibit the photochemicalreduction ofnitro bluetetrazolium (NBT)inthe presenceofriboflavininthelight(Dhindsaetal.,1981).Oneunit (U)ofSODwastheamountofenzymethatcauseda50%inhibition ofNBTreductionandthespecificenzymeactivitywasexpressed asUmg1protein.

Catalase (CAT, EC. 1.11.1.6) activity was determined by the decompositionofH2O2measuredspectrophotometricallybyfol- lowingthedecreaseinabsorbanceat240nm(Upadhyayaetal., 1985).OneUequalstheamountofH2O2(in␮mol)decomposedin 1min.

Peroxidase(POD,EC1.11.1.7)activitywasdeterminedbymoni- toringtheincreaseinabsorbanceat470nmduringtheoxidationof guaiacol(Upadhyayaetal.,1985).Theamountofenzymeproducing 1␮molmin−1ofoxidizedguaiacolwasdefinedas1U.

Glutathionereductase(GR,EC1.6.4.2)activitywasdetermined by measuringthe absorbance increment at 412nm when 5,5- dithio-bis(2-nitrobenzoicacid)(DTNB)wasreducedbyglutathione (GSH),generatedfromglutathionedisulfide(GSSG)(Smithetal., 1988).Thespecificactivitywascalculatedastheamountofreduced DTNB,in␮molmin−1proteinmg−1420=13.6mM−1cm−1.

Glutathionetransferase(GST,EC2.5.1.18)activitywasdeter- mined spectrophotometrically by using an artificial substrate, 1-chloro-2,4-dinitrobenzene (CDNB), according to Habig et al.

(1994). The reaction was initiated by the addition of CDNB, andtheincreasein A340 wasdetermined.OneUis theamount of theenzyme producing 1␮mol conjugated product in 1min, ε340=9.6mM−1cm−1.The proteincontents oftheextractswere determinedbythemethodofBradford(1976).

Malondialdehydedetermination

MDAformationwasassayedbyusingthethiobarbituricacid method(Ederlietal.,1997).100mgleaftissuewashomogenized with1ml0.1% trichloroacetic acid(TCA);toavoid furtherlipid peroxidation100␮l4%butylhydroxytoluene(BHT)wasaddedto theextract.Aftercentrifugationat12,000×gfor20min,250␮lof supernatantwasmixedwith1ml0.5%thiobarbituricacidin20%

TCAandthemixturewasincubatedinboilingwaterfor30min.

Theabsorbancewasmeasuredat532nmandadjustedfornonspe- cificabsorbanceat600nm.MDAconcentrationwasestimatedby usinganextinctioncoefficientof155mM−1cm−1.

Statisticalanalysis

Significantdifferencesbetweenthecontrolandtreatedsamples preparedatthesametimepointsweredeterminedbyStudent’s

t-test.DifferenceswereconsideredsignificantifP≤0.05.Insome cases,themeanvalueswerecomparedbyDuncan’stestandthe differenceswereconsideredsignificantifP≤0.05.Statisticalanal- ysiswascarriedoutwithSigmaStat3.1.statisticalsoftware.Alldata presentedaremeans±SD.

Results Waterrelations

Physiologicalresponsestowaterdeficitweremeasuredintwo wheatcultivars exposed to400mOsmPEG6000in hydroponic culture.Waterdeficit decreasedthe relativegrowthrateof the leavesandrootsinbothcultivars(datanotshown).Thethirdleaf developedonlyafter15days,thereforewaterpotentialsandsto- matalconductivitiesweremeasuredonthedaysofsamplinginall fullyexpandedleaves.Sincesimilartendenciesweredetectablein allcases,onlythedataofthesecondleafarerepresented.Water potentialoftheleavesdecreasedsignificantlyincv.GKÖthalom duringthefirstweekofPEGexposure,butthedifferenceexhib- itedsomefluctuationsandattheendofexperiment wdeclined to−1.18MPa.Incv.Kobomugionlysmallandnon-significantdif- ferenceswerefoundinthewaterpotentialbetweenthecontrol andPEG-treatedleavesfromday11today21( w=−0.2MPa) (Fig.1).Thesedatasuggestthatcv.GKÖthalomfollowsananiso- hydricstrategy,whiletheresponseofcv.Kobomugiwascloseto isohydric.

Stomatalconductivity

In cv. Kobomugi stomata were closed in all leaves after 2 daysofexposuretoeven thelowest concentrationofPEG6000 (100mOsm, −0.245MPa). Stomatal conductivity of the leaves exposedtoosmoticstressdecreasedsignificantlyonday11and thevaluesremainedunderthecontrolleveloneverysamplingday fromthattime(Fig.2).Thetendencyofthechangeswassimilarin thefirstleaves(datanotshown).Incv.GKÖthalom,stomatadidnot respondtoeven200mOsmPEGandclosureofstomatabecamesig- nificantonlyonday13,twodaysaftertheexposureto400mOsm PEG(Fig.2).

ExpressionpatternofgenesparticipatinginABAbiosynthesis

Itwasageneralresponsethatunderdroughtstressthebiosyn- thesisofABAwasinducedfirstintherootsandthehormonewas readilytransportedinthexylemtotheleaves.Tofollowthechanges inABAbiosynthesisindifferentplantparts,thetranscriptamounts ofZEP(AF384103.2),NCED(TC404702)andAO2(TC354638)were

(6)

Fig.2.ChangesintotalstomatalconductanceofthesecondleavesofwheatcultivarsGKÖthalomandKobomugiinthefunctionoftimeafterexposureto100(onday7), 200(onday9)and400mOsm(onday11)PEG6000treatment(mean±SD,n=10).Datalabelledwith*differedsignificantlyfromtheuntreatedcontrolsat*P0.05,**0.01 or***0.001level(Student’st-test).

measuredinthecourseoftheacclimationprocess.Fortheselec- tionoftheNCEDandAO2sequences,thereportedaldehydeoxidase andepoxycarotenoiddioxygenasegenesofotherPoaceaespecies wereused for searching among the wheattentative consensus sequences(TC).Intheleavesthetranscriptamountofthethree chosensequencesshowedatime-dependentdecreaseinalmost everycase,bothincontrolandtreatedplants,suggestingadevelop- mentalphase-specificregulationofABAbiosynthesis.Thepattern oftranscriptabundanceinrootswasdifferentinthetwocultivars betweencontrolconditionandosmoticstress.InKobomugi,the transcriptamountsofthetwoABAbiosyntheticenzymesstudied, NCEDandAAO,wereelevatedbytheosmoticstresswhiletherewas noinductionintheexpressionofZEP.TheexpressionofNCEDwas significantlyinducedinbothcultivarsduetoPEGtreatmentand thehighesttranscriptlevelsweredetectedincv.Kobomugionday 11,twodaysafterapplying100mOsmPEG.Theincreaseobserved intherelativetranscriptlevelofNCEDondays11and13were18- and11-foldinKobomugiand7-and8-foldinGKÖthalom(Fig.3).

Aldehydeoxidaseactivities

TofollowthechangesinthesubsequentstepsofABAbiosyn- thesis during the experimental period, the activity of the AO isoenzymeswasstudiedinnon-denaturatinggels.StainingforAO activityusingindole-3-aldehyde(IAld)asasubstrateresultedin fiveisoformsintherootsofcv.Kobomugiandsixbandsincv.GK Öthalom.Inanearlierworkitwasreportedthatinthepresenceof IAldsubstratethebandofAAO1isoformcouldnotbedetectedin barley,sothebandwiththeleastmobilityinoursamplesoriginates fromtheactivityofAAO2(Omarovetal.,2003).Inourexperiments, thebasicactivitiesofAO2-3bandsweremoreintenseinthecontrol plantsandthePEG-inducedisoformsexhibitedmuchhigheractivi- tiesintheisohydricgenotypecv.Kobomugithanincv.GKÖthalom (Figs.4and5).ThreeAOisoformsweredetectableintheleavesof bothcultivarsbuttherewerenosignificantdifferencesbetween thecontrolandPEG-treatedsamplesduringthestudyperiod(data notshown).

ABAcontent

ItiswellknownthatABAsynthesisisinducedfirstintheroots andsotheABAaccumulatedintheshootisderivedmainlyfrom therootsystem.Leavesofisohydriccultivars mayhave amuch lowerwaterlossthanthoseofanisohydricplants.Similarly,pho- tosyntheticactivityandbiomassproductioncanalsobedifferently affectedinplantsbelongingtodifferentwaterstressacclimation strategies(Guóthetal.,2009).Inordertoexcludethesedifferences, ABAconcentrationswerecalculatedonthebasisoftissuewater

content.Unexpectedly,plants wereabletomaintaina constant ABAconcentrationduringosmoticstress(Fig.6).InGKÖthalom plantsthehighestABAcontentwasmeasuredintheshootonthe secondsamplingdayandasmall,butnon-significantincreasedue toosmoticstresswasdetectedintheleavesonday13,twodays afterthenutrientsolutionreachedthefinal400mOsmvalue.In therootsasignificantaccumulationofABAwasobservedonday 21.PEGtreatmentcausedanenhancedaccumulationofABAinthe leavesofcv.Kobomugionday13,butincontrasttoleaves,theABA contentoftherootsdecreasedsignificantlyonthelastsampling day.

Antioxidantenzymeactivities

Measurementofthethiobarbituratereactivecompounds(MDA content)onthe21thdayrevealedthattheosmoticstresscaused elevated level of lipid peroxidation in both cultivars, but the increasewashigherinGKÖthalomthaninKobomugiplants(Fig.7).

Theactivitiesofseveralantioxidantenzymeswerealsostudiedon thissamplingday.SODactivitydecreasedintheleavesandroots ofbothcultivarsaftertwoweeksofPEGtreatment.However,the basalactivityoftheenzymewashighinthecontrolsamplesand remainedmuchhigherduringosmoticstressintheleavesofcv.

Kobomugi.ThestresscausedaslightdecreaseinCATactivityinGK Öthalombutincreaseditincv.Kobomugi,andintherootsthese changesweresignificant.Guaiacolperoxidase(POD)activitydid notshowanysignificantchangesineitherofthetwowheatcul- tivarsafterosmotictreatmentalthoughitwashigherthaninthe controlbothintheshootsandrootsofKobomugi.GRandGSTactiv- itiesincreasedintherootsofbothgenotypesasaneffectofthePEG treatment,butthechangeswerestatisticallysignificantonlyinthe rootsofKobomugi(Fig.6).

Discussion

In nature,wateris usuallythemostlimitingfactor forplant growth.Ifplantsdonotreceiveadequaterainfallorirrigation,the resultingdrought stresscanreducegrowthmorethanallother environmentalstressescombined.Thismaybetruefortherela- tivelyancientandwell-adaptedlandracesaswellasformodern cultivars,too.

Inthepresenceofosmoticstress,waterstatusparametersare among thefirstlyaffectedphysiologicaltraits.Asseenfromthe changesinwaterpotential,thetwowheatcultivarsinvestigatedin ourexperimentsfollowdifferentstrategiestocopewithosmotic stress: GK Öthalom showedtissue dehydration, which it could tolerateduringtheacclimation,whileKobomugiprovedtobeiso- hydric. Onereasonfor thealmostuneffectedwater potentialin

(7)

Fig.3.TranscriptlevelsofAAO2(TC354638),NCED(TC404702)andZEP(AF384103.2)intheshootsandrootsofGKÖthalomandKobomugicultivars.Thetranscriptlevelin thecontrolsamplesonthefirstsamplingday(initialcontrol)wasequalledtoone.Datawerenormalizedusingthewheat18SrRNSandelongationfactorsubunit(EF-1) ashighandlowcontrols,respectively.Statisticaldifferencescomparedtothecontrolsareindicatedby*P0.05,**P0.01,***P0.001.

leavesof Kobomugicould bethefast decrease in thestomatal conductance.Stomatalclosurecausedbyosmoticstressincv.GK ÖthalomdevelopedlaterthaninKobomugi,whichismanifestedin thedecreaseinthewaterpotentialinthiscultivar.

It iswellestablishedthatstomatalconductanceisincorrela- tionwiththeopeningofstomatalporesandisinhibitedbywater deficit(QuarrieandJones,1979;Quicketal.,1992;Tardieuetal., 2006).Closedstomataareanimportantmeanstoprotecttheplants fromwaterloss,butthisstrategyhasanunfavourableinfluenceon CO2 diffusionand,asaconsequence,onthephotosyntheticrate (Morgan,1984).

Droughtstressisoneoftheenvironmentalfactorsthathighly activate ABA biosynthesis. Regulation of ABA content can be achievedattranscriptionallevelespeciallybytheup-regulationof NCED.Ontheotherhand,thelevelsofAAOmRNAwereincreased bywaterstressin Arabidopsiswithnochangeintheamountof theAAOprotein(SeoandKoshiba,2002).NCEDover-expressing tomato also showed an increased ABA content. This de novo biosynthesisisresponsibleforenhancedABAlevelsinroottissues whichcontributestothecontroloftranspirationandleafexpan- sionintheshoots(Thompsonetal.,2007b;PelegandBlumwald, 2011).

(8)

Fig.4. Changesinaldehydeoxidase(AO)activitiesintherootsofwheatcultivarsGKÖthalomandKobomugiinthefunctionoftimeafterexposureto100(onday7),200 (onday9)and400mOsm(onday11)PEG6000treatment.Theactivityoftheenzymeinthegelswasdeterminedusing1mMindole-3-aldehydeasasubstrate.

Inourexperiment,theinvestigatedwheatZEP,NCEDandAAO2 genesin therootsshowedsimilar expressionpatternstothose foundinArabidopsisplants(Xiongetal.,2002).Thehighestinduc- tionwasdetectableintheNCEDtranscriptlevelsintheroots,a lowerincreasewasmeasuredinAAO2incv.KobomugiandinZEP expressioninGKÖthalomcultivar.However,theinductionofNCED andAAO2occurredearlierandwasmorepronouncedinKobomugi thaninGKÖthalom.AtthesametimethebiosynthesisofABAwas notup-regulatedintheleaves.

IthasbeensuggestedthattheinductionofABAbiosynthesisin therootsandABAtransportbythexylemfromtherootstoshootsis along-distancesignalforshoottissues,whichdeterminestherate ofstomatalclosure,thus,itisresponsiblefortheadjustmentofleaf waterstatus(WilkinsonandDavies,2002).Itwasfoundthatlocal- izationoftheAAO3gene(Koiwaietal.,2004)orNCED3andAAO3 proteinsinArabidopsisplantsprovedtobetissuespecificandthe genewasexpressedinthevascularparenchymacellsoftheroots orshoots(Endoetal.,2008),whichpermitsfastloadingofABAinto thexylemsap.InourexperimentsitseemslikelythatAAOactivity canberegulatednotonlyattranscriptionalbutalsoatthepro- teinlevelorbyadirectcontroloftheenzymeactivity.Althoughno

changesinthegeneexpressionwerefound,higherAAO2activities couldbedetectedintherootsofcv.Öthalomexposedtoosmotic stressonday13.Moreover,theactivityofAAO2-3wasenhanced verysignificantlyasaneffectoftheosmoticstressintherootsof cv.Kobomugi.

Water-stressedleavesaccumulatedlargeamountofABAand phaseicacidordihydrophaseicacid,theoxidativemetabolitesof thehormone(Seileretal.,2011).Thelattersareinactivatedforms ofABAandreducethephysiologicallyactivehormonepool(Qin andZeevaart,2002).Inaddition,allthethreecompoundscanbe convertedtoglucosylester-conjugate,thus,thesteady-stateABA levelsareunderthecontrolnotonlyofthesynthesisbutoftherates ofcatabolismandconjugation.Theclosureofstomatadependsalso ontheleafcapacitytocompartmentalizeandmetabolizeABA.

IfABAconcentrationwasexpressedontissuewatercontentit wasfoundthattheup-regulationofABAbiosynthesiscontributed rathertoamaintenancethantoanincreaseinABAconcentration.

Othercalculationmethods(ABAcontentpermgfreshordrymass) gaveverydifferentresults.Thephysiologicallyrelevantconcentra- tionofABAisbasedontheavailabilityofactivehormonemolecule forABAreceptors,inotherwordsonthecompartmentalization.In

(9)

Fig.5. Changesintherelativedensitiesofaldehydeoxidase(AO)isoenzymes(AO2,3)intheroottissuesofwheatcultivarsGKÖthalomandKobomugiinthefunctionof timeafterexposureto100(onthe7thday),200(onthe9thday)and400mOsm(onthe11thday)PEG6000treatment.(mean±SD).Datalabelledwith*differedsignificantly fromtheuntreatedcontrolsat*P0.05,**0.01or***0.001level.

waterstressedplantstheguardcellsrespondtosmallconcentra- tionchangesinapoplasticABAtransportedbythexylemsapfrom rootstoleaftissues.

Thus,closureofthestomatamaybeinducedbyABAwithout anychangeinbulktissueABAlevels(CornishandZeevaart,1985).

Also,thedistributionofABAinsinkandsourceleavescanshow differences,sourceleavescontinuouslyfeedyoungleaveswithABA

viathephloem(CornishandZeevaart,1984).Inthecourseofthe investigationperiod,theleavesofcv.Kobomugishowedsignifi- cantlyhigheraccumulationofABArelatedtotissuewatercontent inthestressedplants.BecausethisstronginductionofABAbiosyn- thesisoccurredintheroots,itcanresultfromaneffectivexylem transportinthiscultivar.Incv.Öthalomtherewasasmallerinduc- tionofABAbiosynthesisintheroots,butthisenabledtheplantsto

Fig.6. Changesintheabscisicacidcontent(ABA)intheleavesandrootsofwheatcultivarsGKÖthalomandKobomugiinthefunctionoftime,calculatedonthebasisoftissue watercontent,afterexposureto100(onday7),200(onday9)and400mOsm(onday11)PEG6000treatment.(mean±SD,n=3).Datalabelledwith*differedsignificantly fromtheuntreatedcontrolsat*P0.05,**0.01or***0.001level.

(10)

Fig.7.ChangesinMDAcontentandSOD,CAT,POD,GR,GSTactivitiesonday21intheleavesandrootsofwheatcultivarsGKÖthalomandKobomugiaftertwoweeksof PEG6000treatment.(Mean±SD).Meansdenotedbydifferentlettersindicateasignificantdifference(P<0.05,Duncantest).

maintainasteady-statehormoneconcentrationintheleaveseven duringosmoticstress.ABAlevelsinthelastsamplingdaywere higherintheroottissues,providingagoodopportunityfor the inductionofdefencemechanismsintherootsoftheanisohydric cultivar.

ItwasreportedbyShatil-Cohenetal.(2011)thatABAtrans- ported by the xylem decreased the water permeability of the vascularbundlesheathcellsandreducedtheleafhydraulicconduc- tancebydown-regulatingtheiraquaporins.Thisisinaccordance withtheresultofPantinetal.(2013)whodemonstratedthatABA promotedstomatalclosureinadualway:viaahydrauliceffectand bydirectactivationofguardcellreceptors.Thus,thestomataincv.

Kobomugileavesmayhaveahighersensitivitytosmallchangesin ABAlevels.

Thecoordinativecontrolandregulationoftheexpressionand activityofantioxidantenzymesmaybeimportantforthesurvival ofplantsduringdroughtstress(BianandJiang,2009).

Inthepresentstudy,almostallantioxidantenzymesinvesti- gated wereaffectedby osmoticstressin a differentmanner in the two wheat cultivars. In the leavesof cv.GK Öthalom, the investigated enzymesworkedat alower level(SOD)ordidnot changesignificantly(CAT,POD,GR, GST).In Kobomugithehigh basalactivityofSODdeclinedduringosmoticstress,butCAT,POD, GR and GST activities were enhancedin the leavesand, more significantly,intherootsaftertwoweeksofosmoticstress.Our results suggest that a higher activity or theinduction of these enzymesintherootsoftheisohydricgenotypecanprotectagainst oxidativedamage.Theisohydriccv.Kobomugiaccumulatedless

(11)

malondialdehydethancv.Öthalom duringosmoticstress.MDA can be regarded as a biomarker for lipid peroxidation, so the decreaseinMDAcontentindicateshigheranti-oxidativeability, whichcanreflecthigherresistancetodrought(Dhandaetal.,2004).

CATinductionhasa pivotalrole inthe defenceandadaptation inthepresenceofexcessH2O2(Vranováetal.,2002;Tarietal., 2008), and drought stress increased CATactivity in the leaves ofwheat (Lunaet al.,2005).Guaiacolperoxidases are involved not only in scavenging H2O2 but also in plant growth, devel- opment,lignification,suberization,andcross-linkingofcellwall compounds.Salt-ordrought-tolerantplantsoftenhavehigherPOD activitiesthanthesensitiveonesduringstressconditions(Wang etal.,2009;Csiszáretal.,2012).Glutathionereductaseisapartof theascorbate-glutathioneenzymesystem,convertingglutathione disulfide(GSSG)toreducedglutathione(GSH).HighGSTactivityis acommoncharacteristicofseveralcultivatedTriticumspecies,and accordingtotheliterature,thedifferencesintheGSTactivitiesare inagoodcorrelationwiththeirstresstolerance(Bartolietal.,1999;

Edwardsetal.,2000;Galléetal.,2009).TheprotectingroleofGSTs againstdifferentstresseshasbeenprovedinseveralplantspecies (Edwardsetal.,2000),andtransgenictobaccoplantsoverproduc- ingaGSTgenewithGSH-PXactivityexhibitedsignificantoxidative stresstolerance(Roxasetal.,2000).

Activationandinductionofantioxidantenzymesunderdrought stressinwheatshowstimedependenceanddependsonthesever- ityofthestress(Bartolietal.,1999).Itwasreportedearlierthat changesinH2O2contentsinapicalrootsegmentsofwheatgeno- typesexhibitedagenotype-specificpatternduringosmoticstress (Csiszáretal.,2012).Inthepresentexperiments,theroleofantiox- idantenzymeactivitiesinthestressresponsewasapparentduring moreseverewater stressconditions(onday21,oneweekafter applying400mOsmPEG) inboth cultivars.ABA-responsiveele- ments (ABRE) were found in the promoter regions of several enzymesoftheantioxidantdefence,e.g.POX(Csiszáretal.,2012), CAT(Scandalios,2005),SOD(Sakamotoetal.,1995),GR(Kaminaka etal.,1998)and in GST(Xuetal., 2002)isoenzymes,but their expressionmaybecontrolledbyH2O2 orbyABAthroughinde- pendentsignaltransductionpathways.

Beyond the putative control of ROS scavenging systems it wasfoundthatincreasedABAcontentsintomatoconstitutively expressingLeNCED1 ledtoa higher guttation rate(Iuchiet al., 2001).ThissuggeststhatABAmayfacilitatexylemloadingandthe enhancementofrootpressureundernon-transpiringconditions.

TheleakageofK±andotherinorganicionsfromthecellswasalso dependentonROSproduction(Demidchiketal.,2010)andonthe antioxidantstatusofthetissues(Tarietal.,2002).Thus,theinduc- tionofantioxidant enzymesinthe rootsof anisohydricwheat genotypemaycontroltheaccumulationofinorganicosmolytes, whichcancontributetothemaintenanceofwaterpotential.

Inconclusion,thetwocultivarsrespondeddifferentlytoosmotic stressandthesuccessfulacclimationcanbeattributedtovarious componentsinbothcultivars.Thequickstomatalclosureandthe increasedshootABAcontentsincv.Kobomugimayplayarolein themaintenanceofthewaterpotentialoftheplantsatcontrollevel.

Thestress-inducibleABAbiosynthesisandantioxidantdefencein therootsystemofKobomugicouldarisefromtheadaptationof thislandracetosemidesertenvironmentalconditions.Theclosure ofstomatainparallelwiththeABAbiosynthesisinGKÖthalomwas aresponsetoahigherosmoticstressandtheantioxidantdefence waslesspronouncedintheroots,whichledtoahigherdamageto themembranestructureintherootcells.

Acknowledgements

Theauthorsgratefullyacknowledgethefinancialsupportofthe NationalOffice forResearch and Technology ofthe Republicof

Hungary(Grant“TellerEde”,GrantNo.2006ALAP3-01435/2006) andthesupportofHungarianScientificResearchFund(OTKACNK 80988).

References

AlscherRG,DonahueJL,CramerCL. Reactiveoxygenspeciesandantioxidants:

relationshipsingreencells.PhysiolPlant1997;100:224–33.

BartoliCG,SimontacchiM,TambussiE,BeltranoJ,MontaldiE,PuntaruloS.Drought andwatering-dependentoxidativestress:effectonantioxidantcontent in TriticumaestivumL.leaves.JExpBot1999;50:375–83.

BianS,JiangY. Reactiveoxygenspecies,antioxidantenzymeactivitiesandgene expressionpatternsinleavesandrootsofKentuckybluegrassinresponseto droughtstressandrecovery.SciHortic2009;120:264–70.

BlumA.Plantwaterrelations,plantstressandplantproduction.In:BlumA,edi- tor.Plantbreedingforwater-limitedenvironments.SpringerScience+Business Media,LLC;2011.p.11–52,http://dx.doi.org/10.1007/978-1-4419-7491-42.

BorelC,AudranC,FreyA,Marion-PollA,TardieuF,SimonneauTN.plumbaginifolia zeaxanthinepoxidasetransgeniclineshaveunalteredbaselineABAaccumula- tionsinrootsandxylemsap,butcontrastingsensitivitiesofABAaccumulation towaterdeficit.JExpBot2001;52:427–34.

BradfordMM.Arapidandsensitivemethodfortheqantitationofmicrogramqan- titiesofproteinutilisingtheprincipleofproteindyebinding.AnalBiochem 1976;72:248–54.

ChernysJT,ZeevaartJA.Characterizationofthe9-cis-epoxycarotenoiddioxygenase genefamilyandtheregulationofabscisicacidbiosynthesisinavocado.Plant Physiol2000;124:343–53.

ChomczynskiP,SacchiN.Single-stepmethodofRNAisolationbyacidguanidinium thiocyanate-phenol-chloroformextraction.AnalBiochem1987;62:156–9.

Condon AG,RichardsRA,Farquhar GD. Theeffectof variationin soilwater availability,vaporpressuredeficitandnitrogennutritiononcarbonisotope discriminationinwheat.AustJAgricRes1992;43:935–47.

CornishK,ZeevaartJAD.Movementofabscisicacidintotheapoplastinresponseto waterstressinXanthiumstrumariumL.PlantPhysiol1985;78:623–6.

CorreiaMJ,PereiraJS. Thecontrolofleafconductanceofwhitelupinbyxylem ABAconcentrationdecreaseswiththeseverityofwaterdeficits.JExpBot 1995;46:101–10.

CsiszárJ,GalléÁ,HorváthE,DancsóP,GombosM,VáryZs,etal. Differentper- oxidaseactivitiesandexpressionofabioticstress-relatedperoxidasesinapical rootsegmentsofwheatgenotypeswithdifferentdroughtstresstoleranceunder osmoticstress.PlantPhysiolBiochem2012;52:119–29.

DemidchikV,CuinTA,SvistunenkoD,SmithSJ,MillerAJ,ShabalaS,etal.Arabidop- sisrootK+-effluxconductanceactivatedbyhydroxylradicals:single-channel properties,geneticbasisandinvolvementinstress-inducedcelldeath.JCellSci 2010;123:1468–79.

DhandaSS,SethiGS,BehlRK. Indicesofdroughttoleranceinwheatgenotypesat earlystagesofplantgrowth.JAgronCropSci2004;190:6–12.

Dhindsa RS, Plumb K, Dhindsa P, Thorpe TA. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 1981;32:93–101.

DrewMC. Stressphysiology.In:TaizL,ZeigerE,editors.PlantPhysiology.4thed.

Sunderland,MA:SinauerAssociates;2006.p.764.

EderliL,PasqualiniS,BatiniP,AntonielliM.Photoinhibitionandoxidativestress:

effectsonxanthophyllscycle,scavengerenzymesandabscisicacidcontentin tobaccoplants.JPlantPhysiol1997;151:422–8.

EdwardsR,DixonDP,WalbotV. PlantglutathioneS-transferases:enzymeswith multiplefunctionsinsicknessandinhealth.TrendsPlantSci2000;5:193–8.

EndoA,SawadaY,TakahashiH,OkamotoM,IkegamiK,KoiwaiH,etal. Drought inductionofArabidopsis9-cis-epoxycarotenoiddioxygenaseoccursinvascular parenchymacells.PlantPhysiol2008;147:1984–93.

FoyerCH,NoctorG. Redoxhomeostasisandantioxidantsignaling:ametabolic interfacebetweenstressperceptionandphysiologicalresponses.Plant Cell 2005;17:1866–75.

FreyA,EffroyD,LefevreV,SeoM,PerreauF,BergerA,etal.Epoxycarotenoidcleavage byNCED5fine-tunesABAaccumulationandaffectsseeddormancyanddrought tolerancewithotherNCEDfamilymembers.PlantJ2012;70:501–12.

GalléÁ,CsiszárJ,SecenjiM,GuóthA,CseuzL,TariI,etal. Glutathionetransferase activityandexpressionpatternsduringgrainfillinginflagleavesofwheatgeno- typesdifferingindroughttolerance:responsetowaterdeficit.JPlantPhysiol 2009;166:1878–91.

GuóthA,TariI,GalléÁ,CsiszárJ,PécsváradiA,CseuzL,etal. Comparisonofthe droughtstressresponsesoftolerantandsensitivewheatcultivarsduringgrain filling:changesinflagleafphotosyntheticactivity,ABAlevelsandgrainyield.J PlantGrowthRegul2009;28:167–73.

HabigWH,PabstMJ,JakobyWB. GlutathioneS-transferases.Thefirstenzymatic stepinmercapturicacidformation.JBiolChem1994;246:7130–9.

InoueKT,JacksonRD,PinterJR.Influencesofextractablesoilwaterandvaporpres- suredeficitontranspirationandstomatalresistanceindifferentiallyirrigated wheat.JpnJCropSci1989;58:430–7.

IuchiS,KobayashiM,TajiT,NaramotoM,SekiM,KatoT,etal. Regulationof droughttolerancebygenemanipulationof9-cis-epoxycarotenoiddioxygenase, akeyenzymeinabscisicacidbiosynthesisinArabidopsis.PlantJ2001;27:

325–33.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Although MPs represent promising novel biomarkers, their precise analysis is confounded by several pre-analytical factors (e.g. blood sampling, transportation and centrifugation

Deregulated genes and their expression (fold changes), which are involved in the activated pathway networks in the distal (ischemia-affected), mid (border zone of ischemia)

Effects of 1 day 0.15 mM abscisic acid (ABA) or 0.5 mM putrescine (PUT) pre-treatments followed by 5 days of recovery period or 15% polyethylene glycol (PEG) treatments on the

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

The mononuclear phagocytes isolated from carrageenan- induced granulomas in mice by the technique described herein exhibit many of the characteristics of elicited populations of

For the technologically important field of the ternary system N a 2 0 - CaO-Si02 these authors presented their data in the form of lines of equal viscosity (isokoms). Their diagram

With the help of their practice book and in some papers the authors of the grammar patterns series also try to give ideas to teachers and learners of English in what ways their